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Abstract: Fertilization management is essential for forage production. However, excessive use of
synthetic fertilizers causes environmental imbalances. An alternative to reduce these effects is to seek
alternative fertilizers, such as wood ash produced from agro-industrial waste, when integrated with
appropriate base saturation management. This study aims to compare the effects of fertilization with
wood ash (WA), organomineral (OM), and mineral (M) fertilizers associated with different levels
of base saturation on the growth and water productivity of Panicum maximum cv. BRS Zuri. The
experiment was conducted in a greenhouse, using a randomized block design in a 3 × 3 factorial
arrangement. The treatments consisted of three types of fertilization (WA, OM and M) and three
levels of base saturation (0, 25%, and 50%). Leaf area, chlorophyll index, shoot dry mass and root dry
mass, water consumption, and water productivity of Zuri grass were evaluated. The results showed
significant increases in leaf area, with values of up to 4564.5 cm2.pot−1 and a chlorophyll index of up
to 36.2 units. In addition, the dry mass of the aerial part reached up to 46.7 g.pot−1, and the dry mass
of the roots reached 21.7 g.pot−1 with the use of OM fertilizers. These values represent an increase
of between 43.1% and 69.6% compared to the values of conventional fertilizers. In addition, water
productivity reached 4.9 g.L−1 with WA-based fertilizers, an increase of around 39% compared to the
values of mineral fertilizers.

Keywords: wood ash; organomineral; mineral (NPK); agricultural sustainability

1. Introduction

Proper nutrient supply to plants through fertilization combined with water manage-
ment is crucial for increasing the growth and productivity of crops, ensuring agricultural
sustainability, and this holds true for forage species as well [1]. In this context, Zuri grass
(Panicum maximum cv. BRS Zuri) has drawn interest due to its potential as a forage grass
considering its adaptability to different environmental conditions [2]. However, it is impor-
tant to explore alternative fertilization practices, as well as levels of base saturation and
water management strategies, aimed at optimizing the productivity of this forage.

The pursuit of fertilization alternatives aims to reduce dependence on synthetic fertiliz-
ers as the primary source and promote ecologically friendly agriculture by adopting fertiliz-
ers derived from wood ash and organominerals. Recent studies show that fertilization with
wood ash has significantly contributed to increased soil water retention [3], soil fertility [4],
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soil biology [5,6], growth and productivity decisively impacting nutritional performance [7],
mineral concentration, photosynthetic pigments, and plant secondary metabolites. Wood
ash, obtained from biomass burning, is rich in essential macro- and micronutrients, con-
tributing to improved soil quality and consequently crop productivity [8,9].

Another promising approach is the use of organomineral fertilizers, which combine
organic sources (such as wood ash) with mineral nutrients [10]. These fertilizers provide
effective nutrients to plants and contribute to soil fertility and water retention [11]. The
combination of organic and mineral materials allows for a gradual release of nutrients,
promoting plant growth in terms of height, tiller number, and leaf area, resulting in high
productivity performance [12].

Base saturation levels are an efficient indicator for characterizing soil fertility, and
when combined with different types of fertilizers, they help identify those with greater
potential to improve soil fertility [13]. According to Rawal et al. [14], base saturation
levels help increase the availability of essential nutrients such as potassium, phosphorus,
and calcium to plants, compensating for the need for synthetic fertilizers [15], which
are produced from non-renewable resources and have significant environmental impacts
during their manufacturing [16,17]. Therefore, alternative fertilizers play an essential role
in the pursuit of agricultural sustainability.

The proposed hypothesis is that alternative fertilizers like wood ash and organomin-
eral (wood ash + mineral) combined with base saturation levels may promote greater Zuri
grass growth compared to mineral fertilizer, while also optimizing water productivity and
contributing to sustainability by reducing reliance on synthetic fertilizers. The combination
of wood ash-based fertilizers with base saturation is expected to facilitate higher nutritional
efficiency for Zuri grass, providing an ideal environment for its growth and productivity.
The nutrients released by wood ash-based fertilizers complement those present in the soil,
maximizing nutritional availability for the plant.

Quantifying the growth and water productivity of Zuri grass based on the use of wood
ash-based alternative fertilizers and base saturation levels will provide relevant information
on the importance of these fertilizers in optimizing crop productivity. However, there is
an evident scarcity of studies in this area. Nevertheless, this study could yield results for
adopting more efficient and sustainable agricultural practices that value waste reuse, such
as wood ash, and rational use of water resources.

Given this scenario, the objective of this study is to compare the effects of fertilization
with wood ash, organomineral, and mineral fertilizers associated with base saturation
levels on the growth and water productivity of Zuri grass.

2. Materials and Methods
2.1. Characterization of the Experimental Site

The study was conducted in a greenhouse belonging to the Institute of Agricultural
Sciences of the Federal University of Rondonópolis, located in Rondonópolis, MT, Brazil
at geographic coordinates 16◦27′49′′ S and 54◦34′46′′ W, at an altitude of 290 m. The
experiment took place from January to April 2022.

The greenhouse had a galvanized steel arch structure covered with a 150-micron
plastic film. It had a total area of 450 m2 with a cooling system consisting of an evaporative
clay panel and two exhaust fans positioned parallel and opposite to the evaporative panel.

Throughout the experiment, the greenhouse temperature was monitored using a digital
thermo-hygrometer installed at a height of 1.5 m during the entire crop cycle. The av-
erage minimum and maximum temperatures during the crop cycle were 23.0 ◦C and
38.6 ◦C, respectively.

The soil used in the experimental units was classified as Dystrophic Red Oxisol,
collected at a depth of 0.00–0.20 m under Cerrado vegetation at the university itself, at
geographic coordinates 16◦27′35′′ S and 54◦35′00′′ W (Table 1).
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Table 1. Physico-chemical characterization of the Dystrophic Red Oxisol collected under Cerrado
vegetation at 0–0.2 m depth at the Federal University of Rondonópolis.

pH SB CEC Al H + Al MO V M Sand Silt Clay

CaCl2 --------------------cmolc dm−3-------------------- --------------------------------------%---------------------------------------
4.3 0.8 5.6 0.6 4.8 2.13 13.5 44.4 33.0 10.0 57.0

P K S Ca Mg B Cu Fe Mn Zn

---------------mg dm−3-------------- -----cmolc dm−3----- ----------------------------mg dm−3--------------------------
1.5 18.0 2.0 0.5 0.2 0.15 0.2 64.0 21.8 0.7

SB: Sum of bases; CEC: Cation exchange capacity; Al: Aluminum; H: Hydrogen; MO: Organic Matter; V: Base
saturation; m: Aluminum saturation; CaCl2: Calcium chloride; P: Phosphorus; K: Potassium; S: Sulfur; Ca:
Calcium; Mg: Magnesium; B: Boron; Cu: Copper; Fe: Iron; Mn: Manganese; Zn: Zinc.

The wood ash used in the treatments was obtained from the burning of eucalyptus
biomass (Eucalyptus sp.) in furnaces of a food industry located in Rondonópolis, MT. The
chemical characterization of the wood ash (as fertilizer and corrector) used in the study is
shown in Table 2.

Table 2. Chemical analysis of wood ash as corrector and fertilizer.

pH N P2O5 K2O Ca Mg SO4 B Cu Fe Mn Zn CaO MgO PN PRNT

CaCl2 ----------------------------------------------------------g kg−1--------------------------------------------------------- -------%-------
10.67 4.9 7.9 32.5 49.6 42.0 6.0 0.4 0.1 7.2 0.4 0.2 91.0 65.0 30.0 24.8

N: Total nitrogen; P2O5: Phosphorus; K2O: Potassium; Ca: Calcium; Mg: Magnesium; SO4: Sulfur; B: Boron; Cu:
Copper; Fe: Iron; Mn: Manganese; Zn: Zinc; CaO: Oxide of calcium; MgO: Magnesium oxide; CaCl2: Calcium
chloride; PN: Power of neutralization; RPNT: Relative power of neutralization.

2.2. Experimental Design and Treatments

The experimental design was conducted in randomized blocks, with a 3 × 3 factorial
arrangement, corresponding to three types of fertilization (Wood ash (WA), Organomineral
(OM), and Mineral (M)) associated with three levels of base saturation (V = 0 (natural base
saturation of the soil); V = 25%; and V = 50%). Four replications were carried out, totaling
36 experimental units. At the end of the soil incubation period, the factors were combined,
resulting in nine treatments, distributed in four blocks (Figure 1).

Each experimental unit consisted of self-irrigating plastic pots with the following
dimensions: an external height of 0.18 m; an internal height of 0.14 m; an upper diameter of
0.215 m; a lower diameter of 0.175 m; a pot volume of 5.082 L, and a self-irrigating reservoir
volume of 0.96 L.

For the first source of variation, three different types of fertilization were used: WA,
OM, and M.

In the treatment composed solely of WA, a fertilization of 24 g.dm−3 was recom-
mended [18]. The WA was incubated together with the soil in closed plastic bags for
30 days, with the moisture adjusted to 60% of the soil’s maximum water-holding capacity.
The incubation aimed to accelerate the soil acidity correction process. The incorporation
of WA into the soil occurred 30 days before sowing to avoid possible alkaline effects that
could impair the initial growth of the plants.

For the OM treatment, a combination of WA and M fertilizer (Phosphorus (P) + Potas-
sium (K) + micronutrients) was used. This combination consisted of 12 g.dm−3 of WA,
75 mg.dm−3 of phosphorus (Simple Superphosphate), 50 mg.dm−3 of potassium (Potas-
sium Chloride) and 50 mg.dm−3 of FTE (boron: 1.8%; copper: 0.85%; sulphur: 3.9%; iron:
3.0%; manganese: 2.0%; molybdenum: 0.1%, and zinc: 9.0%). For WA, we followed half
the P and K recommendation of Bezerra et al. [18] and Bonfim-Silva et al. [19], respectively,
and for micronutrients, we followed the full recommendation of Bonfim-Silva et al. [19].
This combination was incorporated into the soil on the day of sowing, which occurred in
February 2022.
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In the M treatment, fertilization was exclusively with mineral fertilizer; 150 mg.dm−3

of phosphorus, 100 mg.dm−3 of potassium and micronutrients was applied on the day
of sowing (February 2022) using the respective sources (Simple Superphosphate, Potas-
sium Chloride and FTE (boron: 1.8%; copper: 0.85%; sulphur: 3.9%; iron: 3.0%; man-
ganese: 2.0%; molybdenum: 0.1%, and zinc: 9.0%)) according to the recommendation of
Bonfim-Silva et al. [19].

The second source of variation considered was the base saturation level (V%). The
determination of this level was carried out through the base saturation method (V%) using
the Lime Requirement formula (LR) according to Sousa and Lobato [20]. The recommen-
dation was 2.4 t ha−1 of limestone, which was transformed into g pot−1. To calculate the
liming requirement, dolomitic limestone with an RPNT of 86% was used. The goal was to
increase the natural base saturation of the soil to 25% and 50%. Based on these calculations,
each treatment received its respective proportions (Figure 1).

In the V = 0 treatment (natural base saturation of the soil), the base saturation was not
altered, remaining the same as that of the natural soil, i.e., 13.5% according to soil analysis
(Table 1). In this case, no limestone was applied to correct the soil.

For the V = 25% and V = 50% treatments, the base saturation was increased to 25%
and 50%, respectively. According to Embrapa [21], the ideal recommendation for raising
the base saturation for Zuri grass cultivation is 50%. For this, the soil was incubated for
30 days in a plastic bag, adding 0.6 and 1.2 g dm−3 of soil, respectively. Additionally, the
soil moisture was adjusted to 60% of the maximum water-holding capacity to accelerate
the soil acidity correction process.

2.3. Nitrogen Fertilization, Seeding and Thinning

Nitrogen fertilization was common to all treatments. In each growth phase of Zuri
grass (when the plant reached 0.10 m in height, 30 days after emergence—first cut, and
60 days after emergence—second cut), the nitrogen fertilization recommendation was
200 mg dm−3 [19]. This fertilization was divided into two applications of 1.11 g.pot−1 for
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each experimental unit, with a seven-day interval between them. Urea was used as the
nitrogen source, dissolved in 0.05 L of water, and applied close to the soil in all treatments.

A germination test was carried out on the seeds of Panicum maximum cv. BRS Zuri
(Zuri grass), obtaining a percentage of 80%. For this reason, it was decided to sow a greater
number of seeds to guarantee the germination and health of the squad. Therefore, in each
experimental unit, approximately 50 seeds of Zuri grass were sown at a depth of 0.02 m.
Plant emergence occurred on the fourth day after sowing. During the first fifteen days
after emergence, two thinnings were performed. The first thinning was carried out on the
seventh day after emergence, leaving approximately 20 plants per pot. The second thinning
took place on the fifteenth day after emergence when the plants reached 10 cm in height,
retaining the five most vigorous plants in each pot.

2.4. Irrigation Management

The irrigation management of the self-irrigating pots was carried out through capillar-
ity, with water replenishment occurring whenever the water level in the (self-irrigating)
reservoir visibly dropped below 75% of its capacity. Irrigation in the self-irrigating pots
occurs through capillary action, which maintains the appropriate soil moisture level, pre-
venting both excess and scarcity of water for the plants, which is crucial for their healthy
growth and development.

The amount of water consumed by each experimental unit was monitored from
plant emergence. The volume of water added to the reservoirs was recorded as the level
decreased, allowing the calculation of Zuri grass water consumption throughout the pro-
duction cycle.

2.5. Analyzed Variables

The variables were analyzed on each cutting occasion. The cuttings occurred at 30, 60,
and 90 days after emergence (DAE) of Zuri grass, respectively. The analyzed variables were
the chlorophyll index (CI), leaf area (LA), shoot dry mass (SDM), root dry mass (RDM),
water consumption (WC), and water productivity (WP).

Before each cutting, the CI was measured using the portable SPAD (Soil Plant Anal-
ysis Development) 502-Plus Chlorophyll Meter. Five fully expanded diagnostic plants
(+1 and +2) from each experimental unit were selected, and the average was obtained from
these readings.

During each cutting, fully expanded leaves were separated from the stems to measure
the LA. The LI-3100 AREA METER leaf area integrator was used to obtain the total LA of
each experimental unit.

SDM was evaluated at each cutting. The shoot part of the plants (leaves + stems) was
placed in a forced ventilation oven at 65 ◦C for 72 h. After the drying process, the samples
were weighed on an analytical balance to obtain the dry mass.

RDM was exclusively evaluated at 90 DAE. After the roots were dried in a forced venti-
lation oven at 65 ◦C for 72 h, the RDM was determined by weighing on an analytical balance.

Throughout the experimental period, the volume of water replenished in each experi-
mental unit’s reservoir was quantified, from plant emergence to the final cutting at 90 DAE,
allowing the calculation of WC for Zuri grass. WP was estimated by relating the SDM and
WC for each cutting.

2.6. Statistical Analysis

The experiment data were tested for normality and homoscedasticity. Univariate
statistics were used with analysis of variance (ANOVA) measured by the F test. When
the effects were significant, the means were compared using the Scott–Knott test at the
5% probability level, using the statistical program SISVAR version 5.8 [22]. Pearson’s
correlation was also used to verify the contribution of the variables.
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3. Results
3.1. Growth Variables of Zuri Grass under Different Fertilization Types and Base Saturation Levels

The summary of the analysis of variance for LA, CI, SDM, and RDM of Zuri grass
under different fertilization types and base saturation levels are presented in Table 3.

Table 3. Summary of the analysis of variance with F values for different fertilization types and base
saturation levels on leaf area (LA), chlorophyll index (CI), shoot dry mass (SDM) at 30, 60, and
90 days after emergence (DAE), and root dry mass (RDM) at 90 DAE of Zuri grass.

SV DF

Statistic F

LA
(cm2.pot−1) CI SDM

(g.pot−1)
RDM

(g.pot−1)

30 DAE 60 DAE 90 DAE 30 DAE 60 DAE 90 DAE 30 DAE 60 DAE 90 DAE 90 DAE

Block 3 0.64 ns 1.35 ns 1.04 ns 1.41 ns 0.37 ns 1.49 ns 0.55 ns 0.14 ns 0.68 ns 1.06 ns

Fertilizing 2 19.01 *** 48.46 *** 19.07 *** 2.14 ns 27.15 *** 10.54 *** 9.77 *** 37.24 *** 69.34 *** 75.22 ***
Base saturation 2 0.50 ns 2.51 ns 0.22 ns 0.45 ns 1.17 ns 1.92 ns 0.80 ns 0.12 ns 0.22 ns 0.80 ns

Fertilizing ×
Base saturation 4 0.45 ns 1.01 ns 0.58 ns 2.40 ns 0.64 ns 0.17 ns 0.22 ns 0.34 ns 0.57 ns 0.15 ns

Error 24

CV (%) 16.33 16.71 24.6 8.86 11.13 15.51 19.14 17.31 21,24 19.08
Overall
average 3156.97 3731.31 1753.46 39.93 31.13 30.18 18.90 38.74 15.70 30.01

Significance levels: *** p < 0.001; ns : Non-significant. SV: Source of variation. CV: Coefficient of variation.
DF: Degrees of freedom.

For the variables LA, CI, SDM, and RDM, there was a significant effect of different
fertilization types at all evaluation times (30, 60, and 90 days after emergence—DAE) with
a significance level of 0.1%. However, no statistical differences were observed for the base
saturation levels, and there was no interaction between the factors of different fertilization
types and base saturation levels for any of the studied periods (Table 3).

Significant differences (p < 0.05) were observed by the Scott–Knott test among the
different fertilization types when analyzing the LA at 30, 60, and 90 DAE (Figure 2a) and
the CI at 60 and 90 DAE (Figure 2b) of Zuri grass.

At 30 DAE, the treatment with WA resulted in a significantly larger LA (3906.3 cm2.pot−1)
compared to the OM (2797.8 cm2.pot−1) and M (2766.8 cm2.pot−1) treatments. No dif-
ferences were observed between the OM and M treatments at this early growth stage
(Figure 2a).

At 60 and 90 DAE, the WA and OM treatments did not differ from each other, indicating
similar effects on Zuri grass LA. However, both treatments differed significantly from the
M fertilization treatment. The WA and OM treatments showed LA values of 4564.5 and
4338.8 cm2.pot−1 at 60 DAE, and 1896.3 and 2191.2 cm2.pot−1 at 90 DAE, respectively.
In comparison, the M fertilization treatment had lower values, with 2290.6 cm2.pot−1 at
60 DAE and 1142.9 cm2.pot−1 at 90 DAE (Figure 2a). This reflected a percentage difference
of 49.8% and 47.2% at 60 DAE and 39.7% and 47.8% at 90 DAE, for WA and OM fertilization,
respectively, compared to M fertilizer, directly affecting the forage productivity.

No significant differences were found for the CI variable between treatments at
30 DAE, according to the Scott–Knott test (Figure 2b). However, at 60 DAE, the WA treat-
ment showed a significantly lower CI (25.8 units) compared to those of the OM (31.4 units)
and M (36.2 units) treatments (Figure 2b).

At 90 DAE, the WA treatment differed statistically from the OM and M treatments.
However, no statistically significant differences were observed between the latter two. The
OM and M treatments had CI values of 30.78 and 34.2 units, respectively, while the WA
treatment had the lowest index, with 25.5 units (Figure 2b).
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Figure 2. Mean leaf area (LA) (cm2.pot−1) (a) and chlorophyll index (CI) (b) for the fertilizer type at
30, 60, and 90 DAE (days after emergence) of Zuri grass. Vertical bars indicate standard error of the
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by the Scott-Knott test at a 5% probability level ns non-significant.

These results may be related to the correlation effects among the variables analyzed
at 30, 60, and 90 DAE (Table 4). It can be observed that there was a negative correlation
between CI at 60 and 90 DAE with LA at 30, 60, and 90 DAE at a 5% probability level. It is
possible to observe that CI at 60 DAE with LA at 30 DAE has a strong negative correlation,
and CI at 60 DAE versus LA at 60 and 90 DAE, respectively, have a moderate negative
correlation. For CI at 90 DAE versus LA at 30, 60, and 90 DAE, the correlation is negative
and classified as moderate (Table 4). The negative or inverse correlation indicates that
high LA values at 30, 60, and 90 DAE correspond to low CI values at 60 and 90 DAE
(Figure 2a,b).

Table 4. Pearson correlation between the chlorophyll index (CI) and leaf area (LA) at 30, 60, and
90 days after emergence (DAE) of Zuri grass.

Variables LA 30 LA 60 LA 90

CI 30 0.08 ns −0.19 ns 0.09 ns

CI 60 −0.64 * −0.58 * −0.48 *
CI 90 −0.44 * −0.49 * −0.43 *

* p < 0.05; ns: Non-significant.

When analyzing the SDM at 30, 60, and 90 days after emergence (DAE) of Zuri grass,
a significant difference was observed among the different fertilization types (Figure 3).

At 30 DAE, there were no significant differences in SDM between the WA and M
treatments at a 5% probability level according to the Scott–Knott test. However, the OM
fertilizer treatment showed significantly lower SDM. The highest SDM was observed in
the WA and M treatments, with values of 22.1 and 19.1 g.pot−1, respectively, while the OM
treatment had the lowest value of 15.5 g.pot−1 (Figure 3).
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(days after emergence) of Zuri grass. Vertical bars indicate standard error of the mean (p = 0.05).
Means followed by the same lowercase letter in the different treatments do not differ by the Scott-
Knott test at a 5% probability level.

The absence of difference in SDM between the WA and M treatments suggests that,
at this early stage of Zuri grass growth (30 DAE), both fertilizers are supplying nutrients
equally to the plants. This similarity may be attributed to the process of mineralization and
nutrient availability, which can occur similarly for both fertilizer sources at the beginning
of cultivation.

However, the lower SDM in the OM treatment suggests that the release of nutrients
from this type of fertilizer may have been slower or in smaller amounts at this specific stage
of plant development. The process of mineralization and nutrient availability from the OM
fertilizer may be requiring more time, as the nutrient supply was limited for the plants at
this stage of growth.

For the second cut on the Zuri grass at 60 DAE, there were no significant differences
in SDM between the WA and OM treatments, but both differed significantly from the M
treatment (Figure 3). The SDM for the WA and OM fertilizers was 44.3 and 46.7 g.pot−1,
respectively, while for the M treatment, it was 25.2 g.pot−1 (Figure 3). A comparative
analysis showed an increase of 43.1% and 46.0% in SDM when using WA and OM fertilizers,
respectively, compared to the M fertilizer, which represents an approximately 50% increase.

Significant differences were observed for the SDM variable when subjected to dif-
ferent fertilization types at 90 DAE (Figure 3). The OM fertilizer treatment exhibited the
highest SDM with an average value of 42.1 g.pot−1, followed by the WA treatment with
33.7 g.pot−1, while the M fertilizer treatment showed the lowest value of 14.2 g.pot−1

(Figure 3). The OM fertilizer increased SDM by 66.3% compared to the M fertilizer.
This finding highlights the importance of providing fertilizers that include WA in their

composition, as it supplies nutrients slowly to the plants, allowing them prolonged access
to the nutrient. In contrast, fully synthetic fertilizers provide nutrients to the plants rapidly
initially and then exhaust the nutrient supply to the soil, compromising plant uptake.
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A significant difference was observed among the fertilization types when studying
RDM at 90 DAE of Zuri grass cultivation (Figure 4).
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The treatment with OM fertilizer composed of WA+M showed a significant difference
compared to fertilizers that consist of only WA and M fertilizers (N, P, K, plus micronutri-
ents). The OM l treatment exhibited the highest absolute value of RDM, with 21.7 g.pot−1,
followed by the WA treatment with 18.8 g.pot−1, and the M fertilizer treatment with
6.6 g.pot−1 (Figure 4).

When comparing the M fertilizer treatment to the OM fertilizer treatment, a decrease
of 69.6% in RDM production was observed. These results demonstrate the effectiveness of
the OM fertilizer in promoting the root growth and development of Zuri grass compared
to the WA and M treatments.

This improvement can be attributed to the composition of the OM fertilizer, which
includes WA, benefiting the physical, chemical, and biological soil conditions. Additionally,
the presence of synthetic nutrients in the OM fertilizer, combined with WA, contributes to
a more efficient supply of assimilable nutrients to Zuri grass, resulting in a higher RDM.

These results clearly reflect the correlation between the analyzed variables. When
correlating LA at 30 DAE with SDM at 30 and 60 DAE, a positive correlation was observed,
indicating that higher LA values reflect higher SDM (Table 5).

LA at 60 and 90 DAE showed a strong and direct correlation with SDM 60, SDM 90,
and RDM. However, when studying CI at 60 and 90 DAE versus SDM 60, SDM 90, and
RDM, an inverse correlation classified as weak to moderate was observed (Table 5). This
means that higher SPAD values result in lower LA of the plant and consequently lower
SDM and RDM [23].
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Table 5. Pearson correlation between chlorophyll index (CI) and leaf area (LA) versus shoot dry mass
(SDM) at 30, 60, and 90 days after emergence (DAE) and root dry mass (RDM) of Zuri grass.

Variables SDM 30 SDM 60 SDM 90 RDM

LA30 0.58 * 0.41 * 0.29 ns 0.32 ns

LA60 −0.03 ns 0.84 * 0.71 * 0.76 *
LA90 −0.01 ns 0.72 * 0.84 * 0.76 *
CI 30 0.20 ns −0.20 ns −0.21 ns −0.25 ns

CI 60 −0.37 * −0.60 * −0.56 * −0.58 *
CI 90 −0.22ns −0.44 * −0.37 * −0.39 *

* p < 0.05; ns: Non-significant.

3.2. Water Consumption and Water Productivity of Zuri Grass under Different Fertilization Types
and Base Saturation Levels

The summary of the analysis of variance for WC and WP of Zuri grass at 30, 60, and
90 DAE under different fertilization types and base saturation levels are shown in Table 6.

Table 6. Summary of the analysis of variance with F values for different fertilization types and base
saturation levels in water consumption (WC) and water productivity (WP) at 30, 60, and 90 days after
emergence (DAE) of Zuri grass.

SD DF

Statistic F

WC (L.pot−1) WP (g.L−1)

30 DAE 60 DAE 90 DAE 30 DAE 60 DAE 90 DAE

Block 3 0.44 ns 0.16 ns 1.83 ns 0.36 ns 0.21 ns 0.77 ns

Fertilizing 2 4.95 * 4.71 * 49.74 *** 3.27 ns 53.21 *** 55.77 ***
Base saturation 2 0.30 ns 0.84 ns 1.39 ns 0.38 ns 0.35 ns 1.64 ns

Fertilizing ×
Base saturation 4 0.94 ns 1.56 ns 0.12 ns 0.47 ns 1.43 ns 0.23 ns

Error 24

CV (%) 11.04 9.29 13.29 19.93 12.21 12.76
Overall average 6.07 9.31 5.53 3.12 4.12 5.16

Significance levels: * 0.01 < p < 0.05; *** p < 0.001; ns: Non-significant. SV: Source of variation. CV: Coefficient of
variation. DF: Degrees of freedom.

When studying WC and WP of Zuri grass, a significant effect of fertilization types
was observed at different evaluation times (Table 6). For WC, the effect was significant
at 30 and 60 DAE at a 5% significance level and at 90 DAE at a 0.1% significance level
(Table 6). Regarding WP, a significant effect of fertilization types was observed at 60 and
90 DAE at a 0.1% probability level according to F statistics. When analyzing the isolated
effect of base saturation levels, no significant effect was found for WC and WP at any of the
evaluation times. Additionally, there was no interaction between fertilization types and
base saturation levels for these variables (Table 6).

Significant differences at a 5% probability level according to the Scott–Knott test
were observed among the fertilization types when analyzing WC at 30, 60, and 90 DAE
(Figure 5a) and WP at 60 and 90 DAE (Figure 5b) of Zuri grass.

At 30 DAE, no significant differences in WC were observed between the WA and M
fertilizers. However, the OM treatment showed a significant difference from the others,
with the WA and M treatments recording the highest WC in absolute terms, corresponding
to 6.4 and 6.2 L.pot−1, respectively, while the OM treatment had the lowest consumption,
with 5.6 L.pot−1 (Figure 5a).

At 60 and 90 DAE (Figure 5a), the WA treatment did not show a significant difference
compared to the OM treatment but differed significantly from the M fertilizer treatment at
a 5% probability level according to the Scott–Knott test. WC in the WA and OM treatments
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was 9.6 L.pot−1 at 60 DAE and 6.2 L.pot−1 at 90 DAE. In the M fertilizer treatments, WC
values were 8.7 L.pot−1 at 60 DAE and 3.8 L.pot−1 at 90 DAE.
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Figure 5. Mean water consumption (L.pot-1) (a) and water productivity (g.L-1) (b) for different 
fertilization types at 30, 60, and 90 DAE (days after emergence) of Zuri grass. Vertical bars indicate 
standard error of the mean (p = 0.05). Vertical bars indicate standard error of the mean (p = 0.05). 
Means followed by the same lowercase letter in the different treatments do not differ by the Scott-
Knott test at a 5% probability level. 
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Figure 5. Mean water consumption (L.pot−1) (a) and water productivity (g.L−1) (b) for different
fertilization types at 30, 60, and 90 DAE (days after emergence) of Zuri grass. Vertical bars indicate
standard error of the mean (p = 0.05). Vertical bars indicate standard error of the mean (p = 0.05).
Means followed by the same lowercase letter in the different treatments do not differ by the Scott-
Knott test at a 5% probability level.

These data indicate that the WA-based and OM fertilizers had similar WC, while the M
fertilizer treatment showed lower consumption, especially at 90 DAE. Thus, it can be noted
that alternative fertilizers are an important tool that contributes significantly to the efficient
management of irrigation and the optimization of water resources in Zuri grass cultivation.

When studying WP, no significant difference was observed at 30 DAE for the fertiliza-
tion types. In other words, the fertilizers consisting of WA, OM, and M fertilizers had the
same WP (Figure 5b).

At 60 DAE, the WA did not differ significantly from the OM treatment but differed
significantly at a 5% probability level according to the Scott–Knott test from the M fertilizer
treatment. WP for WA and OM was 4.6 and 4.9 g.L−1, respectively, while in the M fertilizer
treatments, the values were 2.9 g.L−1. There was an increase of 37.0% and 40.8% in WP
in the WA and OM treatments, respectively, compared to the M fertilizer (Figure 5b).
This means that for every 1 L of water applied in the WA and OM fertilizer treatments,
it generates a return in terms of dry biomass production of 4.6 and 4.9 g in each pot,
representing an increase of approximately 39% compared to the M fertilizer treatment
using the same amount of water.

At 90 DAE, the OM fertilizer treatment differed significantly from the WA and M
treatments. The OM treatment had the highest absolute value, 6.5 g.L−1, followed by the
WA treatment with 5.4 g.L−1, and the M fertilizer treatment with 3.7 g.L−1. Comparing
the M fertilizer treatment with the OM treatment, there was a 43.1% reduction in WP.
These data indicate that fertilizers containing WA in their composition are more efficient in
utilizing and converting water into SDM. In other words, alternative fertilizers significantly
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contribute to the rational use of water by plants, allowing for greater sustainability in the
use of fertilizers and water resources.

When correlating WC with variables CI, LA, SDM (30, 60, and 90 DAE), and RDM
at 90 DAE, a moderate positive correlation was observed between WC and CI, LA, and
SDM at 30 DAE. This indicates that as WC increased, the CI, LA, and SDM at 30 DAE also
increased (Table 7). On the other hand, the correlation between WC at 60 DAE and CI at
60 DAE showed a moderate negative correlation, meaning that when WC increased, the CI
decreased, and consequently, the LA of Zuri grass increased.

Table 7. Pearson correlation between water consumption (WC) and water productivity (WP) (30, 60,
and 90 DAE) versus chlorophyll index (CI); leaf area (LA), shoot dry mass (SDM) (30, 60, and 90
DAE), and root dry mass (RDM) of Zuri grass.

Variables CI 30 CI 60 CI 90 LA 30 LA 60 LA 90 SDM 30 SDM 60 SDM 90 RDM

WC 30 0.40 * −0.20 ns −0.05 ns 0.49 * −0.20 ns −0.09 ns 0.49 * −0.10 ns −0.15 ns −0.12 ns

WC 60 −0.12 ns −0.40 * −0.29 ns 0.39 * 0.43 * 0.29 ns −0.04 ns 0.66 * 0.51 * 0.55 *
WC 90 −0.21 ns −0.64 * −0.46 * 0.35 * 0.70 * 0.77 * 0.08 ns 0.76 * 0.94 * 0.94 *
WP 30 −0.01 ns −0.25 ns −0.22 ns 0.34 * 0.04 ns 0.03 ns 0.85 * −0.01 ns −0.16 ns −0.01 ns

WP 60 −0.21 ns −0.57 * −0.43 * 0.33 ns 0.85 * 0.78 * −0.06 ns 0.96 * 0.81 * 0.83 *
WP 90 −0.22 ns −0.47 * −0.27 ns 0.23 ns 0.68 * 0.80 * −0.16 ns 0.81 * 0.94 * 0.87 *

* p < 0.05; ns: Non-significant.

Increasing WC at 60 DAE had a decisive contribution to the increase in LA at 30 and
60 DAE, consequently leading to an increase in SDM at 60 and 90 DAE, as well as RDM.
This represents a direct effect of one variable on the response of the other, classifying the
correlation as moderate (Table 7).

At 90 DAE, as WC increased in plants, it significantly reduced the CI at 60 and 90 DAE.
However, there was an increase in LA at 30, 60, and 90 DAE, as well as in SDM (60 and
90 DAE) and RDM (Table 7).

When correlating WP at 60 and 90 DAE with variables LA and SDM at different
evaluation times, as well as RDM at 90 DAE, the highest correlations ranged from strong to
very strong (Table 7). These data confirm that growth variables directly influence WC and
WP of Zuri grass and can be used as decision-making tools in the efficient management of
both fertilization and water for the crop.

4. Discussion

Over the years, the excessive use of synthetic fertilizers has caused serious environ-
mental problems. Research focused on alternative fertilizers such as WA, and the WA+M
(OM) combination is essential. However, introducing these new fertilizers to Zuri grass
cultivation is a challenge. Testing alternative fertilizers with different levels of base satura-
tion is an interesting alternative that can reduce dependence on synthetic fertilizers, lower
production costs, and minimize environmental impacts.

The results indicate that WA and OM promote positive growth in Zuri grass in different
periods. These fertilizers increase LA, CI, SDM, and RDM compared to M. They also
improve the efficiency of water use by Zuri grass, decreasing WC and increasing WP.

In the LA analysis of Zuri grass, at 30 DAE, the WA treatment showed a significantly
higher LA. In the subsequent phases (60 and 90 DAE), both the WA and OM treatments
had higher LA than the M fertilizer treatments.

LA is crucial for plant growth and development, as it is directly related to the cap-
ture of sunlight and photosynthesis [24], an essential process for producing energy and
biomass [25]. Therefore, the results indicate that fertilizers containing WA, alone or in
combination with synthetic fertilizer (OM), can increase the development of LA in Zuri
grass, positively impacting productivity and crop performance.

The main nutrient in WA that increases leaf production in grasses is K, along with
Ca and Mg, which corrects soil pH and removes Al toxicity, gradually releasing essential



Agriculture 2023, 13, 1872 13 of 18

nutrients for plant growth. Available K directly influences the development and production
of plant leaves, affecting growth rate and photosynthesis [26]. When enough K is in the
soil, plants produce and maintain more leaves, resulting in greater LA.

The CI did not differ significantly at 30 DAE between treatments, but at 60 and 90 DAE,
the WA treatment resulted in a significantly lower CI than the OM and M treatments. This
suggests a negative effect of WA on the chlorophyll content of the plants. This effect can be
attributed to the increase in LA observed in the WA treatment at 60 and 90 DAE, which can
dilute the chlorophyll in the leaves, decreasing its concentration. It is important to note
that there was an inverse relationship between the dilution of CI concerning the LA of the
plants, i.e., plants with fewer leaves tend to have higher CI values, and vice versa [23].

When analyzing the application of WA, OM, and M fertilizers to promote the growth of
arugula (Eruca sativa Miller) at different base saturations in Oxisol [27], similar results were
found in this study about CI. According to Bonfim-Silva et al. [27], in the WA treatment, the
CI values were 10.53 and 17.65 for base saturation of 50% and 80%, respectively. In the OM
treatment, the values were 50.80 and 45.93, while in the M treatment, they were 29.55 and
41.20 for the same base saturation levels. These results confirm the findings of this study,
showing that the effects of fertilizers were similar, even on different crops, and that WA
resulted in the lowest CI.

Photosynthetic capacity is optimized by increasing the availability of nitrogen (N), as
it is essential for forming chlorophyll [28]. CI is used to assess the nutritional status of N in
plants by measuring the green pigments in the leaves [29]. CI values above 30 indicate the
good nutritional status of Zuri grass. However, in the WA treatments, the CI values were
lower, showing a clear deficiency of this nutrient, despite the application of 200 mg.dm−3

of N per cut of the Zuri grass, as in the other treatments.
It is important to note that Zuri grass overgrows in terms of LA, height, stem diameter,

and number of tillers, which contributes to greater assimilation and utilization of N [30].
However, the deficiency was still evident in the WA treatment, indicating that the plant
may need more of this nutrient.

It was also observed that OM fertilizer showed similar efficiency to that of the M
fertilizer. This indicates that WA, as a component of OM fertilizer, contributed to better use
of the N applied. It is important to note that N plays a crucial role in various processes,
such as growth, LA expansion, and biomass production [31,32].

The lack of significant differences in SDM at 30 DAE between the treatments is due to
the fact that the M fertilizer provides nutrients more quickly at this early stage of growth,
meeting the crop’s initial needs. On the other hand, WA releases nutrients gradually as
the organic matter mineralizes, benefiting later improvements in crop development [33].
Therefore, in the first 30 DAE, WA is still reactive in the soil in a similar way to M/synthetic
fertilizer, while nutrient absorption in the OM treatment is slower and more gradual during
this initial phase.

At 60 and 90 DAE, both WA and OM had a positive effect on SDM, resulting in greater
biomass compared to M fertilizer alone. The OM fertilizer showed greater efficiency in
biomass production, highlighting the importance of combining organic nutrients from WA
with synthetic mineral fertilizers to stimulate the growth of Zuri grass. At 90 days after
applying the treatments, it is clear that OM fertilizer is capable of providing long-term
nutrients to Zuri grass, resulting in greater SDM production.

The increase in the SDM of plants depends on several factors, especially the availability
of nutrients and when considering the aerial part of the plants [23]. These results are
similar to those of Fernandes et al. [34], who studied the dry matter productivity of black
oats (Avena 14trigose) and found higher SDM with OM fertilization (based on liquid pig
manure) compared to fluid mineral fertilization (soluble monoammonium phosphate) and
solid mineral fertilization (triple superphosphate). This reinforces the importance of OM
fertilizers in various crops, increasing the production of SDM.

OM fertilizer had a higher RDM than WA and M. The presence of nutrients from
organic fertilizers (WA) in this treatment provided a balanced and continuous supply
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of essential nutrients for root growth. In addition, the organic matter in OM fertilizers
improved soil properties, including water retention, density, porosity, and aeration [3], as
well as soil chemistry and biology [6], benefiting Zuri grass root growth.

The WA and M fertilizer treatments resulted in lower RDM than obtained during the
OM treatment, indicating that WA requires nutrient supplementation to meet the crop’s
needs, while the M fertilizer provides nutrients immediately without creating reserves
in the soil. This results in a faster nutrient deficiency than that observed with the other
fertilizers used in this study.

The most important nutrients for root growth are P and K, present in both M and WA
fertilizers, as they stimulate root development. This explains the increase in RDM when
these fertilizers are combined (WA+M). P promotes root growth, alters their morphology,
and increases the proliferation and elongation of root hairs, improving the absorption of
water and nutrients [35,36]. Therefore, the P present in WA, which is also part of the OM
fertilizer studied, favors the growth of Zuri grass roots in this type of fertilization.

The increase in root mass improves the stability of the root system, increases nutrient
absorption due to the larger area explored, and increases the volume of soil occupied by
the roots [37], which benefits the aerial part of the plants. In addition, RDM is related to the
re-sprouting potential of forage grasses, as the roots and base of the stalks have organic
carbohydrate reserves. These reserves are used as a source of energy when the residue
is limited after each cut [38]. This means that the greater the amount of root, the greater
the possibility of regrowth and tillering of the Zuri grass. The production capacity of the
aerial part of a plant depends on the interaction with the root system since the roots are
responsible for absorbing nutrients and water [39].

Concerning WC, Zuri grass showed greater WC when fertilized with WA or WA+M
compared to fertilizer M. As LA increased, WC and SDM also increased, highlighting the
effectiveness of combining organic and mineral nutrients. The exception was at 30 DAE
due to the early stage of development and release of nutrients by the different fertilizers.

The higher WC in the WA and OM treatments (above 9 L.pot−1 at 60 DAE and above
6 L.pot−1 at 90 DAE) can be attributed to the greater LA, SDM, and RDM development in
these treatments. As the plants grow, evapotranspiration increases, resulting in greater WC.
This is related to adequate nutrients that promote the assimilation of more nutrients by the
plant, favoring the development of LA and, consequently, greater dry mass [40].

WA can improve water retention capacity and nutrient availability due to its property
of retaining water [5,41]. Soils fertilized with WA have more water than those fertilized
only with conventional mineral fertilizers [42]. This water retention not only prolongs the
water availability for plants, but can also reduce the frequency or interval of irrigation,
saving water and benefiting farmers.

At 30 DAE, there were no differences in WP between the treatments, but at 60 and
90 DAE, the treatments with WA and OM showed higher WP compared to fertilizer M.
This highlights the benefits of combining organic and mineral nutrients (OM) in optimizing
the WP of Zuri grass. Specifically, at 60 DAE, the combination of organic and mineral
nutrients resulted in a gain of 4.9 g of SDM per liter of water applied to the soil. At 90 DAE,
these gains were even more significant, reaching 6.5 g of SDM per liter of water applied
via capillarity.

These results emphasize the importance of an integrated approach to plant nutrition,
combining organic and mineral nutrients in a balanced way to improve soil fertility. This
benefits the growth of Zuri grass, increasing the efficiency with which it uses the available
water and, consequently, its productivity.

The higher WP is related to the greater availability of water in the soil fertilized with
WA, which contributes to water retention in the soil and greater availability to the plants
during their growth cycle. Therefore, Zuri grass showed better growth and WP when
fertilized exclusively with WA or in combination with the M fertilizer.

WP indicates the relationship between the biomass produced by the plant in relation
to the amount of water supplied during the crop cycle [43,44]. Crops that can produce
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more biomass with less water are considered more productive regarding the efficient use
of available water resources [42]. This results in increased yields of water savings and
contributes to the conservation of water resources and sustainability since plants can make
better use of the available water and convert it into biomass or productivity [45]. To this
end, strategies such as selecting cultivars adapted to water availability and proper soil and
fertilization management are adopted [46]. These measures improve crop WP, optimizing
the use of this vital resource.

Base saturation levels did not affect the growth and water productivity of Zuri grass
in isolation, nor did they interact with fertilizer types. Even though a strategy of combining
alternative fertilizers with different base saturation levels was seen as sustainable, the
results show that these variations in base saturation levels did not significantly impact
plant development.

One possible explanation is that alternative fertilizers, such as WA and the WA+M
combination, provide nutrients in a balanced and adequate way for Zuri grass, regardless
of the base saturation levels in the soil. This indicates that these specific factors did not limit
the plant, as it obtained the nutrients necessary for its growth from alternative fertilizers.
For example, WA can increase the soil’s cation exchange capacity (CEC), helping to maintain
the soil’s pH and supplying the plant’s nutritional needs [5,26].

It is important to note that the lack of effect of base saturation levels does not invalidate
the importance of alternative fertilizers in growing Zuri grass. On the contrary, the study
confirms that these fertilizers were effective in promoting an increase in LA, CI, SDM,
and RDM, as well as improving the efficiency of water use by the plants. Combining
alternative fertilizers with different base saturation levels remains a viable strategy for
reducing dependence on synthetic fertilizers and mitigating environmental impacts.

The results of this study confirm the initial hypothesis that the use of alternative
WA-based fertilizers and the WA+M combination, along with base saturation levels, can
be effective and advantageous strategies for growing Zuri grass, significantly improving
its growth and WP. Adopting this practice can help promote more balanced, economically
viable, and environmentally responsible production systems. However, more research is
needed to understand the OM fertilizer produced from WA and its relationship to soil and
plant benefits.

5. Conclusions

1. The OM fertilizer (WA+M) is an alternative that reduces dependence on synthetic
fertilizers and helps mitigate environmental impacts.

2. Base saturation levels did not individually or interactively influence the growth and
water productivity of Zuri grass throughout the crop cycles, regardless of the types of
fertilizers used.

3. For every 1 L of water applied, an average of 5.0 g of Zuri grass dry matter was
produced with WA and WA combined with mineral fertilizer (OM).

4. It is noteworthy that the OM fertilization showed significant increases of 50% in leaf
area, 66% in shoot dry mass, 70% in root dry mass, 41% in water consumption, and
50% in water productivity when compared to synthetic fertilizer.

5. The OM fertilizer obtained from WA was a differentiator regarding improvements in
the long-term supply of nutrients to crops.
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