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Abstract: Milk production plays an essential role in the global economy. With the development of
herds and farming systems, the collection of fine-scale data to enhance efficiency and decision-making
on dairy farms still faces challenges. The behavior of animals reflects their physical state and health
level. In recent years, the rapid development of the Internet of Things (IoT), artificial intelligence
(AI), and computer vision (CV) has made great progress in the research of precision dairy farming.
Combining data from image, sound, and movement sensors with algorithms, these methods are
conducive to monitoring the behavior, health, and management practices of dairy cows. In this
review, we summarize the latest research on contact sensors, vision analysis, and machine-learning
technologies applicable to dairy cattle, and we focus on the individual recognition, behavior, and
health monitoring of dairy cattle and precise feeding. The utilization of state-of-the-art technologies
allows for monitoring behavior in near real-time conditions, detecting cow mastitis in a timely manner,
and assessing body conditions and feed intake accurately, which enables the promotion of the health
and management level of dairy cows. Although there are limitations in implementing machine vision
algorithms in commercial settings, technologies exist today and continue to be developed in order
to be hopefully used in future commercial pasture management, which ultimately results in better
value for producers.

Keywords: information technologies; precision dairy farming; individual recognition; behavioral
monitoring

1. Introduction

The dairy industry is an efficient animal husbandry industry, and it includes the
breeding of herbivorous animals (such as cows, goats, and sheep), the production of raw
milk, and the processing and selling of dairy products. Milk production provides a great
contribution to the global economy. According to the United Nations’ Food and Agriculture
Organization, milk production and the price index of dairy products are growing annually.
For instance, the unit yield of dairy cows and the overall level of raw milk processing in
China have been exhibiting an upward trend from 2014 to 2021 [1]. In 2021, the year-on-year
growth of milk output was 7.1 percent, and this has reached a new high in recent years in
China [1].

Information technologies for collecting fine-scale data can prompt efficiency and
decision-making on dairy farms [2]. It is clear that information technology, such as the
Internet of Things (IoT), artificial intelligence (AI), and computer vision (CV), is displaying
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potential for the enrichment of livestock management processes within a precision farming
setting [3]. As mentioned, IoT can support farmers with wearable sensor devices for
acquiring real-time data to examine numerous factors like cow’s behavior, health, milk
production, and feed consumption [4]. AI’s fundamental and ultimate ambition is to
develop machine intelligence (MI), using intelligent machines to perceive, reason, learn,
discover, optimize, act, communicate, and reflect upon ideas humanly, rationally, and
ethically [5]. AI can be used for inferences related to decision-making on farms. It has
emerged as a tool that empowers farmers in monitoring, forecasting, and optimizing farm
animal growth, pre-clinical disease detection for early intervention, and monitoring farm
animals along with farm management, which contributes to the profitable production of
raw milk [6,7]. Deep learning (DL) is a branch of AI that can automatically extract features
via learning algorithms, and it is applied to complicated computer vision tasks such as
detection, classification, recognition, and tracing [8]. Machine vision technology that is
mainly based on image and video processing can produce real-time responses and carry
out judgments relative to various animal behaviors [9].

Research has demonstrated the possibility of combining data from image, sound,
and movement sensors with algorithms for dairy farm decision-making [10–12]. Ding
et al. (2022) used a wearable device equipped with accelerometers to measure the feeding
behavior of cattle, and fourteen machine-learning models were established and compared
in order to predict feed intake rates [13]. Gardenier et al. (2018) presented a perception
system that is suitable for automatic lameness detection. Kinect-v2 3D sensors were placed
above and alongside cattle exiting an automated milking system, and they recorded the gait
at over a length of 3.6 m. They captured dimensional near-infrared images of cows passing
through the system and trained a faster R-CNN that provided accurate detections of hooves
and carpal/tarsal joints. Hoof detections were projected into 3D space and tracked to form
4D trajectories (space and time) of each of the four hooves, which identified the lameness
of the cows [14].

Precision dairy farming is defined as the utilization of information and communication
technologies for the improved control of fine-scale animals and physical resource variability
to optimize economic, social, and environmental dairy farm performance [15]. Earlier
investigative reports from California found that approximately 69% of producers adopt
monitored technologies on farms for daily milk yield, cow activity, and mastitis [16], while
in Brazilian farms, the adoption of information technologies is still considered low due
to economic issues and the farmer’s lack of knowledge about the technologies or the
importance of the parameters monitored [17]. However, this study points to higher milk
yield in farms with higher levels of technology adoption [17]. Similar investigations in
Australia showed that farmers with more than 500 cows adopted between two and five
times more specific precision technologies, such as automatic cup removers, automatic milk
plant wash systems, electronic cow identification systems, and herd management software,
when compared with smaller farms [18], which could reduce labor needs.

Several information technologies have been adopted to help breeders collect reliable
information on individual cows in their herds and to monitor changes in cow behavior that
are indicators of changes in physiological statuses, such as estrus [19]. These technologies
were mostly discovered in research and are not yet available on commercial farms. In
this review, we summarize the body of research on recent innovations in information
technologies that could be implemented in dairy farming. These use cases are focused
on the individual recognition, behavior, and health monitoring of dairy cattle and precise
feeding, and these exhibit substantial commercial application potential. Consequently, we
propose that the implementation of recent innovations in information technologies, such as
IoT, AI, CV, and DL, enables the promotion of the health and welfare of the entire life cycle
of dairy cattle and the creation of better value for producers.
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2. Approach

We conducted a mindful scientific literature search. Our goal was to find the latest peer-
reviewed papers that not only deal with precision dairy farming but also include behavioral
identification, health monitoring, and precise feeding of dairy cattle. The literature search
was conducted in four scientific databases: Scopus; PubMed; Science Direct; as well as Web
of Science. A systematic approach was adopted to narrow down the search results to papers
that are directly related to the scope of precision dairy farming. The initial search started
with a broad search equation comprising basic keywords—”precision dairy farming” AND
“behavior” AND “health” AND “feeding”—to obtain extended search results. The year of
publication was set using a custom range from 2018 to 2023 to ensure the time sensitivity of
the topic. The literature was selected based on the criteria mentioned in Figure 1.
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3. Results and Discussion
3.1. Individual Recognition of Dairy Cows

With farm scales becoming larger, we need more tools to identify individual animals
while having less skilled labor available in a herd setting. The effective and accurate
recognition of individual dairy cattle is the prerequisite and foundation for recording and
analyzing the animal’s behavior automatically [20]. Radio frequency identification (RFID)
technology is an accurate, convenient, and rapid method of identifying cattle identities,
and it has been widely used in dairy farms [21]. RFID is the typical electronic identification
device usually carried out by marking electronic ear tags. When an RFID tag passes through
the field of the scanning antenna, it detects the activation signal from the antenna, which
“wakes up” the RFID chip, and it transmits information on its microchip that is picked
up by the scanning antenna. RFID can also be a tool for dairy managers, and its use
can result in the efficient management of large herds via automatic weighting and health
monitoring [21]. In dairy farming management, the use of RFID non-contact automatic
identification technology can provide accurate individual data for each cow, which is of
great significance for the orderly management and monitoring of the entire process of
breeding links. Mirmanov et al. (2021) developed automatic cattle weighing systems with
RFID systems, and they have passed experimental tests and allow for assessing not only the
dynamics in weight changes but also accurately displaying the weight of the animal [22].
However, the RFID device usually needs to be attached to an animal, which may be lost,
removed, or damaged [23]. Deep-learning approaches with powerful feature extraction and
image representation abilities also have been applied for cattle identification purposes [11].
These comprise a non-contact method of cow identification and exhibit higher recognition
accuracy; they are represented by convolutional neural networks and can not only learn
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and classify the target in the image but also accurately predict the location of the target [22].
For instance, Kumar et al. (2018) proposed a CNN-based approach to identify individual
cattle using primary muzzle point images, and 98.99% accuracy was achieved [24]. Shen
et al. (2020) used the you only look once (YOLO) model to detect cow objects and then
fine-tuned an AlexNet CNN model to classify each cow. The results showed an accuracy of
96.65% in terms of cow identification [25]. Preliminary computer science research suggests
the possible application of DL in the individual recognition of dairy cows. It is not ready
for farms yet.

Moreover, there exist some characteristic and stable differences between the vocaliza-
tions of individual cows, and some experienced husbandry men can recognize these; this
recognition is realized by hearing the cow’s voice from a distance [26]. Thus, the individual
differences in cattle vocalization can potentially be used as clues to an individual’s identity.
Jung et al. (2021) developed a deep-learning speech classification model to determine the
status of cattle by monitoring the voices of cattle on an experimental farm. The developed
model was deployed as a web platform that provides information obtained from a total
of 12 sound sensors, providing cattle vocalization monitoring in real time and enabling
the researcher to determine the status of their cattle [27]. In addition, D’Urso et al. (2023)
designed the SEWIO ultrawide-band (UWB) real-time location system for the identification
and localization of cows in barns and in laboratory conditions. It has been reported that
the SEWIO UWB system was useful for locating an animal’s position in the barn and
for measuring time spent in a specific area in the barn [28]. However, it is necessary to
verify the usability of vocalizations in identifying individual cows’ in-field conditions in
future studies.

3.2. Behavioral Monitoring of Dairy Cattle

The behavior of the animals reflects their physical state, and monitoring the basic
behavior of cows (e.g., food intake, rumination, and walking) might help in evaluating
physiological health and treating dairy cow diseases [29,30]. Therefore, the monitoring of
behavior is essential for optimizing animal performance, welfare, and timely management
decisions [11,31]. Currently, considerable research studies about the monitoring of cow be-
havior have been carried out, and they have achieved innovative results using information
technology [32,33] (Table 1).

3.2.1. Research on Behavioral Recognition

The recognition of cow behavior has the potential to decrease manual labor and en-
hance management efficiency. In recent years, contact sensors (including accelerometers,
inertial measurement units (IMU), pedometers, and magnetometers) have usually been
designed to collect different behavioral movements and recognize and track animal be-
haviors [11,19,34–36]. It is reported that wearable behavior-monitoring systems that are
integrated with sensors, such as collars, ear tags, and leg bands, have been used to au-
tonomously identify dairy cow behavior while minimizing human interference or human
error [12,35,37,38]. Together with the sensors, machine-learning techniques were applied,
including various algorithms, such as random forest (RF), decision tree (DT), and K-nearest-
neighbors (KNN), to classify the different behaviors of cows [36,38–40]. As shown in
Table 1, Shen et al. (2020) used a triaxial acceleration sensor to collect and classify jaw
motion data in order to identify dairy cows’ ruminating and feeding behaviors using three
machine-learning algorithms. The results show that the accuracies of best feeding and
ruminating behavior recognition were 92.80% and 93.70%, respectively [41]. Similarly, Bal-
asso et al. (2021) also adopted triaxial acceleration sensors and four algorithms to recognize
the posture and resting behavior of dairy cows, and they observed that the best accuracy
for predicting posture was 0.99, using the extreme boosting algorithm (XGB), whereas the
highest overall accuracy of predicting behaviors was 0.76, using the RF model [36]. Tian
et al. (2021) adopted a multi-sensor to collect data on cows’ multi-behaviors and recognized
seven types of behaviors (feeding, ruminating, running, resting, head shaking, drinking,
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and walking) using KNN and RF models. They found that the KNN-RF fusion model
had the highest average recognition accuracy of 98.51%, in which the recognition of dairy
cow feeding behavior exhibited a recognition accuracy of 99.34% [39]. Beyond that, there
are some research studies related to the behavioral monitoring studies of dairy calves.
For instance, Carslake et al. (2020) proposed a classification algorithm that was able to
accurately identify multiple behaviors in dairy calves using a sensor, such as self-grooming,
feeding, resting behaviors, and locomotor play [42]. However, direct contact devices have
drawbacks such as high cost and can be easily damaged, which may lead to stress reactions
in dairy cows that are not conducive to animal welfare.

In contrast, machine vision technology, as a non-contact, non-stressful method, can
recognize cows’ behaviors without interrupting them, enabling the monitoring of their
basic motion behaviors with higher accuracy and efficiency [43]. Wu et al. (2021) proposed
the fusion of VGG CNN and long short-term memory (CNN-LSTM) algorithms in order
to instantly and accurately identify the five basic behaviors (drinking, ruminating, walk-
ing, standing, and lying) of dairy cows in complex environments that have low-quality
surveillance videos, complex illumination, and weather variations. The precision for the
recognition of five basic behaviors ranged from 0.958 to 0.995 [32]. Ma et al. (2022) col-
lected a total of 406 videos containing 256,500 frames of dairy cows in different scenes and
postures and proposed an algorithm designed for the recognition of cows’ basic motion
behaviors using Rank eXpansion Network 3D (Rexnet 3D). The proposed method effec-
tively distinguished the lying, standing, and walking behaviors of dairy cows in natural
scenes, and the recognition accuracy reached 95.00% [43]. Wei et al. (2023) presented a
pose estimation method for cows based on the spatiotemporal features of the skeleton,
and they observed that the average precision of the key points (APK) for the pelvis in the
standing and lying poses achieved 89.52% and 90.13%, respectively, which validated the
effectiveness of skeleton extraction to estimate the pose of cows [44].

3.2.2. Research on Behavioral Monitoring

• Feeding behavior

Feed intake is a principal factor that affects the lactation of dairy cows [45]. Abnormal
feeding behavior may be related to the illness of dairy cows. Monitoring the changes in
the feeding behavior of dairy cows is critical for evaluating their milk production and
health status. A selection of research studies applies vision analysis and machine-learning
technology to achieve feeding behavior monitoring. As shown in Table 1, Kuan et al. (2019)
developed an embedded imaging system for automatically monitoring individual dairy
cow’s feeding time. The results demonstrated that the prediction of the feeding time of dairy
cows obtained by the imaging system was found to be comparable to manual observations
with an R2 value of 0.7802 [40]. Similarly, Achour et al. (2020) developed a real-time
image analysis system to monitor the feeding behavior of dairy cows. Different classifiers
based on the Caffe CNN model were used to analyze images. The results suggested that
the system had 92% accuracy in classifying the standing and feeding states of cows [46].
Yu et al. (2022) presented a DenseResNet-you only look once (DRN-YOLO) deep-learning
method for monitoring dairy cow feeding behavior. The DRN-YOLO model detected
the feeding behavior of cows photographed from the front with precision, recall, mAP,
and F1 scores of 97.16%, 96.51%, 96.91%, and 96.83%, respectively, and this addressed the
difficulties of existing cow feeding behavior detection algorithm, such as low accuracy and
sensitivity to open farm environments [47].

In addition, wearable collection devices are also a viable method for monitoring animal
feeding behaviors. Chelotti et al. (2020) proposed an online bottom–up foraging activity
recognizer algorithm (BUFAR) based on the recognition of jaw movements using sound,
and this had the great advantage of low computational cost (Table 1). The BUFAR, the
incorporated multilayer perceptron (MLP), achieved F1 scores that were higher than 0.75 for
both grazing and rumination in the 5-minute detection window size, which outperformed
a commercial rumination time estimation system [45]. Similarly, Li et al. (2021) revealed
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that the technique for combining collected sound data with deep-learning algorithms could
monitor dairy cow feeding behaviors (bites, chews, and chew–bites) and forage species
(alfalfa vs. tall fescue) and heights (tall and short) significantly influenced the amplitude
and duration of the feeding sounds of dairy cows [48]. Although sound sensors have good
performance for monitoring chewing behavior, they are susceptible to being affected by
noise in complex farms [49]. There is another monitoring method based on acceleration
sensors that monitor the feeding behaviors of dairy cows. These devices are usually fixed
on the head, mandible, ear, neck, or other parts of cattle; then, they identify the feeding
behaviors by distinguishing the movements and postures of the acceleration [50,51]. For
instance, Chen et al. (2022) proposed a machine-learning approach that aims to eliminate
the influence of the initial pressure of the noseband pressure sensor with respect to the
identification of rumination and eating behaviors. The findings revealed that combined
with commonly used data-processing algorithms and time-domain feature extraction
methods, a recognition accuracy of 0.966 was observed in both rumination and eating
behaviors [52]. Currently, a halter-based sensor would have limited applicability for
commercial use outside of research settings.

• Estrus behavior

Estrus is a behavioral sign that ensures that female animals are ready to mate when they
are close to the time of ovulation [53]. The timely monitoring of estrus information relative
to cows is conducive to mating, reducing calving spacing, and improving farm benefits [54].
During estrus, both external behavior and the internal physiological characteristics of
dairy cows have apparent changes. External changes are mainly reflected in increased
activity and reduced lying time, while internal changes are manifested in increased body
temperatures and increased vaginal mucus secretion [55]. There are two main methods for
monitoring the estrus behavior of dairy cows: a contact method based on electronic sensors
and a non-contact method based on computer vision [56].

In recent years, a number of automated systems utilizing activity sensors
(e.g., pedometers, accelerometers, and voice sensors) have been developed to monitor
the specific changes in a certain kind of estrus-accompanied behavior. As shown in Table 1,
Schweinzer et al. (2019) used a 3D accelerometer integrated into an ear tag (SMARTBOW,
Smartbow GmbH, Weibern, Austria) for the detection of estrus events in indoor-housed
dairy cows. The result revealed that the sensitivity, specificity, and accuracy of the SMART-
BOW system for detecting the estrus events of multiparous cows were 97%, 98%, and
96%, respectively [57]. Again, Wang et al. (2020) developed an automatic data acquisi-
tion system to continuously monitor the location and acceleration data of cow activities
in estrus [58]. They found that the proposed estrus detector based on machine-learning
techniques showed improved performance, an enhanced number of successful alerts, and a
reduced number of false positives compared to statistical analysis methods. The results
illustrated that the integration of location, acceleration, and machine-learning methods
applies to dairy cow estrus detection [58]. There is a review that pointed out that detections
based on sensor-supported activity monitoring are the most practical for estrus detection
according to current research studies [59]. Additionally, computer vision as a non-contact
method can be used for cow estrus monitoring. Wang et al. (2022) captured videos of
cow mounting in a natural breeding scene and proposed using an improved YOLOv5
model to detect the estrus behavior of cows in natural scenes and complex environments
(Table 1). The results proved that the average accuracy of the improved model was 94.3%
and precision was 97.0%, which are both higher than those of mainstream models such as
YOLOv5, YOLOv3, and Faster R-CNN [56]. In order to detect estrus in a timely manner
and carry out insemination promptly, Lodkaew et al. (2023) designed an automatic estrus
detection system (CowXNet) that relied only on a monitoring camera to detect cows in
estrus according to various visual estrus behaviors. The system consists of the following
four modules: cow detection; body part detection; estrus behavior detection; and behav-
ioral analysis. The result revealed that CowXNet is promising, and the accuracy of estrus
behavior detection was 83% [60].
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Cows may show variations in their body temperature during the estrous period. Thus,
the heat monitoring method based on thermal infrared images is also a non-contact cow
estrus monitoring method. For instance, Wang et al. (2023) proposed a lab–color–space-
based feature extraction method based on the thermal infrared images of cow eyes and
vulvas to monitor cow estrus. LOGISTIC and SVM (support vector machine) models were
used to establish the cow estrus model using the thermal infrared temperature variation
in cows in estrus and cows not in estrus. The results showed that the heat detection rate
of the LOGISTIC-based model was 82.37%, and the heat detection rate of the SVM-based
model was 81.42%, using the optimal segmentation profile [61].

The above research studies sufficiently proved the feasibility of information technology
in cow behavioral recognition and monitoring, particularly in feeding behavior and estrus
behavior. It is worth noting that there are certain limitations with respect to computer
science inferences that use machine vision algorithms in commercial settings. Specifically,
the computing power required is often not commercially affordable for a producer, and
these types of unsupervised deep-learning systems require a host source that is outside
the technological ability of a dairy producer (i.e., they often require a computer scientist
to manage them); moreover, the topic of overfitting must also be discussed. One of the
challenges of complex CNNs is that they require a substantial amount of data to make
accurate inferences without overfitting the data. Since estrus events only occur in cattle once
every 21 d, it would require a very large and diverse dataset with multiple environments to
make a CNN work at the commercial level. Thus, machine vision technology is not widely
used in business.

Table 1. Research on the behavioral monitoring of dairy cows based on information technologies.

Author Year Type Approach Data Sources Result

Achour et al. [34] 2019 Behavioral recognition DT 1, finite mixture
models IMU 2

Recognized standing, lying on
each side, and the changes
between positions.

Tamura et al. [35] 2019 Behavioral recognition DT model Three-axis
accelerometers

Recognized three behaviors of
cows (including eating,
rumination, and lying).

Kuan et al. [40] 2019 Behavioral
monitoring–feeding MobileNet CNN 3 Video

The prediction of the feeding
time of dairy cows obtained by
an imaging system was found
to be comparable to manual
observation with an R2 value of
0.7802.

Shen et al. [41] 2019 Behavioral recognition

KNN 4, support vector
machine, and
probabilistic neural
network

A three-axis
acceleration sensor

The accuracies of best feeding
and ruminating behavior
recognition were 92.80% and
93.70%, respectively.

Schweinzer et al. [57] 2019 Behavioral
monitoring–estrus

Algorithms and
machine learning

A 3D 5

accelerometer
integrated into an
ear-tag

The sensitivity, specificity, and
accuracy of the SMARTBOW
system for detecting estrus
events of multiparous cows
were 97%, 98%, and 96%,
respectively.

Carslake et al. [42] 2020 Behavioral recognition AdaBoost ensemble
learning algorithm Sensors

The algorithm was able to
accurately identify multiple
behaviors in dairy calves.

Achour et al. [46] 2020 Behavioral
monitoring–feeding Caffe CNN model Video

The image analysis system had
a high-level understanding of
the feeding scene.

Chelotti et al. [45] 2020 Behavioral
monitoring–feeding

An online algorithm
called bottom–up
foraging activity
recognizer (BUFAR),
multilayer perceptron
(MLP), and DT

Sound

The BUFAR-MLP achieved F1
scores that were higher than
0.75 for both grazing and
rumination in the 5-minute
detection window size, which
outperformed a commercial
rumination time estimation
system.
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Table 1. Cont.

Author Year Type Approach Data Sources Result

Wang et al. [58] 2020 Behavioral
monitoring–estrus

KNN,
back-propagation
neural network
(BPNN), linear
discriminant analysis
(LDA), and
classification and
regression tree (CART)

Accelerometer

The integration of location,
acceleration, and
machine-learning methods can
improve dairy cow estrus
detection.

Balasso et al. [36] 2021 Behavioral recognition RF 6, KNN, XGB 7, and
SVM 8

Triaxial
acceleration
sensors

The best accuracy for predicting
posture was 0.99, using the XGB
model, whereas the highest
overall accuracy for predicting
behaviors was 0.76, using the
RF model.

Pavlovic et al. [37] 2021 Behavioral recognition A multi-class CNN Accelerometer
collars

Recognized three behavioral
states (rumination, eating, and
others).

Tian et al. [39] 2021 Behavioral recognition KNN, RF models Multi-sensor

The KNN-RF fusion model had
the highest average recognition
accuracy of 98.51% in 7 types of
cow behaviors.

Wu et al. [32] 2021 Behavioral recognition VGG CNN and
Bi-LSTM 9 algorithm Video

The precision for the
recognition of five basic
behaviors (drinking,
ruminating, walking, standing,
and lying) ranged from 0.958 to
0.995.

Li et al. [48] 2021 Behavioral
monitoring–feeding

One-dimensional CNN,
two-dimensional CNN,
LSTM

Sound

The technique for combining
collected sound data with
deep-learning algorithms could
monitor dairy cow ingestion
behaviors (bites, chews, and
chew–bites).

Qiao et al. [30] 2022 Behavioral recognition
Convolutional 3D
network and
convolutional LSTM

Video

Recognized five common
behaviors (feeding, exploring,
grooming, walking, and
standing) of cows.

Ma et al. [43] 2022 Behavioral recognition
Rank eXpansion
Network 3D (Rexnet
3D)

Videos

The proposed method
effectively distinguished the
lying, standing, and walking
behaviors of dairy cows with a
recognition accuracy of 95.00%
in natural scenes.

Yu et al. [47] 2022 Behavioral
monitoring–feeding

DenseResNet-you only
look once (DRN-YOLO)
deep-learning method

Images

The DRN-YOLO model
detected the feeding behavior of
cows photographed from the
front with a precision, recall,
mAP, and F1 score of 97.16%,
96.51%, 96.91%, and 96.83%,
respectively.

Chen et al. [52] 2022 Behavioral
monitoring–feeding XGB 10 Noseband pressure

sensor

Combined with the commonly
used data-processing
algorithms and time-domain
feature extraction method, a
recognition accuracy of 0.966
with respect to both rumination
and eating behaviors was
obtained.

Wang et al. [56] 2022 Behavioral
monitoring–estrus

Improved YOLO 11 v5
model, K-means
clustering

Video

The proposed model can be the
fast and accurate detection of
cow estrus events in natural
scenes and all-weather
conditions.

Wei et al. [44] 2023 Behavioral recognition
Multi-scale temporal
convolutional network
(MS-TCN)

Images

The average precision of key
points (APK) for the pelvis in
standing and lying poses
achieved 89.52% and 90.13%,
respectively.
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Table 1. Cont.

Author Year Type Approach Data Sources Result

Balasso et al. [62] 2023 Behavioral recognition 8-layer CNN Tri-axial
accelerometer

The precision, sensitivity/recall,
and F1 score of a single
behavior had the following
range: 0.93–0.99.

Lodkaew et al. [60] 2023 Behavioral
monitoring–estrus

YOLO v4, RestNet,
DenseNet and
EfficientNet CNN

Video

An automatic estrus detection
system for cows (CowXNet) is
helpful for assisting farmers in
detecting estrus cows, and the
accuracy was 83%.

Wang et al. [61] 2023 Behavioral
monitoring–estrus

LOGISITC and SVM
models

Thermal infrared
images

The heat detection rate of the
LOGISTIC-based model was
82.37%, and the heat detection
rate of the SVM-based model
was 81.42% under the optimal
segmentation profile.

1 DT—decision tree. 2 IMU—inertial measurement units. 3 CNN—convolutional neural networks. 4 KNN—K-nearest-
neighbors. 5 3D—three-dimensional. 6 RF—random forest. 7 XGB—extreme boosting algorithm. 8 SVM—support
vector machine. 9 LSTM—long short-term memory. 10 XGB—extreme boosting algorithm. 11 YOLO—you only
look once.

3.3. Health Monitoring of Dairy Cattle

Diseases are one of the reasons for the decrease in milk production of dairy cows. The
good health and well-being of animals are essential to dairy cow farms and the sustainable
production of milk [63]. The early detection and handling of cows that are affected by
disease are a challenging task, especially in large farms where employees do not have
enough time to observe animals and cannot detect first symptoms of diseases. Faruq et al.
(2019) developed a dairy cow health management system—combining monitoring systems
and detection systems into one application utilizing IoT and intelligent system technology—
for health monitoring relative to the detection and handling of cows that have been affected
by diseases. They found that the monitoring system can monitor health conditions in dairy
cows based on temperature and heart rate with an error rate of 0.6 degrees Celsius and
3.5 beats per minute, while the detection system can diagnose diseases in dairy cows based
on physical symptoms with an accuracy rate of 90 percent [64]. The monitoring system
is only useful for research settings and is a difficult technology to use in the detection of
disease in dairy farms. Likewise, Unold et al. (2020) also presented an automated IoT-
based monitoring system, and it comprised hardware devices, a cloud system, an end-user
application, and innovative techniques with respect to data measurements and analysis
algorithms; the system was designed to monitor the health of dairy cows. It was proven
that the system could effectively monitor animal welfare and the estrus cycle in a real-life
test [63]. Studies on the health monitoring of dairy cows using information technology are
presented in Table 2.

3.3.1. Mastitis Detection

Mastitis is considered one of the most significant diseases of dairy herds, and it
affects all areas of the dairy industry, from animal health to lost milk production and
lower product quality; moreover, it has significant effects on farm economics [65]. The
number of somatic cells in milk, i.e., somatic cell count (SCC), is the most used indicator for
assessing udder health statuses in dairy cows. The SCC in milk above 200,000 cell/mL is
generally considered abnormal and indicates inflammation in the udder, which is likely to
inflict indirect health risks on consumers [65]. Therefore, mastitis detection is essential to
sustainable dairy production.

It has been reported that 70 to 80% of mastitis losses were caused by subclinical
mastitis [65]. However, detecting subclinical mastitis is challenging due to the absence of
any visible indications. Infrared thermography (IRT) is a non-invasive technology that
allows the early detection of subclinical mastitis [66], but it is not suitable for automated
disease detection on commercial farms since it is biased toward warmer temperatures. As
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shown in Table 2, Sathiyabarathi et al. (2018) used forward-looking infrared (FLIR) Quick
Report 1.2 software that analyzed the ocular surface temperature (OST) and udder skin
surface temperature (USST) of thermographic images for the early detection of subclinical
mastitis in indigenous cows. They found that the mean (±SD) USST of the subclinical
mastitis-affected quarter was significantly higher than the body temperature, and an
increase in the USST of subclinical mastitis quarters showed a positive linear relation with
the SCC with R2 > 0.95 [67]. In the same manner, Zhang et al. (2020) proposed a real-
time, lightweight multi-scale target detection algorithm named EFMYOLOv3 (Enhanced
Fusion MobileNetV3 you only look once v3), which can be used to detect dairy cow
eyes and udders, and they applied the algorithm to the detection of mastitis in dairy
cows using thermal infrared images. The results showed that the accuracy of the mastitis
classification algorithm was 83.33%, and sensitivity and specificity were 92.31% and 76.47%,
respectively [68]. Machado et al. (2021) evaluated the use of thermal imaging carried out
via IRT in the detection of subclinical mastitis cases in dairy cows under the commercial
conditions of compost barn systems with a semiarid climate [69] (Table 2). They observed
that the left fore udder temperature (LFUT, ◦C), right fore udder temperature (RFUT,
◦C), rear udder temperature (RUT, ◦C), and average udder temperature (AUT, ◦C) were
adjusted in quadratic polynomial models with a good prediction of SCC (i.e., infection) with
R2 = 0.92, 0.97, 0.86, and 0.94, respectively, which illustrated that IRT is capable of detecting
mastitis cases in dairy cows with good precision, especially when using thermal images
from the anatomical region of the front quarters of the udder [69]. Wang et al. (2022) used
the you only look once v5 (YOLOv5) deep-learning network model to obtain temperature
information with respect to the eyes and udders of dairy cows via thermal infrared videos
for the detection of mastitis. The detection accuracy of dairy cow mastitis via YOLOv5 and
the comprehensive detection method was used to detect cow mastitis with an accuracy of
85.71% [70].

Furthermore, in some automatic milking systems (AMS), fully automated online
analysis equipment is available for monitoring the occurrence of mastitis according to
the somatic cell count at each milking instance and using a number of additional factors
with respect to udder health that are recorded in the system [71]. Norstebo et al. (2019)
revealed that the coefficient of variation was 0.11 at the online cell counter (OCC) level
relevant for the detection of subclinical mastitis, and a concordance correlation coefficient
of 0.82 was obtained when comparing results from the OCC sensor with results from a DHI
laboratory [72] (Table 2). Naqvi et al. (2022) developed a recurrent neural network (RNN)
model using a diverse range of variables (including milk and behavioral characteristics, cow
traits, and farm level/environmental variables) for the detection of clinical mastitis (CM) in
AMS farms. They found that SCC, daily variance in milking intervals, and milk temperature
were identified as the three most important variables, as defined by their impact on model
predictions. The results demonstrated that RNNs can effectively detect over 90% of cases
of severe CM by integrating a number of variables that are regularly measured on AMS
farms [73]. Milk electrical conductivity (EC) is widely used to detect mastitis in dairy
farms. Paudyal et al. (2020) found that characteristic temporal patterns in EC and milk
yield (MY), in particular pathogen groups, may provide indications for the differentiation
of mastitis, which results in the occurrence of pathogens in Holstein cows [74]. Fan et al.
(2023) developed a machine-learning framework to detect and predict clinical mastitis (CM)
using imbalanced data recorded by AMS. The result showed that combining the DT-based
ensemble models with oversampling techniques achieved relatively high sensitivity (82%)
and specificity (95% for CM detection and 93% for CM prediction). Creating models using
AMS data from the past seven to nine milkings (approximately 3 d) is recommended for
identifying positive CM cases for farmers [75].

Aiming at achieving cost-effective mastitis transmission control, Feng et al. (2021)
proposed an IoT-based animal social behavior sensing framework to model mastitis prop-
agation and inferred mastitis infection risks among dairy cows [65]. They used portable
GPS devices to monitor cows’ social behaviors, and they proposed a flexible probabilistic
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disease transmission model to estimate and forecast mastitis infection probabilities. The
effectiveness of the framework was demonstrated by both the theoretical and simulation-
based analytics of in-the-field experiments. The correctness of the prediction model was
also validated by SCC mastitis tests in real-world scenarios.

3.3.2. Other Diseases

Diarrhea is the leading cause of dairy calf mortality, and it is characterized by the
observation of feces with a loose or watery consistency [76]. These calves also often have
reduced activity [77] and compromised milk intake [78] compared with healthy calves. It is
reported that individually housed diarrheic calves wearing ear-based accelerometers had
longer lying times and reduced activeness compared with healthy calves during the day
before and the day after diarrhea diagnosis [77]. Guevara-Mann et al. (2023) conducted
case-control studies to quantify the association between daily activity behaviors, relative
changes in activity patterns (lying time, lying bouts, step count, and activity index), and
diarrhea status in pre-weaned dairy calves. They revealed that diarrheic calves were more
lethargic, and they had relative changes in activity patterns—2 d before clinical signs of
diarrhea. Specifically, diarrheic calves exhibited fewer steps and had a reduced activity
index, and there was an interaction [79].

The metabolic and digestive disorders of dairy cows, such as ketosis, displaced abo-
masum (DA), and indigestion, can cause losses in milk production and increase treat-
ment costs and the risk of culling and death; these instances may not be helpful with
respect to the cow’s well-being and farm economic benefit [80]. Stangaferro et al. (2016)
suggested that monitoring rumination time and physical activity could be useful for
identifying cows with metabolic and digestive disorders in the early postpartum pe-
riod [80]. Kaufman et al. (2018) determined the associations between rumination time
(RT) and health status with respect to milk yield and milk composition. They found that
RT was positively associated with milk yield in early lactation dairy cows (4 to 28 d in
milk) across all lactation periods, and it was negatively associated with milk fat content in
≥one-third of lactating cows. Furthermore, early lactating cows that experience subclinical
ketosis, particularly with one or more other health problems, might have decreased milk
yield and milk protein contents [81]. Many sensors have been developed to monitor ru-
mination. Reiter et al. (2018) evaluated the ear-tag-based accelerometer system Smartbow
for detecting rumination time, chewing cycles, and rumination bouts in indoor-housed
dairy cows. Then, the parameters were determined using the analyses of video recordings
as a reference, and they were compared with the results of the accelerometer system. The
rumination time, chewing cycles, and rumination bouts detected using Smartbow were
highly associated (r > 0.99) with the analyses of video recordings [82].

One of the common diseases of cattle is bovine respiratory disease, and its signs
are fever, nasal discharge, and rapid breathing [83]. In such cases, the monitoring of the
respiratory rate (RR) is one of the most important indices for animal disease examination.
Strutzke et al. (2019) developed a device and mounting hardware for RR measurements in
cattle and compared the measured data using a device with the counted RR frequencies of
the video recording [84].

Lameness is a major welfare problem on modern dairy farms, and it is associated with
physical injury and has more than 40 different clinical conditions that result in reduced
milk yield and fertility and increased risks of premature culling and substantial economic
loss [85]. Zillner et al. (2018) found that lameness was significantly associated with walking
speed. If the cow has previously suffered from lameness for a longer period, then the
cow would cover distances at slower speeds [86]. Zhao et al. (2018) analyzed leg swing
using computer vision techniques to develop an automatic and continuous system for
scoring the locomotion of cows in order to detect and predict lameness. The accuracy of
the classification was 90.18%, and the sensitivity and specificity averages were 90.25% and
94.74%, respectively. This research study demonstrates the feasibility of classifying dairy
cow lameness based on the six motion features extracted using leg swing analysis. The
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results showed that the accuracy of the classification was 90.18%, and the sensitivity and
specificity averages were 90.25% and 94.74%, respectively [87].

3.3.3. Assessment of Body Conditions

Body condition is a significant welfare and herd management indicator, and it exhibits
high correlations with the health and metabolic status of dairy cows [88]. The assessment
of body conditions directly impacts the nutritional, health, and reproductive status of dairy
herds [89], and it is the most commonly used method for monitoring metabolic diseases,
such as ketosis [90]. Acquiring the body condition data of dairy cows every 30 d throughout
the lactation cycle is valuable [66]. While the traditional body condition score (BCS) uses
manual scoring, it is not encouraged because it is subjective, time-consuming, and stressful
for the entire herd [91]. Recently, BCS estimation models based on image analysis and
machine-learning techniques have been developed and used to estimate the body conditions
of dairy cows [92]. As shown in Table 2, Huang et al. (2019) captured the back-view images
of cows using network cameras, manually labeled the key body parts such as tails, pins,
and rumps in the images, and then used the single-shot multi-box detector (SSD) method
to detect the tail and evaluate BCS. They achieved an accuracy of 98.46% on average for
the BCS assessment [88]. Sun et al. (2019) developed an automatic system for identifying
individuals and assessing BCS using a deep-learning framework, and online verification
was used to evaluate the accuracy and precision of the system. The results showed that
the overall accuracy of BCS estimations was high (0.77 and 0.98 within 0.25 and 0.5 units,
respectively), and individual identification and BCS assessments performed well in the
online measurement, with accuracies of 0.937 and 0.409, respectively [93]. Although the
validation for the actual BCS ranging from 3.25 to 3.5 was weak, the system could help
production decision-makers reduce the negative energy balance in early lactation via the
accurate observation of individuals experiencing rapid declines in body conditions [93].
Similarly, Rodríguez Alvarez et al. (2019) proposed an automatic system to estimate BCS
values using transfer learning and ensemble modeling techniques, and the accuracy of BCS
estimations within 0.25 units of difference from true values was 82%, while the overall
accuracy within 0.50 units was 97% [94]. Mullins et al. (2019) validated the implementation
of an automated BCS system in a commercial setting and compared the agreement of
automated body condition scores with conventional manual scoring. They found that
the automated BCS camera system’s accuracy was equivalent to manual scoring, and this
may encourage more producers to adopt BCS into their practices in order to detect early
signs of BCS changes in individual cattle [95]. Martins et al. (2020) determined the BCS of
Holstein heifers and lactating cows using three-dimensional (3D) cameras [89]. The findings
revealed that 3D cameras have a good prospective future commercial use; however, the
BSC prediction model still requires improvements due to an R2 of 0.63 and 0.61 and RMSE
of 0.16 and 0.17 for lateral and dorsal images, respectively [89]. Shi et al. (2023) proposed
an automatic scoring method for dairy cow body conditions based on attention-guided 3D
point cloud-feature extraction, which achieved accuracies of 0.80 and 0.96 within 0.25- and
0.50-point deviations, respectively. The point cloud classification network with attention
guiding has achieved good BCS estimation results in comparison with the other research
studies [96].

The accuracy of automated BCS scoring will be improved as machine-learning tech-
niques develop. However, there are some limitations to the machine-learning technology;
i.e., it needs to be ready for network connectivity, and data streams often become clogged
as data are uploaded to a cloud station in Europe and are redownloaded for interpretation
at the farm’s base station. Thus, the data have to be cleaned regularly, and there has to be
an ethernet connection to an internet source that provides sufficient streaming power to
transmit and download the data.
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Table 2. Research studies on the health monitoring of dairy cows based on information technology.

Author Year Type Approach Data Sources Result

Sathiyabarathi et al. [67] 2018 Mastitis
detection

FLIR 1 Quick Report 1.2
software and SPSS 2 16.0

Thermographic images
The increase in the USST 3 of subclinical
mastitis quarters showed a positive linear
relation with an SCC 4 of R2 > 0.95.

Norstebo et al. [72] 2019 Mastitis
detection

A multi-level modeling
approach

OCC 5 sensor in
automatic milking
systems

The coefficient of variation was 0.11 at an
OCC level and relevant for the detection of
subclinical mastitis, and a concordance
correlation coefficient of 0.82 was attained
when comparing results from the OCC
sensor with results from a DHI laboratory.

Huang et al. [88] 2019 Assessment of
body condition SSD 6 method 2D 7 camera The accuracy of BCS 8 assessments is 98.46%

on average.

Sun et al. [93] 2019 Assessment of
body condition

DenseNet CNN 9,
stochastic gradient
descent algorithm

Image
The overall accuracy of the BCS estimation
was high (0.77 and 0.98 within 0.25 and 0.5
units, respectively).

Rodríguez Alvarez
et al. [94] 2019 Assessment of

body condition

SqueezeNet CNN,
transfer learning, and
model ensembling

Image

The overall accuracy of BCS estimations was
within 0.25 units of difference from true
values up to 82%, while the overall accuracy
was within 0.50 units up to 97%.

Mullins et al. [95] 2019 Assessment of
body condition Algorithm Commercial automatic

BCS camera
The automated BCS camera system’s
accuracy was equivalent to manual scoring.

Zhang et al. [68] 2020 Mastitis
detection

Enhanced fusion
mobileNetV3 YOLO 10

v3 (EFMYOLOv3)
deep-learning network

Thermal infrared
images

This method can be used for the automatic
recognition of dairy cow mastitis.

Martins et al. [89] 2020 Assessment of
body condition

MATLAB 12 R2016b
software, GLMSELECT
LASSO regression
analyses, PROC MIXED
of SAS 13 fit the final
model

3D 11 cameras and
depth sensor

This model was obtained to predict BCS had
an R2 of 0.63 and 0.61 and RMSE 14 of 0.16
and 0.17 for lateral and dorsal images,
respectively.

Feng et al. [65] 2021 Mastitis
detection

Data fusion techniques
and 4 algorithms Portable GPS 15 devices

The probabilistic disease transmission model
is useful and effective in predicting infected
cows.

Machado et al. [69] 2021 Mastitis
detection

Computer program for
regression and
correlation analyses

Thermal imaging

LFUT 16, RFUT 17, RUT 18, and AUT 19 were
adjusted in quadratic polynomial models
with good predictions of SCC (i.e., infection)
with R2 = 0.92, 0.97, 0.86, and 0.94,
respectively.

Naqvi et al. [73] 2022 Mastitis
detection RNN 20 model Automated milking

systems

RNNs can effectively detect over 90% of
cases of severe CM 21 by integrating a
number of variables that are regularly
measured on AMS 22 farms.

Wang et al. [70] 2022 Mastitis
detection

YOLOv5 deep-learning
network model Thermal infrared video

The detection accuracy of dairy cow mastitis
using YOLOv5 and a comprehensive
detection method was used to detect cow
mastitis at an accuracy of 85.71%.

Fan et al. [75] 2023 Mastitis
detection

DT 23-based ensemble
models

Automated milking
systems

Combining the DT-based ensemble models
with oversampling techniques achieved
relatively high sensitivity (82%) and
specificity (95% for CM detection and 93%
for CM prediction)

Shi et al. [96] 2023 Assessment of
body condition

An attention-guided 3D
point cloud
feature-extraction
model

Depth image

The point cloud classification network with
attention guiding achieved accuracies of 0.80
and 0.96 within 0.25- and 0.50-point
deviation, respectively.

1 FLIR—forward-looking infrared radar. 2 SPSS—statistical package for the social sciences. 3 USST—udder skin
surface temperature. 4 SCC—somatic cell count. 5 OCC—online somatic cell counter. 6 SSD—single shot multi-
box detector. 7 2D—two-dimensional. 8 BCS—body condition score. 9 CNN—convolutional neural networks.
10 YOLO—you only look once. 11 3D—three-dimensional. 12 MATLAB—matrix laboratory. 13 SAS—statistics
analysis system. 14 RMSE—root mean square error. 15 GPS—global positioning system. 16 LFUT—left fore udder
temperature. 17 RFUT—right fore udder temperature. 18 RUT—rear udder temperature. 19 AUT—average udder
temperature. 20 RNN—recurrent neural network. 21 CM—clinical mastitis. 22 AMS—automatic milking system.
23 DT—decision tree.

3.4. Precision Feeding
3.4.1. Precision Nutrition

Obtaining knowledge of the nutrient content of feed ingredients in a cow’s diet and
carrying out the accurate prediction of the animal’s nutrient requirement are certainly big
challenges for dairy farmers [97]. Precision animal nutrition and precision feeding are
aimed at optimizing the supply and demand of nutrients relative to animals for targeted
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performances of animals, characteristics of milk products, as well as economic and environ-
mental outcomes of farms [98]. Research studies on the precision feeding of dairy cows
based on information technology are shown in Table 3.

It is reported that the dry matter (DM) concentrations of alfalfa and corn silage in
samples collected within farms exhibit large variability in both long-term and short-term
periods [99]. In addition, the daily demand for the nutrition of individual lactating cows,
such as metabolizable energy (ME), exhibited deviations due to the climate, diet, and
animal factors [100]. Duranovich et al. (2021) observed that the deviation of the estimated
daily total metabolizable energy requirements of individual cows (MEt) from the actual
ME supplied per cow in the herd varied greatly [100] (Table 3). Moreover, many minerals
have vital functions in mammals [101]; for example, phosphorus (P) has a role in energy
metabolism, whereas copper (Cu) and zinc (Zn) are involved in immune functions [102].
However, over 75% of cows received a ration with excess Co, Cu, Fe, Mn, and Zn in com-
mercial dairy herds compared to National Research Council recommendations, which may
lead to detrimental environmental effects [103]. The nutrient concentrations in feedstuffs
are characterized by large variabilities, which could modify the nutrient composition of the
total mixed ration (TMR) and affect the health and yields of dairy cows, with consequences
with respect to farm economic benefit and sustainability [104].

Near-infrared spectroscopy (NIR) technology is a rapid and accurate analytical tech-
nique that is used to collect information on the chemical–physical composition of raw
materials, TMR, feces, and milk, and it exhibited high potential in predicting the chemical
composition of feeds [105]. As shown in Table 3, Piccioli-Cappelli et al. (2019) evaluated
the effect of a precision feeding system based on a near-infrared scanner on metabolic
conditions and milk yields in lactating dairy cows. The NIR Analyzer was mounted on a
scraper of a front miller, and real-time NIR dry matter analysis was performed with respect
to each ingredient. They observed that with the system switched on, the deviation of the
DM of the target diet and the diets that were really distributed to cows tended to be lower
and feed protein utilization exhibited higher efficiencies [104]. Pereira-Crespo et al. (2022)
evaluated the predictive ability of NIRS for the estimation of the chemical composition
and organic matter digestibility (OMD) of TMR for dairy cows. They revealed that the
NIRS prediction models for estimating the OMD of TMR for dairy cows based on chemical
parameters showed superior predictive capacity compared to empirical equations [106].
Murphy et al. (2022) developed NIRS calibrations to predict quality parameters, dry matter
(DM), and crude protein (CP) in fresh, undried grass on Irish pastures. They found that
NIRS can predict DM contents in fresh grass with a high degree of accuracy and CP contents
with moderate levels of accuracy, and this has a positive impact on the nutrient requirement
estimation for grazing cattle [107].

3.4.2. Precision Feed Intake

In the dairy farming industry, more than 60% of farm expenses are devoted to
feed [108]. Ensuring the feed amounts for dairy cows and increasing feed efficiency
are critical to improving the efficiency of dairy cows. Hence, monitoring feed intake is
potentially beneficial for improving farm management decisions and farm milk yield [109].
The assessment of the feed intake of small group samples could be used to reflect the actual
feed intake demands of the same type of cows; moreover, it can be used to guide their
precise feeding [110]. As shown in Table 3, Bloch et al. (2019) developed a photogrammetry
system for evaluating an individual cow’s feed intake and tested the accuracy of the best
system. The results showed that the feed mass estimation error was 0.483 kg for feed heaps
up to 7 kg [111]. The feed measuring system is simple and user-friendly, and it is equipped
with inexpensive equipment and cameras, which has the potential for commercial devel-
opment. Newly developed machine vision and deep-learning models could be used to
measure an individual cow’s feed intake. Bezen et al. (2020) designed a computer vision
system for individual feed intake measurements based on ResNet CNN models and a
low-cost RGB-D (red, green, blue plus depth) camera was used. They found that the feed
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intake’s weight error exhibited an MAE of 0.127 kg and an MSE of 0.034 kg2; moreover,
cow identification accuracy was 93.65% in the feeding lane [8]. Likewise, Saar et al. (2022)
proposed a real-time machine vision system to predict the individual feed intake of dairy
cows. They used a red, green, and blue plus depth (RGBD) camera to acquire feed pile
images of two different feed types (lactating cows’ feed and heifers’ feed), and several
models were developed to predict individual feed intake. The results suggested that the
transfer learning (TL) models performed best and achieved mean absolute errors (MAE) of
0.12 and 0.13 kg per meal with RMSEs of 0.18 and 0.17 kg per meal for the two different
feeds when tested using varied data collected manually in a cowshed. Testing the model
with actual meal data that were automatically collected by the system in the cowshed
resulted in an MAE of 0.14 kg per meal and an RMSE of 0.19 kg per meal [109].

Furthermore, Shen et al. (2022) proposed a method of optimizing BP neural networks
to establish a dairy cow feed intake assessment model, taking the cow’s body weight,
lying duration, lying times, walking steps, foraging duration, and concentrate–roughage
ratio as input variables and taking the actual feed intake as the output variable, and the
model was trained and verified using experimental data collected on site. They concluded
that the established BP model using the polynomial decay learning rate has the highest
assessment accuracy for the assessment of feed intake, and R2 was 0.94 [112]. In addi-
tion, Ding et al. (2022) evaluated an integrated machine-learning algorithm framework to
identify jaw movements during feeding using a triaxial accelerometer at a relatively low
sampling frequency, and it was also used to predict feed intake on the basis of the accelera-
tion variables of ingesting and chewing activities. The results showed that three feeding
activities—ingesting, chewing, and ingesting–chewing—could be effectively identified
using the XGB and Viterbi algorithms with a precision of 99% [13].

In brief, the usage of near-infrared spectroscopy to balance diets in mixers is one of
the most widely used precision technologies in the dairy sector and has revolutionized the
way we feed cattle, especially when using handheld NIRS. On the contrary, no dairy farm
knows the true feed intake of each cow, and this requires more preliminary research.

Table 3. Research studies on the precision feeding of dairy cows based on information technology.

Author Year Type Approach Data Sources Result

Piccioli-Cappelli et al. [104] 2019 Precision
nutrition

Shapiro–Wilk test, a
mixed model NIR 1 analyzer

With the system switched on, the
deviation of the DM 2 of the target
diet and diets distributed to cows
tended to exhibit a lower and higher
efficiency with respect to feed protein
utilization.

Bloch et al. [111] 2019 Precision feed
intake

MATLAB 3,
photomodeler scanner Camera The feed mass estimation error was

0.483 kg for feed heaps of up to 7 kg.

Bezen et al. [8] 2020 Precision feed
intake ResNet CNN 4 Images

The feed intake weight error was an
MAE 5 of 0.127 kg, and MSE 6 was
0.034 kg2; cow identification accuracy
was 93.65% in the feeding lane.

Duranovich et al. [100] 2021 Precision
nutrition

Linear extrapolation,
orthogonal
polynomials of third
order, regression
models

Proximal
hyperspectral
sensing coupled
with a canopy
pasture probe
system

The deviation of the daily estimated
MEt

7 requirements of a cow from the
actual ME 8 supplied per cow in the
herd varied greatly.

Duplessis et al. [103] 2021 Precision
nutrition

The computer of the
feeding robot

Electronic scale,
Lactanet
database.

Above 75% of cows received a ration
with excess cobalt, cuprum, ferrum,
manganese, and zinc; among them,
ferrum and cobalt were the most
overfed minerals.
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Table 3. Cont.

Author Year Type Approach Data Sources Result

Pereira-Crespo et al. [106] 2022 Precision
nutrition

CENTER algorithm,
modified partial least
squares regression

Online NIR spec-
trophotometer

The NIRS prediction models for
estimating the OMD 9 of the total
mixed ration of dairy cows based on
chemical parameters showed superior
predictive capacity than empirical
equations.

Saar et al. [109] 2022 Precision feed
intake

TL 10 models based on
EfficientNet CNNs

Images of feed
piles

The TL models performed best and
achieved mean absolute errors of 0.12
and 0.13 kg per meal with an RMSE 11

of 0.18 and 0.17 kg per meal for the
two different feeds when tested on
varied data collected manually in a
cowshed.

Shen et al. [112] 2022 Precision feed
intake

SVR 12 model, KNN 13

logistic regression
model, traditional BP 14

neural network model,
and multilayer BP
neural network model

Smart collar
device

The established BP model using the
polynomial decay learning rate has
the highest assessment accuracy for
assessing feed intake; R2 is 0.94.

Ding et al. [13] 2022 Precision feed
intake

Extreme gradient
boosting, hidden
Markov model, Viterbi
algorithm
(HMM–Viterbi)

Triaxial
accelerometer

This method could effectively identify
three feeding activities—ingesting,
chewing, and
ingesting–chewing—with a precision
of 99%.

1 NIR—near-infrared spectroscopy. 2 DM—dry matter. 3 MATLAB—matrix laboratory. 4 CNN—convolutional
neural networks. 5 MAE—mean absolute error. 6 MSE—mean square error. 7 MEt—total metabolizable energy.
8 ME—metabolizable energy. 9 OMD—organic matter digestibility. 10 TL—transfer learning. 11 RMSE—root mean
square error. 12 SVR—support vector regression. 13 KNN—K-nearest-neighbors. 14 BP—back propagation.

4. Conclusions

This review explicitly discussed the applications of information technology for pre-
cision dairy farming. IoT, AI, and CV have been increasingly utilized to monitor the
behavior, health, and management practices of dairy cows. Both contact sensors and CV
techniques have been shown to be useful and effective for the real-time behavioral and
health monitoring of dairy cows. CV techniques enable the identification of individual
cows and the monitoring of cow behaviors (including feeding and estrus behavior) with
higher accuracy and efficiency. However, there are some limitations that affect the im-
plementation of CV in commercial settings. Specifically, a dairy producer would have to
bear expensive computing costs, employ a computer scientist to manage a host source,
and collect a substantial amount of data to carry out accurate computer science inferences
without overfitting the data. For the health detection section, some IoT-based monitoring
systems are proposed to detect diseases, such as mastitis. NIS is one of the most widely
used precision technologies used to balance diets in mixers in the dairy sector and has
revolutionized the way that we feed cattle. On the contrary, assessing the feed intake of
each cow is one of the great challenges for producers. A constantly evolving CV will be
helpful in improving the accuracy of feed intake estimation.

In the future, information technologies, including IoT, AI, and CV, for monitoring
behavior and health should be carried out in dairy farms. It will help producers of dairy
farms understand the health status of cows in real time and improve the smart decision-
making level.
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