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Abstract: Strigolactones, a new group of phytohormones, are reported to improve plant tolerance
to multiple abiotic stresses. A pot experiment was conducted to investigate the impact of syn-
thetic strigolactone (GR24 at 0.001, 0.01 and 0.1 mg L−1) application on ornamental sunflowers
(Helianthus annuus cv. Vincent’s Choice) grown under salt stress (150 mM NaCl). Salt stress was
applied after 14 days, and SL was applied 25 days seed sowing. The results showed that amongst
various GR24 concentrations, 0.01 mg L−1 proved to be superior, as it enhanced the photosynthetic
rate (9.29%), transpiration rate (0.76%), stomatal conductance (77.5%), total soluble protein (0.55%)
and K+ (14.63% in roots; 14.87% in shoots) and Ca2+ (12.63% in roots; 11.48% in shoots) contents
under control conditions. Similarly, the leaf turgor potential (Ψp), osmotic potential (Ψs) and free
proline, glycinebetaine (GB), superoxide dismutase (SOD), catalase (CAT) and peroxide (POD) con-
tents increased by 58.17, 89.95, 159.04, 101.54, 74.42, 175.68 and 53.62%, respectively, under salt stress
conditions. The leaf water potential (Ψw) decreased (−0.14%) and the malondialdehyde (MDA)
content increased (16.65%) when treated with the 0.001 mg L−1 GR24 level. Meanwhile, hydrogen
peroxide (H2O2) and Na+ concentrations in roots and shoots increased by 62.53%, 74.66% and 38.55%
under saline conditions with a GR24 level of 0 mg L−1. Regarding the plant biomass, a GR24 level of
0.01 mg L−1 with salt stress greatly decreased the root (−47.27% and −50.45%) and shoot (−44.79%
and −59.42%) fresh and dry weights, respectively, compared to control conditions. These results
reveal that exogenously applied GR24 might be an effective way to mitigate the perilous impacts of
salt stress in ornamental sunflower production. It is suggested that the use of molecular techniques
to study different processes in which GR24 could play a vital part in various commercial floricul-
tural crops is extremely imperative and can open novel horizons for future investigations in this
exhilarating field of plant hormones.
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1. Introduction

Increased soil salinization significantly hampers crop growth and productivity, particu-
larly in arid and semi-arid regions [1,2]. Globally, about 20% of the cultivated land has been
reported to be salt-affected [3], which causes more than USD 12.5 billion in yearly losses
due to crop productivity losses [4]. Salt-induced crop yield losses are largely attributed
to specific ion toxicity, impaired CO2 exchange, reduced photosynthetic performance and
other physiological and metabolic consequences [5,6]. The enhanced production of reactive
oxygen species (ROS) under salt stress also contributes to the oxidative stress load of crop
plants [2]. To cope with salinity stress, plants have evolved different tolerance mechanisms,
such as degrading proteins and nucleic acids. Plants also induce lipid peroxidation and the
activation of enzymatic and non-enzymatic antioxidant defense systems for ROS removal
and the maintenance of redox homeostasis [7,8].

Sunflower (Helianthus annuus L.) is the most vital crop for the production of oilseeds
across the globe [3,9]. It is an extremely nutritive crop and a rich source of antioxidants, as
well as polyunsaturated fatty acids [10]. Furthermore, the advancement of floriculture has
also led to the use of sunflower as an ornamental plant. Thus, the ornamental sunflower
is an extremely esteemed specialty cut-flower plant used for vase decorations in pots, for
interior decoration and as garden plants due to its various colors and the liveliness of its
inflorescence [11]. Flower growers are mainly interested in this crop due to its flower color,
flower size, straight and long stem and decreased branching [12]. However, floricultural
cut-flower crops are reported to be salt sensitive, and farmers have been apathetic to
endangering the flower quality and economic output by growing them under saline soil
conditions [13].

Phytohormone biosynthesis and signaling under abiotic stresses are well known to
regulate plant growth and development [14,15]. Strigolactones (SLs), carotenoid-derived
terpene lactones, were first isolated from a root culture solution of Gossypium hirsutum in the
1960s [16]. Later, in 2008, SLs were recognized as novel hormones that could suppress the
generation of branches in higher plants [17]. GR24, a synthetic SL, is involved as a positive
regulator in response to salt stress [18]. Under nutrient-deficient conditions, SLs released
from the plant roots enhance the development of lateral roots and root hairs, which, in turn,
improves nutrient uptake [2]. Simultaneously, SLs translocated to aboveground plant parts
stifle lateral bud or branch generation and decrease the inorganic nutrient requirements of
the branches [19,20]. Due to the minute concentrations of SLs in different plants, a series of
SLs, such as GR5, GR7 and GR24, have been chemically manufactured, among which GR24
had the maximum activity [21]. GR24 application improved chlorophyll a and b contents as
well as augmented the transpiration rate and stomatal conductance in tomato under salinity
stress [22]. SLs proved to be an imperative signaling molecule required for the synthesis
of photosynthetic pigments during salt stress [22]. SLs also significantly release the salt
stress suppression by elevating SOD and POD activities in rice [2] and rapeseed [23]. SLs
could also lessen salt stress by regulating the antioxidant system in tomato seedlings [22].
The foliar application of GR24 was previously reported to regulate growth responses in
Arabidopsis [21] and sunflower [24] exposed to salt stress.

To overcome the negative impacts of salt stress on crop growth and productivity,
plant scientists have developed different conventional and contemporary techniques to
screen for salt-tolerant and salt-resistant varieties [25]. Previous studies quantified the
implementation of tissue culture and other laboratory techniques for the screening of geno-
types by germinating cells on severely salty media to pick tolerant cells, which redevelop
salt-tolerant plant varieties [26]. Therefore, the current investigation was carried out to
explore the impact of GR24 on photosynthesis, water relations, antioxidant enzymatic
activities and mineral ion composition in ornamental sunflowers (Helianthus annuus cv.
Vincent’s Choice) under salinity stress.
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2. Materials and Methods
2.1. Experimental Area, Seed Material and Layout

A pot experiment was conducted in a lath-house of the Old Botanical Research Area
(31◦24′ N, 72◦09′ E, 300 m above average sea level) at the University of Agriculture, Faisal-
abad, Pakistan, to understand the interaction between selected levels of salinity and SLs.
Sunflower seeds of Vincent’s Choice (F1) were purchased from Sunny View Seed Company,
Lahore, Pakistan. Pots were arranged according to a two-factor factorial completely ran-
domized design (CRD) with four replications. There were eight pots in each treatment,
and each pot contained 10.0 kg of sterilized canal sand. In pots, seeds were sown during
the second week of September 2019. After germination, three seedlings of equal size were
maintained in each pot until the harvesting of fully opened flowers (64 to 78 days after
sowing). Essential nutrients were supplied by Hoagland’s nutrient solution (full strength)
equally to each pot [27].

2.2. Chemical Materials

Except for GR24, all chemicals were acquired from Sigma, Germany. The chemicals
and their CAT numbers are as follows: BAP (Benzyl amino purine, CAT # 13151); NAA
(Naphthalene acetic acid, CAT # 80862005); GR24 (obtained from the Department of Organic
Chemistry, Radhoud University Nijmegen, The Netherlands); NBT (Nitroblue tetrazolium,
CAT # 124823500); Salfosalicylic acid (CAT # 8006910100); 2,4-dichlorophenoxy acetic acid
(CAT # D70724); Methionine (CAT # M9500); Toluene (CAT # 244511); Guaiacol (CAT #
W253200); and Trichloroacetic acid (CAT # 8223420250). Strigolactone (GR24) was provided
by Professor Dr. B. Zwanenburg, Department of Organic Chemistry, Radboud University
Nijmegen, Holland.

2.3. Application of Salinity and Strigolactone (GR24)

Two salinity levels, i.e., non-saline and 150 mM NaCl, were applied two weeks after
sowing. About 50 mM NaCl was applied thrice at three-day intervals to reach the 150 mM
salt level. The potting sand was moistened daily by adding 250 mL of distilled water. Four
SL (GR24) concentrations (0, 0.001, 0.01 and 0.1 mg L−1) were foliar-applied (25 days after
germination) twice at three-day intervals at 25 mL pot−1 during the vegetative stage of plants.

2.4. Measurement of Photosynthetic Attributes and Water Relations

An infrared gas analyzer (IRGA) (LCA-4, Analytical Development Company, Hod-
desdon, UK) was used for the measurement of the photosynthetic rate (A), transpiration
rate (E) and stomatal conductance (gs). Water potential (Ψw) was determined with the
help of a pressure chamber (Plant Moisture Stress (PMS) Instrument Company, Model
670, Albany, USA). Leaf tissues were frozen (at −80 ◦C) for two weeks, and leaf Ψw was
extracted for the determination of osmotic potential (Ψs) with the help of a Wescor Vapor
Pressure Osmometer (Model VAPRO 5520, El Cajon, CA, USA). Leaf turgor potential (Ψp)
was calculated as Ψp = Ψw − Ψs.

2.5. Determination of Stress-Related Metabolites (Proline and Malondialdehyde)

Free proline contents in leaves were determined by following the protocol described
by Bates et al. [28]. For this purpose, 500 mg leaf samples were extracted using 10 mL of 3%
(w/v) sulfosalicylic acid (MP, Biomedicals, Inc., Irvine, CA, USA), and 2.0 mL of crushed
filtered samples in a test tube was taken along with 2.0 mL of GAA (glacial acetic acid)
and acid ninhydrin. This reaction was undertaken at 100 ◦C and completed in an ice-filled
container. Toluene (4.0 mL) was added, and aliquots were vortexed. The OD of the filtrate
was measured at 520 nm, while toluene was utilized as a blank, and proline was calculated.

Malondialdehyde (MDA) was determined by taking the extract of a fresh leaf sample
(500 mg) in 5 mL of 1.0% (w/v) TCA (MP Biomedicals, de Kayserberg Illkirch, France).
The homogenate was centrifuged at 20,000× g for 15 min (Model Sigma 3K30, Bremen,
Germany). The supernatant (500 µL) was reacted with 2 mL of 0.5% TBA (2-thiobarbituric
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acid) (Sigma-Alderich Chemie GmbH, Steinheim, Germany) in 20% TCA. At 100 ◦C, the
leaf sample was subjected to a shaking water bath for 1 h. Afterwards, the reaction was
stopped by cooling the samples in ice and centrifuging them at 1000× g for 10 min, and the
OD of the filtrate was recorded at 532 and 600 nm.

2.6. Determination of Glycinebetaine (GB), Total Soluble Protein and Hydrogen Peroxide (H2O2)

Glycinebetaine (GB) was determined by placing 0.5 g of dry leaf material in 10 mL of
toluene (0.5%) and keeping it overnight at 4 ◦C. About 1.0 mL of the filtrate was reacted with
1.0 mL of H2SO4. In a test tube, this extract (0.5 mL) was taken, 200 µL of a solution of KI3 was
added, and in a chiller, all contents were cooled. Ice-cooled deionized H2O (2.8 mL) and 1–2
di-chloroethane (5.0 mL) were added. The organic layer absorbance was noted at λ 365 nm
using a spectrophotometer. The GB concentration was verified with a curve by following
Grieve and Grattan [29]. Furthermore, total soluble protein was determined by taking a fresh
leaf sample (500 mg) and extracting it with 50 mM potassium phosphate (10 mL) buffer
in an ice bath. The aliquot was centrifuged at 4 ◦C for 15 min at 10,000× g. The protein
content in the extract was determined following Bradford [30]. Hydrogen peroxide (H2O2)
was determined by taking 0.5 g of tissues of fresh leaves, which were crushed in a chilled
mortar with 5 mL of 0.1% (w/v) trichloroacetic acid (TCA). The mixture was centrifuged at
12,000× g for 15 min. After vortexing, the OD of the blend was noted at 390 nm, and H2O2
was calculated by following the procedure explained by Velikova et al. [31].

2.7. Determination of Antioxidant Enzymatic Activities

Fresh leaf tissues (500 mg) were extracted in 10 mL of phosphate buffer (50 mM; pH 7.8).
At 4 ◦C, the extract was centrifuged at 15,000× g for 10 min. The supernatant was separated
and used for the determination of enzyme activities, i.e., superoxide dismutase (SOD),
peroxidase (POD) and catalase (CAT). For SOD, the photoreduction inhibition of nitro blue
tetrazolium (NBT) was used by following the method described by Giannopolities and
Ries [32]. Distilled water (100 µL), NBT (50 µL), methionine (100 µL), phosphate buffer at
pH 7.6 (500 µL) and the sample extract (50 µL) were mixed in cuvettes that were kept for
20 min under light. SOD in the irradiated aliquot was read at 560 nm.

The activities of CAT and POD were calculated in accordance with the method de-
scribed by Chance and Maehly [33]. The CAT reaction mixture (2 mL) containing phosphate
buffer (50 mM) having a pH of 7.0 and H2O2 (5.9 mM) was taken, and the reaction was
started by dissolving an aliquot (100 µL) of enzyme extract. The reduction in OD was
recorded spectrophotometrically every 20 s for 2 min at 240 nm. For the determination
of POD, 1.0 mL of the reaction mixture possessed 750 µL of phosphate buffer (50 mM;
pH 5.0), 100 µL of H2O2 (40 mM), 100 µL of guaiacol (20 mM) and 100 µL of the extract of
the enzyme. The OD of the reaction mixture was recorded every 20 s for 3 min at 470 nm.

2.8. Mineral Ion (Na+, K+ and Ca2+) Quantification

Dry root and shoot samples (0.1 g) were digested in 2 mL of a digestion mixture
(HNO3 and HClO4 in a ratio of 5:2) for 25 h. After cooling, 0.5 mL of perchloric acid was
added to decolorize the mixture, and a final volume of 50 mL was made using distilled
water. Sodium (Na+), potassium (K+) and calcium (Ca2+) ions were quantified using a
flame photometer (Jenway PFP 7, Cadmus, Chelmsford, England).

2.9. Statistical Analysis

All recorded data means were analyzed using the LSD test at a 5% probability level
using STATISTIX software (version 8.3) and the analysis of variance (ANOVA) technique.
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3. Results
3.1. Role of Exogenous GR24 Application in Photosynthetic Attributes and Water Relations of
Sunflower under Salt Stress

The analysis of variance shows the mean squares of different physio-biochemical
characteristics of ornamental sunflowers with numerous levels of GR24 under control and
salinity stress conditions, indicating variable impacts of the treatments on the photosyn-
thetic attributes and water relations of sunflower (Table 1). Furthermore, the imposition
of salt stress significantly reduced the photosynthetic rate, transpiration rate and stomatal
conductance at all GR24 levels. The highest reduction in the photosynthetic rate (−33.36%)
under salt stress was recorded without GR24, while the transpiration rate and stomatal
conductance under salt stress were reduced by −18.72% and −77.5%, respectively, at a
GR24 concentration of 0.01 mg L−1 compared to control conditions (Figure 1). Statistically
highly significant (p < 0.001) results were obtained for Ψw, Ψs and Ψp under salt stress
compared to control conditions (Table 1). The application of all GR24 levels significantly
enhanced Ψs and Ψp by up to 99.36% and 135.78%, respectively, whereas Ψw was reduced
by−71.06%,−79.33% and−60.66% under saline conditions with 0.001, 0.01 and 0.1 mg L−1

GR24 applications, respectively (Figure 2).

Table 1. Analysis of variance (ANOVA) for different physiological and biochemical characteristics
of ornamental sunflower with various GR24 levels (0, 0.001, 0.01 and 0.1 mg L−1) under saline and
non-saline conditions.

Source of
Variation

Photosynthetic
Rate

(µmol CO2
m−2 s−1)

Transpiration
Rate

(mmol H2O
m−2 s−1)

Stomatal
Conductance
(mmol m−2

s−1)

Ψw
(−MPa)

Ψs
(−MPa)

Ψp
(−MPa)

Proline
(µmol g−1 f.wt.)

Salt stress 424.86 ** 2.12 ** 17578.13 ** 0.102 ** 2.797 ** 3.968 ** 8173.56 **
GR24 94.55 ** 0.03 ns 78.13 ns 0.003 ** 0.161 ** 0.124 ** 1114.92 **

S × GR24 7.07 ns 0.05 * 936.46 ** 5.736 ** 0.063 ** 0.056 ** 577.219 **
Error 5.879 0.017 132.291 1.767 0.001 0.001 1.780

Source of
variation

MDA
(µmol g−1

f.wt.)

GB
(µmol g−1

dry wt.)

TSP
(mg m−1

f.wt.)

H2O2
(µmol g−1

f.wt)

SOD
(Units mg−1

protein)

POD
(Units mg−1

protein)

CAT
(Units mg−1

protein)

Salt stress 93.213 ** 2478.406 ** 3.485 ** 15292.74 ** 1674.03 ** 239.92 ** 4368.37 **
GR24 142.011 ** 1185.009 ** 4.155 ** 639.68 ** 1194.86 ** 2.71 ** 659.46 **

S × GR24 14.346 ** 173.373 ** 0.453 ** 110.83 ** 188.41 ** 0.42 ns 99.37 **
Error 2.888 2.054 0.066 2.783 5.076 0.141 9.178

The asterisks indicate statistically significant differences among the various treatments at probability level
p < 0.01 according to least significant difference (LSD) test. Ψw: Water potential; Ψs: osmotic potential; Ψp: turgor
potential; MDA: malondialdehyde; GB: glycinebetaine; TSP: total soluble protein; H2O2: hydrogen peroxide;
SOD: superoxide dismutase; POD: peroxidase; CAT: catalase; ** highly significant; * significant; ns non-significant.

3.2. Effect of Exogenous GR24 Application on Stress-Related Metabolites (Free Proline and MDA)
of Sunflower under Salt Stress

Stress-related metabolites showed statistically highly significant (p < 0.01) results
under both growing conditions (Table 1). The highest proline content was recorded under
saline conditions when GR24 was applied at 0.01 mg L−1, followed by 0.1 mg L −1. There
were 159.04% and 173.56% increments in free proline contents under saline conditions,
respectively (Figure 3). Parallel outcomes were also obtained for MDA values, which
increased with the GR24 level under salt stress as compared to control conditions. The
highest MDA content was recorded when the 0.001 mg L−1 GR24 level was applied
under salt stress, whereas the minimum value was recorded under control conditions with
0.001 mg/L GR24 (Figure 3).
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Figure 1. Impact of GR24 on physiological characteristics, i.e., (A) photosynthetic rate (A),
(B) transpiration rate (E) and (C) stomatal conductance (gs) of ornamental sunflower under control and
salt stress conditions. Each vertical bar shows the mean of three replicates. Different letters indicate
significant differences among treatments at p ≤ 0.01 according to least significant difference test.
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Figure 2. Impact of GR24 on leaf water potential (A), leaf osmotic potential (B) and leaf turgor
potential (C) of ornamental sunflower under control and salt stress conditions. Each vertical bar
shows the mean of three replicates. Different letters indicate significant differences among treatments
at p ≤ 0.01 according to least significant difference test.
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Figure 3. Impact of GR24 on free proline content (A) and malondialdehyde (B) in ornamental
sunflower under control and salt stress conditions. Each vertical bar shows the mean of three
replicates. Different letters indicate significant differences among treatments at p ≤ 0.01 according to
least significant difference test.

3.3. Impact of GR24 Application on GB, Total Soluble Protein and H2O2 under Salt Stress

Salt stress and GR24 showed a statistically highly significant (p < 0.01) impact on GB,
total soluble protein and H2O2 (Table 1). The results showed increments in GB and H2O2
under saline conditions compared to the control with the application of GR24. The highest
GB content was noted with the 0.01 mg L−1 GR24 concentration under salinity conditions.
There was a 101.54% increase in the GB level compared to control conditions, whereas
the lowest GB value was recorded under control conditions without GR24 application
(Figure 4). Similar results were also noted for the H2O2 content with GR24 application
under salt stress conditions. There were 70.61%, 53.03% and 62.66% increases in the H2O2
level under saline conditions with 0.001, 0.01 and 0.1 mg L−1 GR24 application, respectively
(Figure 4). There was a significant drop in the total soluble protein content under salt stress
conditions. The application of GR24 slightly improved the soluble protein level, but the
highest value was recorded under control conditions. There was a 39.36% reduction in total
soluble protein in the control treatment under salt stress (Figure 4).
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Figure 4. Impact of GR24 on glycinebetaine (A), total soluble protein (B) and hydrogen peroxide (C)
of ornamental sunflower under control and salt stress conditions. Each vertical bar shows the
mean of three replicates. Different letters indicate significant differences among treatments at
p ≤ 0.01 according to least significant difference test.

3.4. Impact of GR24 on Antioxidant Enzymatic Activities of Sunflower under Salinity Stress

A statistically highly significant (p < 0.01) effect of GR24 and salt stress was recorded
for antioxidant enzymatic activities (Table 1). The application of salinity led to a notable
enhancement of the activities of SOD, CAT and POD compared to the control treatment.
GR24 applied at 0.01 mg L−1 showed the highest antioxidant values compared to other
levels with salt stress conditions. There were 74.42%, 53.62% and 175.68% increases in SOD,
CAT and POD contents under salt stress, respectively, compared to control treatments at
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the said GR24 level. The lowest values of these observations were recorded under control
conditions without GR24 application (Figure 5).
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Figure 5. Impact of GR24 on antioxidant enzymatic activities, i.e., superoxide dismutase (A),
catalase (B) and peroxide (C), in ornamental sunflower under control and salt stress conditions.
Each vertical bar shows the mean of three replicates. Different letters indicate significant differences
among treatments at p ≤ 0.01 according to least significant difference test.
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3.5. Impact of GR24 Application on Quantification of Mineral Ions in Roots and Shoots of
Ornamental Sunflower under Salt Stress

The application of GR24 showed the elevation of Na+ contents in the roots and shoots of
ornamental sunflowers. A reducing trend was recorded in Na+ content due to an increment
in the GR24 level. There were 69.57%, 69.23% and 63.28% increases in root Na+ contents and
34.56%, 32.46% and 29.74% increases in shoot Na+ contents with GR24 applications at 0.001,
0.01 and 0.1 mg L−1, respectively, under salinity stress conditions. A decreasing trend was
found in K+ and Ca2+ concentrations in both the roots and shoots of ornamental sunflowers
under saline conditions. The greatest diminutions in K+ contents in roots (−5.63% and
−38.14%) and shoots (−5.63% and −36.29%) were recorded at 0.01 mg L−1, whereas Ca2+

contents were reduced by −2.63% and −30% and −1.9% and 10.95% at the same GR24 level
under control and saline conditions, respectively (Figure 6).
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Figure 6. Impact of GR24 on root Na+ (A), K+ (B) and Ca2+ (C) and shoot (D), K+ (E) and Ca2+ (F)
ions of ornamental sunflower under control and salt stress conditions. Each vertical bar shows the
mean of three replicates. Different letters indicate significant differences among treatments at p ≤ 0.01
according to least significant difference test.
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3.6. Impact of GR24 Application on Plant Biomass of Ornamental Sunflower under Salt Stress

Statistically, salt stress and GR24 showed highly significant (p < 0.01) impacts on root
and shoot fresh and dry weights (Table 2). The results showed that the application of salt
stress greatly reduced the fresh weights and dry weights of both plant parts (roots and
shoots). The greatest fresh and dry weights were recorded when GR24 was applied at
0.01 mg L−1 under control and salt stress conditions. The lowest weights (fresh and dry) of
roots and shoots were found under control conditions. There were −47.27% and −50.45%
reductions in fresh and dry weights, respectively, in roots with a GR24 level of 0.01 mg L−1

compared to control conditions. A similar trend was also noted in shoots, where there
were decreases of −40.79% and −59.42% in fresh and dry weights with the same GR24
concentration. Overall, there were reductions of −56.67% and −54.06% in fresh weight and
−47.26% and −49.13% in dry weight with 0.001 and 0.1 mg L−1 GR24 levels in the roots
of ornamental sunflowers. In shoots, reductions of −34.14% and −41.18% and −43.45%
and −51.28% in fresh and dry weights were observed, respectively, at the same GR24 level
compared to control conditions (Figure 7).
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Figure 7. Impact of GR24 on root fresh weight (A), root dry weight (B), shoot fresh weight (C)
and shoot fresh weight (D) of ornamental sunflower under control and salt stress conditions. Each
vertical bar shows the mean of three replicates. Different letters indicate significant differences among
treatments at p ≤ 0.01 according to least significant difference test.
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Table 2. Analysis of variance (ANOVA) for different mineral ions and plant biomass characteristics
of ornamental sunflower with various GR24 levels (0, 0.001, 0.01 and 0.1 mg L−1) under saline and
non-saline conditions.

Source of
variation

Root Na+

(mg g−1

Dry wt.)

Root K+

(mg g−1

Dry wt.)

Root Ca2+

(mg g−1

dry wt.)

Shoot Na+

(mg g−1

Dry wt.)

Shoot K+

(mg g−1

Dry wt.)

Shoot Ca2+

(mg g−1

Dry wt.)

Root fresh
wt. (g)

Root dry
wt. (g)

Shoot fresh
wt. (g)

Shoot dry
wt. (g)

Salt stress 300.125 ** 202.507 ** 45.125 ** 99.757 ** 205.031 ** 23.632 ** 22.680 ** 0.264 ** 2156.767 ** 21.912 **
GR24 5.177 ** 5.591 ** 1.302 * 2.091 ns 5.718 ** 6.716 ** 2.294 ** 0.020 ** 258.936 ** 1.944 **

S × GR24 0.729 ns 0.403 ns 0.187 ns 0.257 ns 0.468 ns 1.153 ns 0.106 ns 0.004 ns 29.849 ** 0.797 **
Error 0.703 0.617 0.380 0.752 0.890 0.565 0.175 0.001 4.562 0.088

The asterisks indicate statistically significant differences among the various treatments at probability level p < 0.01
according to least significant difference (LSD) test. ** Highly significant; * significant; ns non-significant.

4. Discussion

The current investigation evaluated the role of GR24 in the physio-biochemical charac-
teristics and biomass of the ornamental sunflower (Helianthus annuus cv. Vincent’s Choice)
under salinity stress to identify its most suitable quantity to diminish the drastic impacts of
salt stress. It was observed that salinity stress drastically reduced the photosynthetic rate
(A), transpiration rate (E) and stomatal conductance (gs). Salinity stress mostly abolishes
chlorophyll and decreases photosynthesis by limiting the rate of transpiration and stomatal
conductance [18]. Salt stress not only overwhelms photosynthetic activity but also represses
the plant’s photosynthetic machinery. Salinity stress also disturbs cell organelles such as
the chloroplast. The chloroplast is the site of most photosynthetic processes (PSI and PSII)
and reactive oxygen species (ROS) generation [34]. Photosynthesis is the foundation of crop
yield and quality in cropping systems [35]. The efficiency of the photosynthetic process
is affected by salt stress, such as metabolic process changes or the limitation of stomata
to CO2 diffusion [36]. Similar findings were reported by Kausar and Shahbaz [37], who
showed a lower photosynthetic rate and stomatal conductance due to salt stress even after
GR24 application at different concentrations. These findings were contrary to the results of
Zhang et al. [38], who observed increases in stomatal conductance, the rate of transpiration
and photosynthesis in cucumber seedlings with exogenous GR24 application during salin-
ity stress. This variation might be due to variations in environmental circumstances among
plant species. Ma et al. [23] also noted that GR24 increased all photosynthetic attributes of
Brassica napus. This could be due to increased sucrose synthase 2 (SUS2) and the decreased
activity of kinases. SUS2 is responsible for the deprivation of sucrose [39]. The application
of GR24 treatment enhanced the expression of SUS2 enzyme activity in rice [40].

The present study showed limited water relations due to the limited uptake of water
and reduced solute potential. Similar results were also observed by Cha-um et al. [41], who
observed negative water potential that limited plant growth and development after GR24
application. This decrease could be because of higher Na+ and Cl− ion accumulation in
sunflower leaves. Contrary to the leaf water potential, leaf osmotic and turgor potentials
were enhanced in our study under salt stress conditions. Similar findings were also noted
by Sarwar and Shahbaz [24] in sunflower after GR24 treatment. The different effects of
GR24 on water relation attributes indicate very intricate interactions among GR24 and other
hormones [23]. Due to salinity stress, excessive ROS production has been noticed, which
possesses lethal effects on the cellular organelles, causing decreased plant growth and
development [42,43]. In the present experiment, remarkable increases in proline and MDA
were detected. Similar findings were observed in sunflower [24] under salt stress conditions.
When using GR24 (especially at 0.01 mg L−1), there was a considerable elevation recorded
in the proline content. Exogenously applied GR24 enhanced the free proline concentration
in rapeseed, which mitigated the hindering effects of salt stress [23]. MDA is used to gauge
the extent of oxidative impairment in stressed plants [44]. The results of the present study
also showed higher MDA accumulation due to salt stress, indicating an elevation of lipid
peroxidation in ornamental sunflowers. The higher MDA content due to GR24 application
in salt stress plants demonstrated the strong positive impact of GR24 on protecting the
membrane from stress damage [45]. Increased MDA levels under salt stress also indicated
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that despite the presence of the antioxidant system mechanism, salt stress might still cause
membrane lipid peroxidation in plant leaves [46]. Naveed et al. [47] also argued that higher
stress-related metabolites show a defensive impact as well as plant support to alleviate the
lethal role of salt stress.

To manage the deleterious ROS effects in plants, a defensive process is initiated for the
tolerance to salts, which includes the compatible production of solutes such as GB [1,48].
In this research, a remarkable elevation of GB was observed under both saline and control
conditions with the application of GR24. Under saline conditions, an osmotic modifi-
cation occurred with the assistance of proteins by decreasing the osmotic potential [49].
The concentration of total soluble protein accumulation in plants differs from species to
species [50]. In the present experiment, a reduction in total soluble protein was recorded.
Similar results were also found by Zulfiqar et al. [51], where all levels of GR24 reduced the
soluble protein content under control and saline conditions. Salt stress causes oxidative
injury, particularly due to the enhanced production of H2O2 [52]. These ROS have harmful
effects on plant tissues, which results in depressed plant growth [43]. Our results are also in
line with this, as an elevation of H2O2 was found under saline conditions. Enhanced levels
of H2O2 and others exert a defensive impact and support plants in alleviating perilous
abiotic stress impacts [47]. A protective mechanism against ROS is induced in plants by
different enzymatic and non-enzymatic antioxidants [53]. In advanced stages, the accrual
of ROS tends to inactivate enzymes, degrade nucleic acids and oxidize proteins, which
ultimately leads to cell death [54].

Enzymatic activities severely decrease due to stress imposed on plants under external
abiotic conditions [2]. Saleem et al. [52] reported an increase in lipid peroxidation among
different varieties of potatoes under NaCl exposure. Certainly, metabolite production
activates plants to efficiently cope under abiotic stress conditions [55]. Likewise, in the
current study, antioxidants (SOD, CAT and POD) were revealed to have boosted activities
under salt stress conditions as compared to control conditions, whereas GR24 application
enhanced the antioxidant enzymatic activities, especially at the 0.01 mg L−1 concentration.
The significant augmentation of CAT, SOD and POD activities indicated that there is a
positive regulatory effect on the scavenging of ROS produced by salt stress in plants [23].
This also indicated that GR24 could proficiently diminish superoxide free radicals resulting
from saline stress, decreasing the cellular impairment caused by peroxidation by ROS
for maintaining the proper development of rice seedlings [2]. As a kind of novel plant
hormone, the impact of strigolactone GR24 on resistance to abiotic stressors has become an
interesting research topic [56,57].

Tolerance to salinity stress in plants is observed because of ion accretion [53]. Tolerance
to salts in plants is directly connected to the Na+/K+ ratio, which depends upon the nature
of the plant species [58]. The present study revealed that GR24 increased the Na+ contents
in roots and shoots of ornamental sunflowers, whereas K+ and Ca2+ decreased in both
plant parts under salinity stress. Parallel results were also reported by Parveen et al. [48],
in which elevated Na+ ions in cells lessened the K+ and Ca2+ ions in plant cells. The
enhanced Na+ ion levels in tissues under saline stress affect the characteristics of gas
exchange, cytosolic enzyme activities and the development of plants [59]. Homeostasis and
the attainment of major elements, i.e., K+ and Ca2+, were adversely affected by the accrual
of Na+ ions in the cells [24]. These findings confirmed the results of the present research
on ornamental sunflowers, as well as previous research on quinoa [60] and wheat [34],
under salt stress conditions. GR24 assisted in abating the harsh impacts [36] of salts by
hoarding more K+ and Ca2+ ions and minimizing the Na+ ion content. The root is the main
plant organ affected by salt stress conditions, and it affects the accumulation of ions and
shoot growth [23]. The present results indicated that salt imposition severely decreased the
accumulation of root and shoot biomass. The results are in line with the findings of Sarwar
and Shahbaz [24] in sunflower and wheat [34]. Ionic toxicity and high osmotic stress along
with ROS production could be the main cause of plant biomass reduction [61]. As noted,
when GR24 was applied, it could move and transfer from roots into shoots and played a
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regulatory role in plant responses to salt stress [18,45], and salt stress negatively affects the
numerous metabolic processes occurring in plants [3].

5. Conclusions

Strigolactone (GR24) played a valuable part in coping with saline conditions; salt
stress reduced the photosynthetic attributes (A, E and gs) and leaf water potential, but
GR24 exerted a regulatory impact under salinity. Among various GR24 levels in the current
experiment, 0.01 mg L−1 led to significantly elevated photosynthetic characteristics (under
control conditions), stress-related metabolites, antioxidant enzyme activities, root and shoot
K+ and Ca2+ ions and biomass (fresh and dry weights), while leaf osmotic and turgor
potentials were greatest at 0.1 mg L−1. Therefore, the current study offers evidence that
exogenous GR24 application may play an important role in mitigating the adverse impacts
of salt stress in ornamental sunflowers. Still, there are many gaps in the understanding of
GR24 mechanisms and signaling that must be resolved for its sustainable application in
agriculture. The diversification of SLs and their downstream signaling processes controlled
by the favorable alleles of the genes involved and their identification would be a valuable
asset to future breeding operations. A clear understanding of these aspects will open new
horizons for plant resistance and improved crop yield.
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