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Abstract: The state of ripeness at harvest is a key piece of information for growers as it determines 

the market price of the yield. This has been traditionally assessed by destructive chemical methods, 

which lead to low-spatiotemporal resolution in the monitorization of crop development and poor 

responsiveness for growers. These limitations have shifted the focus to remote-sensing, spectros-

copy-based approaches. However, most of the research focusing on these approaches has been ac-

complished with expensive equipment, which is exorbitant for most users. To combat this issue, this 

work presents a low-cost, hand-held, multispectral device with original hardware specially de-

signed to face the complexity related to in-field use. The proposed device is based on a development 

board (AS7265x, AMS AG) that has three sensor chips with a spectral response of eighteen channels 

in a range from 410 to 940 nm. The proposed device was evaluated in a red-grape field experiment. 

Briefly, it was used to acquire the spectral signature of eighty red-grape samples in the vineyard. 

Subsequently, the grape samples were analysed using standard chemical methods to generate 

ground-truth values of ripening status indicators (soluble solid content (SSC) and titratable acidity 

(TA)). The eighteen pre-process reflectance measurements were used as input for training artificial 

neural network models to estimate the two target parameters (SSC and TA). The developed estima-

tion models were evaluated through a leave-one-out cross-validation approach obtaining promising 

results (R2 = 0.70, RMSE = 1.21 for SSC; and R2 = 0.67, RMSE = 0.91 for TA). 

Keywords: sensor; multispectral; precision farming; machine learning; artificial neural network; 
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1. Introduction 

Fruit ripening involves a set of morphological, physiological, and biochemical 

changes that make fruit suitable for consumption. During maturation, a green, firm, im-

mature fruit usually becomes more colourful, softer, sweeter, and aromatic. Furthermore, 

biotic and abiotic stresses trigger metabolic processes that reduce fruit quality not only 

during growth but also during harvest and storage [1]. These modifications can be char-

acterized through physical and chemical attributes such as size, shape, texture, firmness, 

soluble-solids content (SSC), starch, sugars, acids, oils, internal ethylene concentration, 

external and internal colour, and concentration of chlorophyll, etc. [2]. Thus, there are 

objective parameters which allow for the monitoring of the quality state of fruit and the 

carrying out of actions to improve it. Traditionally, the assessment of these fruit-quality 

indicators has been based on chemical and physical methods, such as high-performance 

liquid chromatography (HPLC), refractometry, and colorimetry, among others. These 

kinds of methods require extensive sample preparation, expert workers, and advanced 

laboratory facilities. All these factors lead to a high cost. Therefore, there are two main 

concerns accompanying these methods. These include the representativeness of a sample 
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from a field on a given date and the number of sample dates that can be performed during 

the campaign. These concerns lead to poor temporal and spatial resolution in the moni-

torization, which limits the growers’ reaction capacities. These facts make the implemen-

tation of rapid, economical, and non-destructive alternatives necessary, as they would 

benefit growers, processors, and consumers alike. The in-field, non-destructive assess-

ment of fruit ripeness would provide numerous benefits compared to traditional destruc-

tive techniques such as high-throughput assessment, simultaneous multiple measure-

ments, and real-time decision making. 

In recent decades, spectral-based approaches have been proposed as an alternative 

to fruit-quality assessment because of their speed and non-invasive character [3]. The the-

orical foundation of this kind of method relies on the interaction between light and objects. 

Briefly, every molecule consists of several atoms. The bonds between the atoms can be 

excited by light with a characteristic wavelength (i.e., colour) [4,5]. This leads to short time 

vibrations within the molecule. This specific wavelength depends on the strength of the 

bonds and the mass of the atoms and is unique for each molecule. This interaction between 

light and objects can be assessed by analysing the three processes of absorption, reflection, 

and transmission. As no two organic compounds have the same characteristics, a com-

pound can be identified accurately by analysing its absorption spectrum and matching it 

with a database [4]. 

The complexity of the interaction between light and objects has led to several lines of 

research, such as fluorescence spectroscopy [6], Raman spectroscopy [7], multispectral im-

aging [8], hyperspectral imaging [9], and visible, near-infrared (VIS-NIR) ‘point’ spectros-

copy [10]. All the referenced works have demonstrated the suitability of light-based ap-

proaches for agricultural applications and specifically fruit-quality assessment. The pre-

sent work is centred on VIS-NIR ‘point’ spectroscopy. The particularity of point spectros-

copy in terms of spectral imaging is the resolution. While spectral cameras offer images 

composed of numerous pixels containing information, which allow for contrast in differ-

ent parts of the sample, the ‘point’ sensors give just one measure for the focused area. 

The use of VIS-NIR spectroscopy for the characterization of agri-food products is a 

relatively mature topic, even more so regarding precision farming. The combination of 

chemometrics techniques with spectral data has been widely studied. Fifteen years have 

passed since the comprehensive review on the use of NIR spectroscopy for non-destruc-

tive quality assessment of fruits and vegetables by Nicolaï et al. (2007). The state of the art 

has been expanded following this review, with works focused on the monitorization of 

different biophysical parameters beyond the quality status of fruits [3,11–14]. In fact, there 

are various commercially available instruments dedicated to the post-harvest sector. In 

this sense, VIS-NIR spectrophotometers have been integrated into commercial packing 

lines. Additionally, there is also commercially available hand-held equipment for fruit 

analyses. However, this equipment is very expensive—even exorbitant—for most users. 

In recent decades, the improvement in the microelectronic industry has resulted in lower 

costs and improved component features. This development is arousing an increasing in-

terest in the use of low-cost spectral sensors for agricultural applications [15–17], as this 

would allow for the implementation of these non-destructive methodologies throughout 

the post-harvest value chain, both upstream (to the field) and downstream (to distribution 

centres and to consumer use). Thus, there is room to confirm past work and to further 

improve these processes to underpin adoption. 

In this context, this work presents a custom-built, low-cost multispectral device de-

signed especially for in-field applications. The proposed device is based on the “AS7265x” 

development board (AMS AG). This sensor has been previously tested for agricultural 

applications. Moinard et al. [18] proved its potential for estimating the percentage of grass 

cover and estimating vine vigour. Noguera et al. [17] used it to assess the quality status of 

intact olive fruits under laboratory conditions with promising results. Zhang et al. [19] 

evaluated it for classifying apples in three ripening categories based on classical maturity 

indicators. Leon-salas et al. [20] used it to determine photosynthetically active radiation 
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indoors and outdoors. Furthermore, there are other works centred in sensors with similar 

features. For example, Trang et al. [21] developed and tested a device based on six-channel 

NIR sensors (AS7263, AMS AG) for measuring chlorophyll content in a leaf. Li et al. [22] 

evaluated a commercially available spectral sensor (SCIO) to predict the quality of ki-

wifruit, apples, feijoas, and avocados. These sensors have the potential to provide objec-

tive information to growers. However, most of the previously mentioned works that fo-

cused on the use of spectroscopy for fruit quality assessment were conducted under la-

boratory conditions. This approach allows for the control of external parameters and re-

duces both the complexity of the problem and the applicability of the solution. Further, 

the limited works focused on in-field solutions used equipment with very high acquisition 

costs. Therefore, the goal of this research is to develop a hand-held spectral device, afford-

able for all kinds of users (growers, processors, and consumers), and to continue exploring 

its potential for in-field applications. Thus, a prototype was developed with hardware 

(described in Section 2.2) that was specially designed to acquire data under field condi-

tions. In order to evaluate its suitability, an experiment was designed with the goal of 

estimating the quality parameters of grapes by means of spectral data acquired with the 

proposed device under field conditions. 

2. Materials and Methods 

2.1. Device Description 

The multispectral sensor device is composed of different elements that are assembled 

inside a 3D-printed enclosure. The objective was to develop a tool that is reliable and easy 

to operate under field conditions by non-specialized personnel. To reduce cost and sim-

plify maintenance, commercial components were selected where available. However, 

some PCBs (printed circuit boards) were developed to simplify the assembly. A descrip-

tion of the different components is presented in the following sections, introducing the 

hardware and the software that controls the operation of the sensor. 

2.1.1. Hardware: Electronic components 

• AMS AS7265x development board (AMS AG, Premstätten, Austria): This board is 

composed of three main chips: AS72651, AS72652, and AS72653. These chips are sen-

sible to six different bands (by including six optical filters each) in the range between 

410 nm and 940 nm, with a full width at half maximum (FWHM) of 20 nm. The 

AS72651 acts as a master for the chip arrangement and the communication with the 

rest of the components is performed with this chip. This development board results 

in a low-cost, 18-channel multispectral sensor. 

• Arduino MKRZero Board (Arduino LLC, Monza, Italy): The Arduino MKR Zero 

board was selected because of its small form factor, low power consumption, low 

cost, and the availability of an SD card slot. A custom software was developed using 

the Arduino IDE (described in the software section). This board communicates with 

the AS7265x development board, OLED screen, and LED PCB to perform data acqui-

sition. 

• Interconnection board: There is a high number of interconnected components on the 

system. An interconnection board was designed and manufactured to generate a re-

liable connection between them. This board serves as the core of the system, adapting 

the voltage from the battery, regulating LEDs’ signal intensity, and interfacing the 

different components of the sensor with connectors to different subsystems. A con-

stant-current LED driver (RCD-24, RECOM, Germany) installed on the PCB allows 

us to modulate capturing parameters (light intensity and power on time) ,controlled 

by the Arduino MKR. A schema of the different connections between device compo-

nents is depicted below (Figure 1). 
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Figure 1. Schema of the different components of the low-cost multispectral device, including the 

interconnections between them. 

• LED PCB: The samples to be measured must be illuminated to obtain the reflectance 

measurement. An array of three IR-broadband LED emitters (OSLON P1616 SFH 

4737, OSRAM, Germany), was used to achieve this goal. This component was devel-

oped specifically for spectroscopy applications, providing a wide emission spectrum 

in the VNIR with the advantage of less power and heat dissipation requirements than 

a halogen lamp. The PCB allows us to install three LEDs and easily attaches to the 

3D-printed reflective dome of the instrument. Although the LEDs are only powered 

when a measurement is taken, the PCB also acts as a heat dissipator to reduce the 

damage to this component due to heat build-up. 

• OLED Screen: The screen serves as a guide for the user during measurement. The 

developed device included an OLED display, specifically a 1.3-inch panel with a res-

olution of 128 by 64 pixels. The availability of an integrated display avoids the neces-

sity of a computer or some other external device to verify the status of the device and 

its proper operation in the field. The screen shows real-time data, the file name, the 

number of measurements taken, and the configuration parameters (Figure 2). 

 

Figure 2. Image of the device’s integrated OLED screen showing initialization data (left) and ready 

to perform data capture (right). 

• Battery: The system can be powered from any DC source up to 35 V through a barrel 

connector (2.1 × 5.5 mm). During the experiments, the prototype was powered by a 

2s LiPo (Lithium-ion Polymer) battery connected to the device controller board. The 

low-power consumption of the sensor allows for extended operation time lasting be-

yond a workday. In any case, the battery is placed outside the device, so it is easy to 

replace the depleted battery and continue capturing data in the field. 
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2.1.2. Hardware: 3D-Printed Enclosure 

In order to provide a compact, ergonomic, and low-cost enclosure, a device case was 

designed using FreeCAD 0.19 (Figure 3) and manufactured with a 3D printer using a bio-

degradable polylactic acid (PLA) filament. Four different components were designed: 

• Main enclosure: A box-type enclosure was designed as the main body of the device. 

The AMS AS7265x development board, Arduino MKR Zero, and interconnection 

board are stacked inside and held in place with help from two 3D-printed separators. 

• Lid with screen: This lid seals the sensor to allow in-field operation. The OLED screen 

is fixed to the lid of the main enclosure, and its position allows for easy visualization 

of the data when taking a measurement. 

• Reflective dome and diffuser bracket: A dome that holds the light source (LED PCB) 

and integrates a light-diffusion film (OptSaver L-9960, Kimoto LDT, Switzerland). 

The diffuser is placed in front of the sensor to homogenize the illumination and the 

signal measured an obtain a representative measurement. Data acquisition is per-

formed by making contact between the sample and the diffusive film. The dome is 

developed to guarantee that the sample is placed at a 45° angle with the light source 

and the sensor. 

• Handle with trigger: This part allows for the simultaneous support and operation of 

the device with one hand (enabling the use of the other hand for sample manipula-

tion). An end stop switch is used as a trigger. The switch is installed inside the handle 

and the wires to connect to the interconnection board are conducted inside the handle 

to the main enclosure. 

 

Figure 3. Three-dimensional rendering of different views of the device case designed with 

FreeCAD 0.19. 

2.1.3. Software 

The Arduino MKR board was programmed using Arduino IDE. A diagram of soft-

ware functionality is depicted in Figure 4. At boot, the system will check for a file “UP-

DATE.bin” in the SD. In the case this file is available, the firmware is updated and the 

board is rebooted. This allows for a reconfiguration of different parameters of the system 

without the need for a connection with a PC. 
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Figure 4. Flow chart of the process for multispectral data capture. 

The software operation can be summarized in the following steps: 

• The first step is the initialization of all the components of the system, including the 

input/output configuration and the serial comm parameters definition. Two main se-

rial connections are defined: a connection with the AMS AS7265x development board 

and with a computer to allow for device control and data monitorization over a com-

puter. Moreover, the OLED screen is connected by a SPI (Serial Peripheral Interface). 

• The sensor board (AMS AS7265x) is configured using AT commands over a serial 

port. Primarily, sensor gain and integration time must be established. Other param-

eters for calibration can also be configured. All the initialization steps are displayed 

on the OLED Screen and optionally on the serial connection using a virtual comm 

over USB. This allows the user to quickly debug any failures during the configuration 

(i.e., a lost connection with the sensor). 

• The next step is to initiate the SD card. A scan of the contents of the card is performed, 

and a new file is created with the format “dataXXX.csv” where XXX is the last file 

number stored plus one. Every time the device is powered-up a new file is created, 

preserving the previously acquired data. The file has a header with a description of 

the configuration used (mainly integration time, gain, and LED current). The cap-

tured spectrum is stored as one measurement per row with reflectance separated by 

a comma, allowing the file to be processed by standard software compatible with 

CSV file format. 

• After the initialization is completed, the system waits for user input in which the 

trigger is pressed or a command is sent via serial connection. This dual implementa-

tion allows for the control of the system autonomously in the field (via the trigger) or 

through a connection to a computer, which can be more interesting for in-laboratory 

operation as it allows for real-time supervision of the measurements. 

• When an input is detected, the device begins the capturing process: 

o LEDs are turned on with the configured current at 0–1000 mA. 
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o A command is sent to the AMS AS7265X sensor board to perform the acquisi-

tion, and the system waits for correct data reception. 

o The LEDs are turned off as soon as all the data are received. 

o Finally, the data are stored in the SD card. Following this, the system is ready 

for another measurement. 

All the data are stored as soon as they are received, reducing the time spent waiting 

until data has been written to the SD card. This process minimizes information loss in case 

the power is removed after an acquisition is performed. Additionally, the device can be 

turned off by removing the power without any special procedure. The only precaution 

needed to turn off the device (and avoid data corruption) is to allow the system to store 

the last measurement. 

2.2. Validation Experiment 

In order to evaluate the suitability of the developed device, an experiment was car-

ried out that was intended to assess ripening indicators of grape berries (Vitis vinifera L.) 

by means of the spectral data acquired with the device under field conditions. 

2.2.1. Study Site Description 

The study site was situated in the Condado de Huelva appellation (Bodegas Contreras 

Ruiz, S.L, Rociana del Condado, Huelva). It is a commercial vineyard of Syrah variety, 

which is a red-grape variety widely used in the wine industry. The experimental field had 

an extension of approximately 1000 m2. The soil in the study area is characterized by a 

heterogeneous structure and composition. Thus, it presents sandy loam areas alternating 

with clay-loam zones. This irregular pattern relating to the structure and composition of 

the soil is reflected in the physiology of the plants. There were plants with different paces 

of ripening, which resulted in high variability according to the quality parameters consid-

ered in this research. This was a key factor for the validation experiment, as variability 

regarding the target parameters is essential to assure the generalization capacity of the 

developed estimation models. 

2.2.2. Spectral Collection 

The field experiment was performed on 22 July 2021. This date was selected for its 

proximity to the optimum harvest time according to the winery’s manager. The first part 

of the experiment was performed in the vineyard and consisted of a sample collection. To 

obtain the most variability in terms of the ripening stage of the grapes, the entire vineyard 

was covered by randomly collecting a total of 80 samples. A grape cluster was considered 

as a sample unit. Each of the grape clusters was harvested using pruning shears. The spec-

tral signature of the cluster was acquired immediately after harvest. The measuring meth-

odology involved facing the dome of the device against the upper part of the grape cluster 

and making a capture. The measurements were made in the centre of the row to avoid 

plant shadows on the sample (Figure 5). Two captures were acquired per sample, taking 

the average reflectance of the two spectra as representative data for each sample. After 

being processed, each sample was packaged, labelled, and refrigerated at 3–4 °C in a port-

able cooler during its transport to laboratory. At the laboratory, the samples were ana-

lysed on the same day as the sample collection. Once every fifteen samples, three captures 

of a surface of known reflectance (Labsphere, Inc, North Sutton, NH, USA) (53% calibrated 

reflectance) were taken. The average signal of the three captures would be used later as a 

reference to normalise the following fifteen samples. This enabled the prevention of sub-

sequent errors due to variations in ambient light. 
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Figure 5. Methodology for spectral data acquisition. 

2.2.3. Reference Analysis 

The development of estimation models by means of sensor-acquired spectral data 

requires a reference dataset that indicates the actual state of the samples regarding the 

target parameters. With this purpose, the samples were subjected to destructive chemical 

methods to obtain objective indicators of their actual ripening status. In this work, solid 

soluble content (SSC) and titratable acidity (TA) were used as target parameters, given 

that they are routinely considered by the wine industry to determine the ripening status 

of grapes [23]. The SSC is defined as the total content of solids dissolved in a given volume 

of juice. This includes carbohydrates, organic acids, proteins, fats, and minerals. However, 

in a grape at a certain grade of maturity, sugars represent around 90–95% of the total solid, 

so SSC is also considered a good approximation of sugar content (sweetness). Further-

more, the SSC of the grapes in the harvest is directly related to the alcoholic grade of the 

wine to be produced [24]. TA is defined as the degree of acidity of a substance and is 

measured by volumetric methods. In the case of grapes, this parameter is correlated to the 

SSC; as the fruit ripens, the SSC content increases while the TA decreases. The balance 

between these two grape parameters at the moment of harvest is decisive of the features 

of the wine to be produced, which means that controlling these parameters is paramount 

[23]. 

The methodologies employed to assess both ripening indicators are standardised by 

the International Organization of Vine and Wine (OIV) [25]. The first step of the procedure 

to determine SSC and TA values was the shelling of the grape clusters. Following shelling, 

fifty grapes per cluster were randomly selected and were then squeezed to obtain the 

wort. Just a few drops of wort were used to determine the SSC (Brix°) by means of a tem-

perature-compensating digital refractometer (HI96801, Hanna instruments, Spain). On 

the other hand, an initial volume of 50 mL of wort per sample was used to assess grape 

TA by titration with 0.1 NaOH to an end point of pH 7.0 using an automatic titralyser 

(LDS1155500, Dujardin-Salleron, France). The results were expressed as g/L of Chlorohy-

dric acid. The statistics (the range, mean, and standard deviation (SD)) of both parameters 

were analysed using the Orange 3 software [26]. 

2.3. Methodology for Ripening Status Estimation from Multispectral Information 

2.3.1. Data Pre-Processing 

The mean reflectance signature of each grape sample was calibrated to avoid even-

tual errors due to variations in the ambient light. The calibration consisted of a normali-

sation, using as reference the spectral signature of the known reflectance surface (53%) 

(Labsphere, Inc, North Sutton, NH, USA), which was captured once every fifteen samples. 
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The level of reflectance of the known reflectance surface (53%) allowed the attainment of 

a better resolution as the reflectance of the samples was less than 50% for all the consid-

ered bands. The eighteen reflectance signals of the known reflectance surface were used 

as reference for calibrating the spectral response of the subsequent fifteen samples accord-

ing to the next equation: 

Rcalwl =  
Rwl

Rref wl/0.53
 (1) 

where Rwl is the reflectance value measured for a given spectral band in a capture of a 

sample, Rrefwl is the reflectance value measured for that spectral band in the previous 

capture of the known reflectance surface, and Rcalwl is the corrected value of reflectance 

in the sample for the given band. 

2.3.2. Estimation Model Development 

The corrected reflectance of the eighteen spectral bands captured by the sensor were 

used as input variables to train two artificial neural networks (ANN) to estimate the SSC 

and TA. An ANN is a non-linear, non-parametric method (machine learning method). 

This approach consists of a structure of neurons linked together and arranged in layers. 

The neurons of different layers are interconnected, and each connection has a specific 

weight. Each neuron essentially realises a linear regression followed by a non-linear func-

tion. Briefly, the ANN architecture works to minimize the mean–square deviation trough 

the error-correction learning rule. Thus, the error will be minimized by adjusting the 

weight of each layer of neurons. These characteristics allow for an extraordinary connec-

tion between complex spectral information and key parameters without any constraint on 

the sample distribution. This makes ANN approaches appropriate to define complex non-

linear relationships that normally exist between spectral signatures of fruits and ripening 

indicators. 

In this work, the software used for data processing and ANN training was Orange 3 

[26]. This is an open-source tool for data visualization, pre-processing, and modelling. The 

ANN used was a multi-layer perceptron (MLP) algorithm with back propagation. The 

architecture of the neural network employed was composed of a hidden layer with six 

neurons, eighteen inputs, and one output (one model per target parameter). Identity was 

used as an activation function for the hidden layer, and an L-BFGS-B (an optimizer in the 

family of quasi-Newton methods) was used as a Solver for weight optimization. Before 

the feeding of the ANN model, the dataset was processed with a local outlier factor algo-

rithm. This algorithm computes a score reflecting the degree of abnormality of the obser-

vations. It measures the local density deviation of a given data point with respect to its 

neighbours. The contamination (proportion of outlier in the dataset) was set at 2%, so this 

previous analysis discarded two samples. Figure 6 shows the workflow of the models. 

Leave-one-out cross-validation (LOOCV) was used as a validation method, due to it being 

considered the most suitable due to the volume of the dataset (n = 80). This method holds 

out one instance at a time, inducing the model from all others and then estimating the 

held-out instances. This method is obviously very stable and suitable for limited volume 

datasets as it avoids over-fitting. Alternatively, a random sampling (RS) test was made. 

For that purpose, the complete data set was randomly divided into two subsets: 75% train-

ing and 25% external validation (test). The training was repeated two consecutive times, 

obtaining a test set of 40 samples. 
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Figure 6. Simulated workflow of the model in Orange 3 data-mining software. 

2.4. Criteria for Model Performance Evaluation 

The performance of the estimation models was measured by the coefficient of deter-

mination (R2), and the root–mean–square error of prediction (RMSE) between the actual 

values of the ripening indicators determined by chemical methods and those estimated 

by ANN models. In the case of LOOCV, the output of the ANN applied to the validation 

set excluded during training at every iteration was used to determine the mentioned sta-

tistical parameters. Thus, a test set of 80 predictions was configured. The coefficient of 

determination (R2) was used to assess the relationship between the actual and predicted 

target parameters. On the other hand, the RMSE is the standard deviation of the residuals 

(prediction errors). Residuals are a measure of the distance of data points to the regression 

line; RMSE is a measure of how spread out these residuals are. In summary, higher R2 and 

smaller RMSE values indicated better model performance. 

RMSE can be mathematically formulated as: 

RMSE = √∑
(Ypredi − Yrefi)

2

n

n

i=1

 (2) 

where Ypredi is the response of the model, Yrefi is the reference data, and n is the number of 

measurements in the respective external-validation dataset. Furthermore, it also was con-

sidered the coefficient of variation of the RMSE (CVRMSE), which is the result of normal-

izing the RMSE by the mean value of the measurement. This allows for the avoidance of 

ambiguity, facilitating the comparison between datasets or models with different scales. 

Additionally, paired samples (t-tests) for dependent samples were also conducted to 

confirm the results from the R2, RMSE, and CVRMSE analyses. For this purpose, the data 

pairs of the output of the ANN and the validation data excluded during training at every 

iteration of the LOOCV, the reference value, and the resulting prediction corresponding 

to the external validation sets in the case of the RS were compared. The paired t-test is a 

parametric method, useful for testing whether the means of two groups are different when 

the samples are drawn in pairs. The t-test was carried out using Microsoft® Excel® for Mi-

crosoft 365 MSO (version 2211) software. The compliance with the null Hypothesis in this 

test (p > 0.05) indicates that there were no significative differences between the mean of 

the measures based on the proposed device and the obtained through the reference meth-

ods. 

3. Results 

3.1. Actual Quality Status of Grape Samples 

A total of 80 grape samples of the Syrah variety were considered in this research. 

Table 1 summarizes the statistical details of the whole dataset related to the explored rip-

ening indicators. In the case of soluble solid content (SSC) (expressed as °Brix), the grape 
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samples varied between 10.4° and 19°, with an average value of 16 ± 1.9°. On the other 

hand, the titratable acidity (TA) (expressed as g/L of Chlorohydric acid), of the grape sam-

ples ranged between 2.7 g/L and 10.9 g/L with an average value of 5.1 ± 1.5 g/L. The ranges 

of both parameters were quite wide, with grape clusters close to the optimum state for 

harvest and grape clusters with a further-delayed ripening state. On the other hand, a 

regression between both ripening indicators showed a coefficient of determination (R2) of 

0.67 between both, indicating a correlation between both parameters. 

Table 1. Statistics (range, mean, and standard deviation (SD)) of the grape dataset related to SSC 

and TA. 

 Range Mean SD 

SSC (°Brix) 10.4–19 16.1 1.87 

TA (g/L Chlorohydric acid) 2.7–10.9 5.1 1.50 

3.2. Spectral Signature of Samples 

In order to detect clear differences in the spectral response of the grapes related to 

the target parameters, a visual inspection of the spectral responses of the samples situated 

in the limits of the histograms was undertaken. Figure 7 represents the reflectance re-

sponse corresponding to approximately the 10th and above the 90th percentile of the his-

togram of the SSC (a) and TA (b). Similarity between the spectral responses related to both 

ripening indicators was most remarkable. However, this fact may be due to the correlation 

between both parameters during the ripening process (R2 = 0.67). If we attend to the dif-

ferences in the spectral response related to the levels of both parameters, an increment of 

reflectance can be observed in the samples with high levels of SSC and low levels of TA. 

These reflectance peaks were especially noticeable between 410–680 nm and 860–940 nm, 

which includes the visible domain, and the further away bands of the red edge. 

 

Figure 7. Mean reflectance responses of grape clusters with an advanced ripening state (purple) and 

an initial state (green) relating their levels of SSC (a) and TA (b). Each line includes the mean reflec-

tance of eight samples (corresponding to approximately the 10th and above the 90th percentile, re-

spectively, for each parameter). 

3.3. Evaluation of the Performance of the Estimation Models 

The performance of the ANN models was evaluated based on an LOOCV and a ran-

dom-sampling (RS) test. Table 2 shows the statistics between the output of the ANN and 

the validation data excluded during training at every iteration in the case of LOOCV and 

the external validation set in the case of RS. The goodness-of-fit of the estimation models 

was similar for the two target parameters. This fact may be due to an inter-correlation 

between the two target parameters (R2 = 0.67). In the LOOCV, the output of the ANN 

model showed a good relationship between the values of the target parameters deter-

mined by standard methods (SSC and TA), with coefficients of determination of 0.70 for 

SSC and 0.67 for TA (Figure 8). In this instance, the RMSE was 1.00 (Brix°) for the estima-

tion of SSC, and 0.83 (g/L Chlorohydric acid) for TA. When normalising the RMSE value 
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by the mean of the measurement (CVRMSE), it was found that the RMSE supposed a 6% 

respect to the mean for the estimation of the SSC and a 16% for the estimation of the TA. 

The above-mentioned metrics were supported by the p-value obtained in the paired sam-

ples t-test (p = 0.15 for SSC and p = 0.66 for TA). 

On the other hand, the RS displayed better performance in terms of coefficients of 

determination (R2 = 0.72 for SSC and R2 = 0.74 for TA). However, the RMSE slightly in-

creased (RMSE = 1.1 for SSC and RMSE = 0.84), being 7% with respect to the mean in the 

case of SSC and 17% in the case of TA. Again, the p-values obtained in the paired samples 

t-test (p = 0.20 for SSC, and p = 0.53 for TA) were over the significance limit (p = 0.05) in 

both cases. 

Table 2. R2, RMSE, CVRMSE, and p (p-value from paired samples t-test) between reference values 

of SSC and TA, measured by chemical methods, and those estimated based on ANN approaches 

during the LOOCV and random sampling. 

 LOOCV Random Sampling 

 R2 RMSE CVRMSE p R2 RMSE CVRMSE p 

SSC (°Brix) 0.70 1.00 0.06 0.15 0.72 1.1 0.07 0.20 

TA (g/L Chlorohydric acid) 0.67 0.83 0.16 0.66 0.74 0.84 0.17 0.53 

 

Figure 8. Output of the ANN models versus the validation data excluded during training at every 

iteration of the LOOCV (SSC (a) and TA (b)) and random sampling (SSC (c) and TA (d)). 

4. Discussion 

This work presents a custom-built, low-cost multispectral device specially designed 

for fruit-quality assessment under field conditions. In order to evaluate the suitability of 

the proposed device, an experiment aimed to estimate quality indicators of red grapes 

was performed. The selected target-quality indicators were the solid soluble content (SSC) 

and the titratable acidity (TA). The experiment consisted of a sample collection in a red-

grape vineyard. The proposed multispectral sensor was used to collect the spectral signa-

ture of the samples under field conditions. Subsequently, the samples were packed in zip 

bags, tagged, and carried to the laboratory, where they were processed through destruc-

tive chemical methods to obtain ground-truth values of the target quality indicators. Fi-

nally, these quality indicators were used as a target to train artificial neural network 
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(ANN) models using the corrected reflectance of the eighteen spectral bands captured by 

the sensor as inputs. 

Prior to the model generation, a visual inspection of the spectral fingerprint of the 

samples was carried out to detect evidence of the correlation between the target parame-

ters and the spectral signatures of the samples (Section 3.2). This previous analysis was 

based on the samples at the 10th and the 90th percentiles of the SSC and TA histograms. 

At first sight, the similarity of the spectral signature related to both ripening indicators 

stood out. This fact may be due to the correlation between both parameters (R2 = 0.67). 

This correlation is due to the fact that grape maturation leads to an increase in SSC levels 

as the TA level decreases [23]. On the other hand, the analysis related to the influence of 

the levels of both parameters on the spectral signature of the samples showed overtones 

between 410–680 nm and 860–940 nm in the samples with high levels of SSC and low TA 

with respect to the samples with low SSC and high TA. The spectral range between 410–

680 nm encompasses the visible domain (VIS), so the overtones in these wavelengths may 

be due to a correlation between the colouration changes of the grapes during ripening (the 

accumulation of red pigments—carotenoids and anthocyanins,—and chlorophyll a and b) 

and the levels of both parameters [2]. Furthermore, the spectral range between 860–940 

nm covers a part of the NIR domain, which is associated with the first and second over-

tones of O–H stretching [10]. Therefore, the overtones observed in that spectral region 

may be due to variations in the water content of the samples, which is related to the values 

of the target parameter. In addition, it is expected that sugars absorb at the spectral range 

between 740–984 nm [24]. These facts may explain the effect of the SSC and TA on the 

spectral signal of the samples identified in the previous visual inspection (Section 3.2). 

Machine learning methods—and concretely, ANN—have the capability to capture non-

linear relationships between related parameters without explicitly knowing the underly-

ing data distribution. The use of an ANNs makes having a precise knowledge about how 

spectral information and the target parameters are related unnecessary. So, although the 

reflectance signal of the samples in the spectral bands between 705 - 810 nm seemed to be 

less affected by the target parameters, they were finally considered in the estimation mod-

els as their exclusion did not improve the model’s performance. Therefore, the corrected 

reflectance in the eighteen bands acquired by the sensors were used to train two ANN 

models aimed at estimating the SSC and the TA of the grapes. A leave-one-out cross-val-

idation (LOOCV) algorithm was used as a validation method. This method uses a single 

observation from the original sample as the validation data and uses the remaining obser-

vations as training data. This is repeated for the entire dataset. After applying an LOOCV, 

the whole dataset participates in both training and validation. Thus, LOOCV avoids the 

uncertainty arising from the random division of the dataset into training and external val-

idation (test) subgroups. As there is no random disaggregation of the data, the LOOCV 

results are fully reproducible. For this reason, LOOCV was considered the most suitable 

validation method for this research, especially considering that the limited volume of the 

dataset (n = 80) allowed for the use of a processing-intensive methodology such as 

LOOCV. As an alternative to the LOOCV, a random-sampling test was applied in order 

to confirm the performance observed in the LOOCV. 

The obtained results were promising. In the case of the SSC, the LOOCV showed a 

good performance of the ANN model with a coefficient of determination (R2) between the 

estimated and the actual values of the SSC of 0.70, and a root–mean–square error (RMSE) 

of 1.00, which supposed the 6% of the mean value of the measurement (CVRMSE = 0.06). 

These metrics indicated a good predictive potential and were supported by the p-value 

obtained in the paired samples t-test (p = 0.15), which was higher than the significance 

limit (p = 0.05). This argues for the similarity between the means of the measures obtained 

by the proposed device and those achieved with the digital refractometer. On the other 

hand, the ANN model aimed at estimating the grapes’ TA displayed a similar perfor-

mance, yielding an R2 value of 0.67, and an RMSE of 0.83, which supposed the 16% of the 

mean value of the measurement (CVRMSE = 0.16). In this case, the CVRMSE value 
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indicated a lower predictive potential than what was obtained for the SSC. However, the 

results were also supported by the p-value obtained in the paired samples t-test (p = 0.66), 

which was also above than the significance limit. This indicated that there were no signif-

icant differences between the measures determined with the proposed device and those 

obtained through titration. The trends observed in the LOOCV were confirmed by the 

results obtained in the external validation of the random-sampling test for the SSC (R2 = 

0.72; RMSE = 1.10; CVRMSE = 0.07; p = 0.20) and TA estimation (R2 = 0.74; RMSE = 0.84; 

CVRMSE = 0.17; p = 0.53). The few differences observed between the two validation meth-

ods are owed to the random division of the data set during the RS test. 

In recent decades, there have been numerous studies concerning the characterization 

of horticultural products through machine-vision methods [3]. Concretely, the ripeness 

estimation in the viticulture sector has been widely studied, with works centred in differ-

ent machine-vision techniques and ripening indicators [27,28]. In this sense, there have 

been numerous publications focused on the use of RGB images for estimating the ripening 

status of grapes, even under field conditions [29,30]. RGB colour imaging is a cost-effective 

way to determine colour channel values. In RGB colour imaging, however, only three vis-

ible bands are available, resulting in limited chemical composition identification capabil-

ity. For this reason, most publications on the topic of RGB colour imaging for ripening-

status assessment have been centred in classification models using subjective ripening in-

dicators as reference, such as visual assessment [31,32]. Because these works used classi-

fication models with different performance criteria than were used in this research, it 

makes no sense to do an actual comparison. On the other hand, spectral sensors can record 

numerous bands across a wide spectral band. Further, spectroscopic features may better 

correlate with maturity since they are extracted from the absorption bands that are related 

to chemical attributes. Therefore, spectroscopy-based works rely on estimation models 

aimed at determining objective ripening indicators. In this sense, there are numerous 

works concerning the monitorization of grape-ripening using different spectroscopy-

based techniques (VIS-NIR spectroscopy, hyperspectral imaging, multispectral imaging, 

etc.), and target parameters (SSC, TA, pH, flavonoids, anthocyanins, etc.). However, most 

of these works have been accomplished under laboratory conditions [24,33–37], where 

ambient light can be reasonably controlled by using a housing over the spectral system. 

This fact assumes an ease of use in contrast to spectrometers intended for in-vineyard use, 

such as the device proposed in this work. The shift of grape-composition measurements 

from the laboratory to the vineyard has become possible due to the advent of portable 

sensors and the rapid development of machine learning algorithms. An example of such 

an application is the work by Fernández-Novales et al. [38], who used a VIS–NIR hyper-

spectral camera (Resonon, Bozeman, MA, USA) (300 bans from 400 to 1000 nm) mounted 

on an all-terrain vehicle to acquire hyperspectral images from which to estimate the SSC 

and TA of grapes (along with other ripening parameters) using partial least squares re-

gression (PLSR) models. They reported good correlations between the estimated and the 

measured values for the prediction of an external test set (SSC (R2 = 0.82, RMSE = 1.21), 

TA (R2 = 0.81, RMSE = 1.08)). Similarly, Guidetti et al. [39] used an experimental Vis/NIR 

spectrophotometer (AvaSpec-2048, Avantes, Eerbeek, The Netherlands) (450–980 nm) for 

estimating the SSC and TA of red grapes. They also used PLRS models for training and 

for external validation, obtaining an R2 value of 0.67 and an RMSE of 1.48 for SSC, and an 

R2 value of 0.66 and an RMSE of 1.48 for TA. On the other hand, Urraca et al. [40] used a 

portable NIR spectrophotometer (microPHAZIR™; Thermo Fisher Scientific, Waltham, 

MA, USA) (100 bands from 1595.7 to 2396.3 nm) for estimating the SSC of grapes under 

field conditions. They used a PLSR model as the retrieval method, which reported a 10-

fold cross-validation R2 up to 0.90 (with an RMSE of 1.47 Brix). The results obtained in the 

present work are comparable to those reported in the mentioned research. However, it is 

important to take into account that these works were performed using hyperspectral sys-

tems that offer a very high spectral resolution, which are capable of catching multiple 

narrow-spectral bands. This enables the acquisition of a more detailed spectral signature. 
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Therefore, the acquired spectral footprint of the target chemical parameter is more de-

scriptive than what is obtained with multispectral devices using more expensive equip-

ment. Furthermore, the NIR spectrophotometer used by Urraca et al. [40] covers the NIR 

domain with frequencies away from the red edge. In this region, several frequencies re-

lated to the SSC have been reported (1450, 1690, 1750, 1950, and 2260 nm (glucose)) [27]. 

However, the good correlation between the estimated and reference values of the SSC and 

TA founded in this work indicate that the spectral range considered is descriptive enough. 

This good performance may be due to the high flexibility of the ANN models, which ad-

just effectively in the feature space, as they enable the non-linearity of data to be modelled 

using local or specific equations. The aforementioned works used PLSR models to reduce 

the large amount of collinear spectral variables (offered by hyperspectral sensors) to non-

correlated principal components by using data compression. On the other hand, it is im-

portant to take into account that the chemical analysis of grapes requires several berries 

per single sample (fifty berries per sample in this research). This implies that the sample 

unit must be comprised of the whole cluster. Thus, the variability concerning the ripening 

state in the berries of a cluster can constitute a source of error against studies focused on 

larger-size fruits. It is therefore possible to expect a better performance of the proposed 

device by evaluating such a type of fruit. 

The results obtained in the present research take on a greater importance considering 

the price gap between the devices used in the previously mentioned research and the 

equipment proposed in this work. The performance showed by the proposed device, in 

addition to its price and the possibility to acquire measurement under field conditions, 

evince it as a promising and affordable solution to monitor grape-ripening status. The cost 

reduction achieved in the proposed design was possible due to the modernization of the 

electronics industry in recent decades. Improved hardware technology has provided sen-

sors that deliver high performance at a reasonable price. Furthermore, innovative soft-

ware designs offer algorithms that enhance the capacity to correlate the intricate relations 

that exist between spectral signatures and fruit biophysical parameters. This work, there-

fore, contributes to the trend toward the development of cheaper technologies with appli-

cations in precision agriculture [10,15,16]. 

5. Conclusions 

This work presents the evaluation of a low-cost, multispectral sensor for grape-rip-

ening-status assessment under field conditions. The performance achieved by the ANN 

models, fed with the spectral data acquired with the proposed device, shows a promising 

potential for the monitoring of grape ripening under field conditions. In-field monitoring, 

in addition to its price and ease of use, paves the way for the implementation of a fruit-

ripening appraisal system that is affordable for all kinds of growers. The implementation 

of this technology in the vineyard would reduce laborious sampling and extensive chem-

ical analysis for many workers. Furthermore, it would improve the spatiotemporal reso-

lution in the monitorization, as it would increase both the number of sample points con-

sidered in each trial and the number of samples taken during the campaign. Moreover, 

the low cost of the sensor itself allows it to be integrated into wireless sensor networks or 

robotic devices. Regarding grapes, this device would enable the mapping of quality vari-

ability across the vineyard. It would therefore create opportunities to either exploit those 

variations to craft different wine styles or to apply precision viticultural techniques to op-

timize inputs and minimise variability. All of these factors would result in an increase in 

the expected market price of the wine produced. On the other hand, improving the acces-

sibility of non-destructive and rapid technologies would improve the understanding of 

fruit maturation and how agronomic factors influence it. 

The results obtained in the present work will encourage further work to expand this 

experimental setup to other grape varieties and other kinds of fruits. 
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