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Abstract: Mushrooms contain valuable nutrients, proteins, minerals, and vitamins, and it is suggested
to include them in our diet. Many farmers grow mushrooms in restricted environments with specific
atmospheric parameters in greenhouses. In addition, recent technologies of the Internet of things
intend to give solutions in the agriculture area. In this paper, we evaluate the effectiveness of machine
learning for mushroom growth monitoring for the genus Pleurotus. We use YOLOV5 to detect
mushrooms’ growing stage and indicate those ready to harvest. The results show that it can detect
mushrooms in the greenhouse with an Fl-score of up to 76.5%. The classification in the final stage of
mushroom growth gives an accuracy of up to 70%, which is acceptable considering the complexity
of the photos used. In addition, we propose a method for mushroom growth monitoring based
on Detectron2. Our method shows that the average growth period of the mushrooms is 5.22 days.
Moreover, our method is also adequate to indicate the harvesting day. The evaluation results show
that it could improve the time to harvest for 14.04% of the mushrooms.
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1. Introduction

Mushrooms are a rich source of nutrients, proteins, minerals, and vitamins (B, C, and
D) [1]. More than 200 species of edible mushrooms are used as ingredients in traditional
foods around the world [2], but only 35 species are cultivated in greenhouses in restricted
environments [3]. The mushrooms of the genus Pleurotus are in second place worldwide
in the industry. Therefore, improving the production line will have a major impact on the
economy of the specific domain. The authors in [4] presented a comprehensive review
of the factors affecting the mushrooms of the genus Pleurotus spp. In addition, many
research efforts have focused on solutions based on modern technologies from the Internet
of things, aiming to transform traditional farming into the new era called smart farming [5].
This transition brings many applications in various agriculture tasks aiming to increase
production, reduce cost production, reduce chemical inputs, and reduce labour effort.

Along with other technologies, machine learning is highly used in tasks such as yield
prediction, disease detection, weed recognition, and fruit recognition. More specifically,
many research efforts try to classify and detect the specific location of different objects
in images. For example, a robotic mechanism is suitable for weeding if it has the ability
to recognise weeds from vegetation [6]. The detection of fruits with machine learning is

Copyright: © 2023 by the authors.

) ) also valuable in robotic mechanisms [7-9]. Disease detection has already seen numerous
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research efforts evaluating the ability to detect various diseases in various crops [10-12].
Moreover, insect detection is another important task in cultivation. Thus, many research
efforts exist in this area [13,14].

Attribution (CC BY) license (https:// Furthermore, machine learning is already used in research efforts in mushroom culti-
creativecommons.org/ licenses /by / vation or wild mushroom hunting, aiming to give solutions to various tasks. The authors
40/). in [15] gave a comprehensive review in this area. One of the main tasks based on machine

This article is an open access article
distributed under the terms and

conditions of the Creative Commons

Agriculture 2023, 13, 223. https:/ /doi.org/10.3390/agriculture13010223 https://www.mdpi.com/journal/agriculture


https://doi.org/10.3390/agriculture13010223
https://doi.org/10.3390/agriculture13010223
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/agriculture
https://www.mdpi.com
https://orcid.org/0000-0001-6531-1887
https://orcid.org/0000-0002-9359-3604
https://orcid.org/0000-0003-4248-3752
https://orcid.org/0000-0003-3656-277X
https://orcid.org/0000-0001-6042-0355
https://doi.org/10.3390/agriculture13010223
https://www.mdpi.com/journal/agriculture
https://www.mdpi.com/article/10.3390/agriculture13010223?type=check_update&version=1

Agriculture 2023, 13, 223

20f17

learning focuses on species recognition. For example, the authors in [16] provided a method
to distinguish edible mushrooms from poisonous ones. In addition, the authors in [17]
suggested a method for species recognition with a mobile smart device. Another research
effort on mushroom species classification is presented in [18]. Furthermore, a few research
efforts have used object detection algorithms in order to localise and classify mushrooms in
a photo. The authors in [19] developed a system that used object detection to localise and
recognise mushrooms that were ready to harvest. In [20], the authors evaluated the poten-
tial of mushroom hunting using a custom-made unmanned aerial vehicle (UAV). Finally,
the authors in [21] presented an automatic robotic mechanism for mushroom harvesting
using machine learning for detection.

Object detection algorithms have gained significant momentum in recent years due
to the success of deep learning [22], a specific area of machine learning. As a result, many
object detection algorithms have been available in recent years that can detect and provide
the exact location of an object in an image or video. In addition, some of them are also
capable of providing a corresponding mask of the object. This category is called instance
segmentation. Detectron2 [23] is the most popular in this category, while some other
variants, such as Mask Scoring RCNN [24], try to return better results of the provided
masks. In addition, YOLOV5 [25] is one of the most popular object detection algorithms,
delivering accurate and rapid results.

With recent technologies, a sufficient number of research efforts are available for mush-
room cultivation. Most of them propose controlling growing conditions in the greenhouse
and keeping them within specific boundaries [26,27]. However, only a few of the research
efforts go a step over and use more advanced mushroom cultivation methods. Machine
learning promise to provide efficient methods in this direction. Thus, we should use it to
help farmers in their everyday activities and support their decisions. Until now, only a
few research efforts have used machine learning in the mushroom industry. As described
before, most of them deal with mushroom species classification, and only a few try to give
solutions for usable tasks such as mushroom harvesting in the greenhouse. Moreover, none
of the existing methods for mushroom harvesting utilises the genus Pleurotus.

Our work uses machine learning not only to detect the mushrooms in the greenhouse
but also to classify them in three different stages depending on their growth status and
predict when they are ready to harvest. For this purpose, we use the YOLOVS5 [25] object
detection algorithm and evaluate its accuracy on mushroom detection with different con-
figurations of hyperparameters. The evaluation results show that YOLOv5 can detect and
classify mushrooms with an F1-score of up to 76.5% and detect the final stage of mushroom
growth with an accuracy of up to 70%.

Furthermore, in the second part of our research, we use Detectron2 [23] to extract a
corresponding mask for each mushroom and use it to calculate its size and monitor the
growth rate. The results show that they follow a linear growth rate, and it is also possible
to predict the harvesting day based on images on previous days. In addition, the method
can improve the harvesting time for 14.04% of the mushrooms.

Our work could be a valuable method for mushroom detection on greenhouses with
practical applications. For example, it could be used for yield prediction, where ground
cameras can observe the greenhouse and predict the yield a few days before the mushrooms
are ready to harvest. Another possible application could be on robotics mechanisms that
can detect the exact crown of the mushrooms in order to harvest them with no damage. This
work is part of our decision support system described in our previous work [28], where we
presented a system architecture that covered mushroom cultivation in a greenhouse and
the aggregation of useful information for wild mushroom hunting.

The rest of this paper is as follows. In Section 2, we give the most relevant research
efforts for mushroom detection using machine learning or image processing. Section 3
briefly discusses the basic concepts of object detection and instance segmentation and
provides the essential features of YOLOV5 and Detectron2. Section 4 analyses the method-
ology we follow in this research. Next, Section 5 presents the evaluation results between
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different configurations of YOLOvV5 and its effectiveness on mushroom classification at
different stages of mushroom growth. In addition, we provide the results from Detectron2
on mushroom growth monitoring. Section 6 discusses the effectiveness of the proposed
methods, their limitations and possible impact on future applications. Finally, Section 7
concludes this paper.

2. Related Work

In this section, we briefly present similar research efforts in the area of smart farming,
particularly in image processing or machine learning for image segmentation or object
recognition on mushroom cultivation.

A harvesting robot for oyster mushrooms was proposed in [21]. The development
system used an improved SSD algorithm to detect mushrooms ready to harvest. The
algorithm used RGB images and point clouds collected by an Intel RealSense D435i camera.
The evaluation results showed an accuracy of mushroom recognition of up to 95.0% and a
harvesting success rate of up to 86.8%. The average harvesting time for a single mushroom
was 8.85 s.

The authors in [19] provided a measurement monitoring system to observe mushroom
growth in a greenhouse. The proposed system used YOLOv3 for mushroom detection
and an additional localisation method to improve the position of the detected mushroom
in order to distinguish the same mushroom in different captured photos. Moreover, the
system was able to estimate the harvesting time.

In [16], the authors presented a mushroom farm automation to classify toxic mush-
rooms. The proposed system adopted machine learning to distinguish edible mushrooms
from poisonous mushrooms. The utilised model was a combination of six different clas-
sifiers that worked together and reach an accuracy of 100%. More specifically, the en-
semble model used the following classifiers: decision tree (DT), logistic regression (LR),
K-nearest neighbours (KNN), support vector machine (SVM), naive Bayes (NB), and ran-
dom forest (RF). Moreover, the manuscript introduced an architectural design for smart
mushroom farming.

The authors in [29] presented an automatic sorting system for fresh, white button
mushrooms. Apart from the automatic mechanism, they proposed an image processing
algorithm to collect button mushrooms. The algorithm eliminated the shadow and petiole
on the image and determined the pileus diameter of the mushrooms. Experimental results
showed that compared to manual grading speed, their approach was improved by 38.86%,
and the accuracy was improved by 6.84%.

3. Background

In this section, we briefly presenting the main characteristics of YOLOvS5 [25] and
Detectron2 [23]. Both of them are suitable for object detection in images or videos. Moreover,
they both belong to object detection algorithms based on convolutional neural networks.
Thus, they return the class and the position of the detected object. Furthermore, Detectron2
is also an instance segmentation algorithm able to return a corresponding mask that defines
the area of the object.

YOLOVS [25] comes from You Only Look Once and claims to be one of the fastest
object detection algorithms. In fact, it is one of the best-known object detection algorithms
due to its speed and accuracy. It is divided into three components, namely, a backbone,
neck and head, as all single-stage detectors. In particular, the first component contains
a backbone network that extracts rich feature representations from images. The second
component consists of the model neck responsible for extracting feature pyramids that help
to recognise objects of different sizes and scales. The final component is the model head
that applies anchor boxes on feature maps. In addition, it is responsible for rendering the
predicted class, the scores of the predicted objects, and the bounding boxes.

Detectron2 [23] is considered state-of-the-art in instance segmentation. It is the succes-
sor of Mask RCNN [30], which is built on top of Faster RCNN. Thus, apart from providing
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the exact position of the detected object, it also provides a corresponding segmentation
mask covering the exact area of the object.

The architecture of Mask RCNN is divided into three stages. In the first stage, a
regional proposal network (RPN) is responsible for returning all regions of possible areas
with detected objects. Mask RCNN uses ResNet50 or ResNet101 with FPN support as a
backbone network in this stage. In the second stage, a classifier is responsible for evaluating
the region proposals derived from the first stage and providing the predictions with
bounding boxes for each detected object. Finally, the third stage provides the corresponding
masks of the detected objects.

4. Materials and Methods

This section presents the methodology we followed in our research. First, we describe
the image acquisition from mushrooms in the greenhouse and the annotation process.
Second, we give the basic configuration of YOLOvV5 for mushroom classification in three
different growing stages. Moreover, we provide the architecture we used for mushroom
growth monitoring.

4.1. Image Acquisition

Data collection took place in a greenhouse near the city of Grevena, Greece. We
collected multiple images in a greenhouse, each containing one or multiple mushroomes.
We captured only images that had mushrooms mainly in the foreground and not in the
background because they reduced the detection accuracy. Finally, we obtained 1128 images
with one or more mushrooms. We annotated them into three different classes (Stagel,
Stage2, Stage3) depending on the growing stage. In more detail, the first stage corresponded
to the first days of appearance, when mushrooms were too small and they had just started
to form their shape. The second class corresponded to mushrooms that had already formed
their shape and continued to grow. Some of them were obviously small, while others were
big enough but not ready to harvest. The third class contained mushrooms that were ready
to harvest, which could be manually indicated from two parameters. More specifically,
when the edges of their caps started to become flat or slightly uprolled, it was an indication
of their final stage of growth [31]. Figure 1 shows some examples of mushrooms belonging
to the three different stages.

(a) Stagel (b) Stage2 (c) Stage3
Figure 1. Examples of mushrooms in three different growth stages.

Many of the collected photos in the greenhouse contained multiple mushrooms,
making the annotation complex and the recognition even more challenging, especially
when the mushrooms were at the final stage and many of them were overlapping. Figure 2
presents two of those photos as an example.
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(a) Sample 1 (b) Sample 2
Figure 2. Pictures from the greenhouse with multiple mushrooms.

Finally, 4271 mushrooms were annotated and classified into three different classes
(Stagel, Stage2, Stage3) as described before. Moreover, 1130 of them belonged to the first
growing stage, 1845 to the second growing stage, and 1296 of them to the third growing
stage. In addition, the 1128 annotated photos were divided into 784 for the training dataset
and 344 for the validation dataset.

For the second part of our research, we collected a different set of photos. In particular,
the data acquisition for the growing rate of mushrooms was made in 33 different mushroom
substrate grow bags. We captured a photo for each one on seven different days between
16 August 2022 and 24 August 2022. Finally, we collected 231 different photos in total. The
distance between the camera and the substrate grow bag was one meter above. Figure 3
shows an example of three captured photos. We did not annotate these photos, but we
used the trained models from Detectron2 to indicate the size of each mushroom. In our
evaluation for mushroom growth monitoring, we used only the mushrooms that were on
top of the substrate grow bag.

s R e B o g A <l o

(a) Captured on 18/8/2022 (b) Captured on 19/8/2022 (c) Captured on 22/8/2022
Figure 3. Examples of mushroom substrate grow bag in three different days.

For training Detectron?2 for instance segmentation, we annotated another two datasets.
The first one contained annotations for substrate grow bags, and the second one contained
annotations for mushrooms. The annotation process for the image segmentation is a time-
consuming task since we had to annotate precisely the objects with polygons. For that
reason, we chose to annotate only photos that contained a small number of mushrooms to
simplify the annotation. Finally, we annotated 453 mushrooms and divided them into 358
for the training dataset and 95 for the validation dataset. In addition, for the detection of
substrate grow bags, we annotated 200 photos and divided them into 150 for the training
dataset and 50 for the validation dataset.
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4.2. Configuration and Method of Mushroom Growth Stage Detection

For mushroom detection and classification in the three different classes as described
previously, we used YOLOVS. First, we trained our models with the default hyperparame-
ters using the pretrained models YOLOv5s and YOLOv5I1 with an image size of 640 pixels
and batch sizes of 2, 4, and 8.

To achieve better results, we used the provided method integrated with YOLOV5 for
hyperparameter optimisation called hyperparameter evolution. It is a genetic algorithm
to find the best set of hyperparameters for the specific dataset. The evolving procedure
starts from the default hyperparameters or other user-defined values, if available, and
tries to improve a fitness function in every loop. The default fitness function is a weighted
combination of mAP@0.5 with 10% contribution and mAP@0.5:0.95 with 90% contribution.
In every evolving loop, the primary genetic operator is the mutation. The proposed
combination for the mutation uses 80% probability and a 0.04 variance to calculate the next
combination of hyperparameters based on the best parents from previous generations.

We used the hyperparameter evolution approach for the two pretrained models,
YOLOv5s and YOLOVS], and trained them for 600 generations with an image size of
640 pixels and a batch size of 4. Table 1 shows the predicted sets of hyperparameters for
each pretrained model.

Table 1. Optimised hyperparameters after evolving for YOLOv5s and YOLOv5L.

Hyperparameter YOLOv5s YOLOv5I
1r0 0.01193 0.00635
Irf 0.01110 0.01358
momentum 0.94993 0.94506
weight_decay 0.00058 0.00058
warmup_epochs 2.9186 4.4758
warmup_momentum 0.88378 0.95
warmup_bias_Ir 0.08423 0.05706
box 0.06250 0.04464
cls 0.66883 0.64453
cls_pw 1.1594 0.95558
obj 1.1757 1.1124
obj_pw 0.94963 0.96568
iou_t 0.2 0.2
anchor_t 4.1487 3.4772
fl_gamma 0.0 0.0
hsv_h 0.01217 0.01939
hsv_s 0.85528 0.57067
hsv_v 0.37136 0.38627
degrees 0.0 0.0
translate 0.10421 0.09902
scale 0.47879 0.43253
shear 0.0 0.0
perspective 0.0 0.0
flipud 0.0 0.0
fliplr 0.5 0.5
mosaic 0.98804 0.92192
mixup 0.0 0.0
copy_paste 0.0 0.0
anchors 2.0763 2.6089

Figure 4 shows a graphical representation for YOLOvV5I with each hyperparameter
displayed in a different subplot. Each subplot presents all values from all generations
for the specific hyperparameter. The horizontal axis corresponds to the value of the
hyperparameter, and the vertical value corresponds to the calculated fitness. The yellow
areas indicate a high concentration of values. Subplots with vertical distributions indicate
that the specific hyperparameter was disabled and did not mutate.
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Figure 4. Graphical representation for the calculated values of all hyperparameters, after evolving
for 600 generations for YOLOvSI.

To evaluate the results of different configurations of YOLOV5, we used the metrics
mAP@0.5, mAP@0.5:0.95, precision, recall, and F1-score.

The mAP@0.5 metric corresponds to the average precision over a threshold of 0.5 for
the object detection. In addition, the mAP@0.5:0.95 denotes the average precision with a
threshold between 0.5 and 0.95.

The precision metric indicates the correctly identified trees divided by the total number
of detected trees and is given by Equation (1). The recall metric indicates the falsely identi-
fied trees divided by the total number of actual existing trees and is given by Equation (2).

- TP
Precision = TP+ TP €))
Recall = _TIP 2)

FN+TP
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where TP (true positive) is the number of correctly detected objects in the class, FP (false
positive) is the number of falsely detected objects in the specific class, and FN (false
negative) is the number of objects that are not detected in the specific class.

The metric F1-score is widely used as one of the main metrics for the accuracy of object
detection algorithms, and it is given by Equation (3).

P x R

F1S =2
core XP+R

®)

4.3. Configuration and Method of Mushroom Growth Monitoring

For mushroom growth monitoring, we used two different stages for the object detec-
tion. The first one was responsible for detecting the substrate grow bag, and the second
one was responsible for detecting the mushrooms in a photo. Figure 5 illustrates the main
components of the architecture of the proposed method.

Divide

Bounding Box

e
Ol

{
-y

562,346

pixels

Masks in the bounding box Resize bounding box Distinguish masks Calculate
and masks in separate areas the size of masks

Detectron2
Mushroom
Trained Model

Detected Mushrooms
Masks

Figure 5. Main components of the architecture for mushroom growth monitoring.

More specifically, in the stage of the substrate grow bag detection, we use the trained
model with Detectron2. We only obtained the bounding box of the detected substrate
grow bag and not the mask. After the detection of the substrate grow bag, we used the
corresponding bounding box and divided it into six equal rectangles (2 x 3). Figure 6a
illustrates the bounding box (green) and the lines (red) that divide the bounding box in
order to distinguish the detected mushrooms.

Moreover, we used the trained model with Detectron2 to detect the mushrooms in
the photo and return the corresponding masks. Figure 6b displays the detected mush-
rooms. Next, we performed a resize operation on the bounding box and the masks to
achieve normalisation for calculating the size in all photos of the same substrate grow bag.
Furthermore, the detected mushrooms were distinguished in one of the rectangles with
the following rules. A mushroom should have more than 50% in the specific rectangle.
Only one mushroom can belong in one rectangle, and each mushroom belongs only in one
rectangle. In any case, the selected mushroom was the one that covered the most area in
the rectangle.

Finally, Figure 6c¢ illustrates the divided bounding box with the corresponding masks of
all detected masks. The size of the provided mask could indicate the size of the mushroom.
After distinguishing each mushroom, we calculated the coverage based on the pixels of the
provided mask and used it for mushroom growth monitoring.
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(b) (0

Figure 6. Example photos of mushroom growth monitoring. (a) Bounding box divided into six equal

rectangles; (b) Masks of the detected mushrooms; (c) Masks in the six rectangles of the bounding box.

5. Results

In the following subsections, we evaluate the results of the mushroom classification
for different growth stages. Next, we provide the results of mushroom monitoring for their
growth rate.

5.1. Evaluation of Mushroom Growth Stage Detection

In this subsection, we compared different configurations of YOLOvS for mushroom
detection and classification in three classes, as described previously. We used the metrics
mAP@0.5, mAP@0.5:0.95, precision, recall, and F1-score to compare the accuracy of each
trained model.

Table 2 shows a comparison of all configurations. More specifically, we use the
pretrained models YOLOv5s and YOLOVS! with the default (D) configuration for the
hyperparameters and with the configuration derived from evolution (E). Moreover, our
configurations used an image size of 640 pixels and three different values for the batch
size (2, 4, 8).

Table 2. Evaluation results for mAP@0.5 and mAP@0.5:0.95 for different hyperparameter configura-
tions (HC), for default values (D) and optimised values with evolution (E).

Pre-Trained pc Imase Batch mAP@0.5 mAP@0.5:0.95
Model Size Size
YOLOV5s D 640 2 0.79230 0.53119
YOLOV5s E 640 2 0.79532 0.53405
YOLOV5s D 640 4 0.78946 0.53071
YOLOV5s E 640 4 0.79307 0.53541
YOLOV5s D 640 8 0.78006 0.52299
YOLOV5s E 640 8 0.78457 0.52511
YOLOVS5I D 640 2 0.77675 0.52999
YOLOVS5! E 640 2 0.79072 0.53476
YOLOVS5I D 640 4 0.78027 0.53390
YOLOVS5I E 640 4 0.78261 0.53810
YOLOVS5I D 640 8 0.79166 0.54008
YOLOVS5I E 640 8 0.79353 0.54582

It seems that there was not much difference in all configurations. Based on mAP@50
and mAP@50:95, configurations with hyperparameters derived from evolution showed
a slightly better performance. Moreover, configurations based on YOLOVSI returned a
slightly better performance. The model based on YOLOvV5] with hyperparameters de-
rived from evolution and with a batch size of eight achieved the best performance. More
specifically, it reached an mAP@0.5 of 0.79353 and an mAP@0.5:0.95 of 0.54582.
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Another type of evaluation was based on the F1-Score metric. Table 3 shows the
comparison of all configurations based on the best occurrence of the F1-Score. Better
performance on this metric was achieved by the same configuration with YOLOVS5], hy-
perparameters derived from evolution, and a batch size of eight, as it reached an F1-Score
of 76.65%.

Table 3. Evaluation results for the F1-Score for different hyperparameter configurations (HC), for
default values (D) and optimised values with evolution (E).

Pre-Trained HC Im.age Ba.tch Precision Recall F1-Score
Model Size Size
YOLOv5s D 640 2 76.54% 74.50% 75.51%
YOLOv5s E 640 2 74.68% 76.51% 75.59%
YOLOv5s D 640 4 74.82% 75.95% 75.38%
YOLOv5s E 640 4 76.55% 74.50% 75.51%
YOLOv5s D 640 8 76.54% 73.58% 75.03%
YOLOv5s E 640 8 74.94% 75.51% 75.22%
YOLOvV51 D 640 2 74.95% 75.94% 75.44%
YOLOv5I E 640 2 75.56% 75.66% 75.61%
YOLOvV51 D 640 4 77.30% 73.28% 75.24%
YOLOv51 E 640 4 73.60% 77.22% 75.37%
YOLOv51 D 640 8 75.45% 75.73% 75.59%
YOLOv51 E 640 8 77.89% 75.44% 76.65%

Figure 7 shows the curve of the F1-Score for the best configuration. The horizontal
axis corresponds to the confidence of the detected mushrooms, while the vertical axis
corresponds to the Fl-score. In this example, the maximum F1-score had a confidence of
0.566. In addition, the graph shows that the class “Stagel” had a better accuracy. This
was expected since all photos with mushrooms belonging to “Stagel” were simpler, as
mushrooms were small and not overlapping.

F1-Confidence Curve

1.0
—— Stagel
Stage2
—— Stage3
= all classes 0.77 at 0.566
0.8
0.6
—
w
0.4 4
0.2
0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Confidence

Figure 7. F1 curve.

To notice the detection accuracy for each class more clearly, Figure 8 presents the
confusion matrix for the same configuration. It shows that class “Stagel” had an accuracy
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of 82%, class “Stage2” had an accuracy of 71%, and “Stage3” had an accuracy of 70%.
Although this does not seem perfect, we can say that it was good enough depending on the
complexity of the photos with mushrooms in “Stage2” and “Stage3”.

Confusion Matrix

Predicted

-0.2

background

' ' ' ' -0.0
Stagel Stage2 Stage3 background

Figure 8. Confusion matrix for all mushroom growing stages.

Overall, the evaluation results were acceptable for detecting different stages of mush-
rooms.

Figure 9 shows an example of the detection where only mushrooms from classes
Stage2 and Stage3 exist. The green bounding box indicates that the mushroom is ready to
harvest (Stage3). The blue bounding box indicates that the mushroom is not yet ready to
harvest (Stage2). We marked in magenta the mushrooms that were detected in the wrong
class. Moreover, we marked in red the mushrooms that were not detected. It seems from
the photo that the mushrooms in the foreground were detected in the right class, while
some errors occurred in mushrooms that were in the background or partially displayed.

5.2. Evaluation of Mushroom Growth Monitoring

After the procedure described previously, we obtained 575 different masks from
114 different mushrooms in the greenhouse. All masks were distinguished for different
mushrooms depending on the number of the substrate grow bag and the position on it.
When the mask corresponded to the first day of appearance of each mushroom, it was
marked as day one. The corresponding masks of the next days of the same mushroom were
numbered as well in the same way.

Figure 10 shows the growth rate of four different mushrooms. Each mushroom is
indicated with a different colour. The horizontal axis of the graph contains the number of
the growth day, starting from number one for the first day of the mushroom’s appearance.
The vertical axis indicates the size of the mushroom counted in pixels.

Moreover, we calculated the maximum size of each mushroom based on all photos
before it was harvested. We set its size as 100%, and we calculated the size of the same
mushroom for all other days accordingly. Figure 11 shows the growth rate of the same
mushrooms but as a percentage of the maximum size of each mushroom.
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Figure 9. Example of mushroom detection in three different stages.
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Figure 10. Comparing the absolute size of the growth rate of mushrooms.
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Figure 11. Comparing the percentage of the growth rate of mushrooms.
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Both graphs show that the three mushrooms (M1, M2, M3) followed an almost linear
growth rate. The fourth mushroom (M4) also followed a linear growth rate for the first
four days, but from the fifth day, it seemed not to change in size. In fact, on the fifth day,
that specific mushroom should have been harvested, but it was accidentally forgotten.
Figure 12 shows the captured photos of this mushroom (M4), from which it seemed that
the mushroom was ready to harvest on day five.

(d) Day 5 (e) Day 7
Figure 12. Mushroom growth example photos.

We manually evaluated the harvesting status of each mushroom and decided that
17 mushrooms could be harvested earlier, which represented 14.04% of the mushrooms.
The average difference between the size of the masks from the day identified as ready to
harvest and the previous day was 5.34%. Thus, if we set it as a threshold in our method to
provide an alert any time that the difference in the mushroom size was below it, we could
inform the farmer of the harvest time. This would lead to an improvement in the quality
of the harvested mushrooms as we would avoid overripe mushrooms. In addition, our
evaluation showed that the average days for the growth of mushrooms was 5.22.

Figure 13 displays the graph with all mushrooms detected for all days. All values are
displayed in percentage of the maximum size of the specific mushroom. The blue marks
indicate the detected mushrooms that were not ready to harvest, while the red marks
indicate mushrooms that should have been harvested at least one day before.
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Evaluation of Mushrooms Growth per Day (%)
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Figure 13. Percentage of the growth rate of all mushrooms. Red marks indicate mushrooms that
should have been harvested earlier.

6. Discussion

Our first approach for mushroom detection with YOLOvVS5 could be a valuable part of a
decision support system. For example, it may be useful in tasks such as yield prediction or
product improvement by indicating those mushrooms that are ready for harvest. Overall,
the accuracy of the trained model was considered acceptable regarding the complexity of
the photos of the dataset.

However, our experience shows that some changes could improve the results. A more
precisely selected dataset should improve the detection accuracy of different classes. For
example, photos with fewer mushrooms and only in the foreground will give more accurate
results. As we discussed in Figure 9, the main drawback in detection accuracy is that many
mushrooms are partially visible in the photos, and many of them are in the background,
which makes it difficult to detect and classify because their features are not clear. Moreover,
a proposed methodology to overcome these obstacles could be to exclude mushrooms that
are partially displayed in the picture and to focus only on those clearly displayed.

Furthermore, the 600 steps we used for the hyperparameter evolution in this research
may not be good enough, and more steps will result in a better detection accuracy. This
would lead to better combinations of the hyperparameters, but the hyperparameter evolu-
tion procedure is a very time-consuming task, even for a professional graphic processing
unit. A better approach to enhance the model’s accuracy is to modify the YOLOvS5 algorithm.
Thus, the trained model would include the specific characteristics of the different classes.

Our second approach for mushroom growth monitoring could also be helpful for
a decision support system to inform farmers about the harvesting time. As a result, an
improvement in product quality is expected since mushrooms will be collected at the right
time. Furthermore, the precisely detected mask of the mushrooms may support other
potential applications. For example, it could be a useful part of a robotic mechanism in
order to detect, decide, and collect only those mushrooms that are ready to harvest without
damaging them.

The method of mushroom growth monitoring with Detectron2 also has some limi-
tations. Our method focused only on mushrooms that were on top of the substrate bag,
which was placed horizontally in the greenhouse. In fact, only one-third of the mushrooms
could be observed with this method since there were also substrate bags positioned verti-
cally below the substrate bag we used. In addition, in many cases, the substrate bags are
densely placed in the greenhouse, and sometimes, the farmers use more than one layer
of substrate grow bags in the greenhouse, making it difficult to capture photos even from
those positioned horizontally.
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Furthermore, getting only one image per day has the disadvantage that the growing
days may not be counted precisely in some mushrooms. For example, some mushrooms
may appear a few hours after a picture was taken, resulting in a day count less than the
actual growth duration. Moreover, some mushrooms may have been harvested just before
a picture was taken, also resulting in reduced count days. Therefore, capturing photos of
the substrate bags more often could give better results and inform more precisely about the
growing rate of the mushroom and the harvesting time.

Finally, the results of the mushroom detection are not always precise. In fact, the
proposed method has two minor drawbacks. First, some of the mushrooms that were too
small could not be detected. In addition, the masks returned from Detectron2 were not
always accurate. We believe that both these drawbacks do not have a large impact on
the proposed methodology. However, if we need to improve them, we could use a larger
dataset with more annotated mushrooms to get better results.

7. Conclusions

Object detection and instance segmentation have multiple applications in various
domains. In smart farming, it is mainly used in fruit detection, weed detection, or
pest detection.

In this paper, we evaluated the effectiveness of YOLOVS5 and Detectron2 in mushroom
detection in a greenhouse. Firstly, we evaluated YOLOVS5 on its effectiveness in classifying
mushrooms in three growth stages. The results showed that even in complex environments
such as a greenhouse with Pleurotus mushrooms, it was possible to identify mushrooms
that were ready to harvest. The evaluation results on mushroom detection and classification
in three different growing stages gave an Fl-score of up to 76.5%, and specifically for the
final growing stage, an accuracy of up to 70%.

Secondly, we proposed a method for mushroom growth monitoring. For that purpose,
we used two trained models with Detectron2. The first one detected the substrate grow bag,
and the second detected the mushrooms and returned the corresponding masks. Experi-
mental results showed that the growth rate of Pleurotus mushrooms was linear. Moreover,
this procedure made it possible to detect when mushrooms reached their maximum size
and were ready to harvest. The evaluation results showed that it was possible to make de-
cisions and improve harvesting time for up to 14.04% of the mushrooms in the greenhouse.
In addition, the results showed that, on average, Pleurotus mushrooms needed 5.22 days to
reach maximum size.

Moreover, the proposed methods are suitable to be part of a decision support system
to inform farmers about the status of their cultivation. In addition, a future potential
application would be a robotic mechanism able to detect and recognise the growth stage of
mushrooms before harvesting them.
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Abbreviations

The following abbreviations are used in this manuscript:

YOLO  You Only Look Once

RCNN  Region-based convolutional neural network
RPN Regional proposal network

FPN Feature pyramid network

mAP mean average precision
P True positive

FP False positive

FN False negative

DT Decision tree

RGB Red green blue

LR Logistic regression

KNN K-nearest neighbours
SVM Support vector machine

NB Naive Bayes
RF Random forest
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