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Abstract: Proanthocyanidins (PAs) are major phytochemicals in rice, and accumulate abundantly in
red pericarp (RP) rice. Consumers and rice breeders are increasingly showing interest in PAs because
of their beneficial health effects; however, PA biosynthesis in rice is not well-understood. Therefore, to
gain insights into this process, we performed comparative transcriptome analysis of grains harvested
at 14 days after flowering (DAF; i.e., the stage at which active PA biosynthesis occurs without pericarp
color change) and 28 DAF (the stage of late seed development with pericarp color change) from RP
and white pericarp rice. In RP rice at 14 DAF, the expression levels of six structural genes (OsCHS,
OsF3H, OsF3′H, OsDFR, OsANS, and OsLAR), one modification gene (OsUGT), and one transport
gene (OsGSTU34) were significantly upregulated, along with the activation of Rc, the key regulator of
PA accumulation in the pericarp. Functional enrichment analysis of 56 differentially expressed genes
specifically upregulated in RP rice at 28 DAF revealed the presence of three laccase genes known
to cause the browning reaction through oxidation. These results expand our understanding of PA
biosynthesis in rice, and provide a genetic basis that will lead to further studies on the genes and
underlying molecular mechanisms associated with this process.

Keywords: Oryza sativa; seed coat browning; proanthocyanidin; RNA sequencing; laccase

1. Introduction

In addition to the common white color, rice has various other pericarp colors, including
black, brown, and red, depending on the type and combination of phytopigments accumu-
lated in the pericarp. Although the white pericarp (WP) is predominant in cultivated rice
varieties due to artificial selection according to human preference during domestication,
colored rice has steadily been cultivated and used as food, in medicine, and in religious
ceremonies in Asian counties [1]. In addition to attractiveness of its colorful appearance,
colored rice has a higher nutritional value than WP rice because it contains various bioac-
tive compounds, including phenolic acids, carotenoids, γ-oryzanol, and vitamin E [2].
Moreover, anthocyanins and proanthocyanidins (PAs) abundantly accumulate in colored
rice, and are known to have beneficial effects on human health, e.g., antioxidant, anticancer,
and antiinflammatory activities, lowering cholesterol and blood glucose, and antiadhesive
mechanisms against viruses and bacteria [3,4]. Given its nutritional value, colored rice is
increasingly gaining interest among health-conscious consumers and rice breeders who
seek to increase the nutritiousness of rice.

PAs are major phytochemicals in rice that accumulate mainly in the pericarp of red
rice. These are also known as condensed tannins because they are polymeric phenolic
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compounds produced by the polymerization of flavan-3-ol units, such as catechin and
epicatechin [5]. PAs are synthesized through a series of enzymatic steps from the phenyl-
propanoid pathway to the flavonoid pathway, and they share the upstream biosynthesis
pathway of anthocyanin, in which phenylalanine is converted into leucoanthocyanidins
through stepwise catalytic reactions [6]. The leucoanthocyanidins (uncolored) are converted
to 2R,3S-flavan-3-ols (uncolored) by leucoanthocyanidin reductase, or to anthocyanidins
(colored) by anthocyanin synthase, and then to 2R,3S-flavan-3-ols (uncolored) by antho-
cyanidin reductase; both flavan-3-ols are the precursor units of PAs [3,4]. The biosynthetic
structural genes of PAs are under sophisticated control by multiple regulatory genes that
encode transcription factors with MYB domains, basic helix–loop–helix (bHLH) domains,
or WD-40 repeats. These three types of regulatory genes are known to act together to form
the MYB–bHLH–WD40 (MBW) complex that regulates the biosynthesis of PAs [6].

The precursors of PAs synthesized via the biosynthesis pathway are initially colorless,
but are subsequently converted to reddish-brown PAs through polymerization and oxi-
dation reactions [7]. It is thought that an oxidation reaction due to polyphenol oxidase or
peroxidase is the main cause of PA browning [3]. In Arabidopsis, seed coat browning is
observed during the seed desiccation period in the late stages of seed development, and it
has been reported that TRANSPARENT TESTA 10/AtLAC15, which encodes laccase-like
polyphenol oxidase, may participate in the oxidative polymerization of PAs and regulate
seed coat browning [8,9]. However, despite decades of research, the exact mechanisms un-
derlying PA polymerization and oxidation, and the enzymes involved in these mechanisms,
are yet to be clarified.

Because of the domestication process, WP has become the dominant phenotype of rice,
resulting in relatively insufficient research on PA biosynthesis. Rc and Rd have been identi-
fied as key genes related to the red pericarp (RP) phenotype caused by PA accumulation in
rice. Rc encodes a bHLH transcription factor, which is a regulatory gene that controls the
expression of PA biosynthetic structural genes and is a representative rice domestication
gene responsible for the determinant of PA accumulation in the pericarp [10]. Rd encodes
dihydroflavonol 4-reductase, one of the structural genes involved in PA biosynthesis path-
way, and regulates color deepening of the pericarp through an epistatic interaction with
Rc [11]. Most research related to pigmented rice has been focused on black rice (containing
large amounts of anthocyanins) rather than red rice; therefore, there is a lack of data on
PA biosynthesis. In the present study, we performed RNA sequencing-based transcrip-
tome analysis of two japonica genotypes with RPs and WPs, respectively, to improve our
understanding of PA biosynthesis in rice pericarps.

2. Materials and Methods
2.1. Plant Materials

RBRC_OS_RP1, a japonica breeding line with an RP and RcRc genotype, and Dongan,
a japonica cultivar with a WP and rcrc genotype, were used in this study. Plant materials
were grown under normal cultivation conditions in an experimental paddy field at the
Advanced Radiation Technology Institute, Jeongeup, Korea. Rice grain samples were
collected at 7, 14, 21, 28, and 35 days after flowering (DAF), as well as at full maturity,
for 4-dimethyl aminocinnamaldehyde (DMACA) staining and quantitative analysis of
total phenolic and tannin content. The samples collected at 14 and 28 DAF were used for
transcriptome analysis.

2.2. 4-Dimethylaminocinnamaldehyde Staining

Grain samples harvested at different stages of maturity were immediately soaked in
absolute ethanol for decolorization. After 2 h of decolorization, the samples were stained
with 1% (w/v) DMACA (Sigma-Aldrich, St. Louis, MO, USA) in a mixture of ethanol
(Merck, Darmstadt, Germany) and 6-M hydrochloric acid (1:1, v/v; Sigma-Aldrich) for 2 h.
Stained samples were rinsed with several changes of 70% ethanol.
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2.3. Quantification of Total Phenolic and Tannin Content

Freeze-dried grain samples (1 g of each sample) were individually extracted using
10-mL methanol and sonication for 1 h. Each methanol extract was filtered through What-
man No. 4 filter paper for analysis. The standards, namely ferulic acid and tannin acid,
were weighed accurately and dissolved in methanol to 1 mg/mL. The stock solutions were
then diluted to produce a series of standard solutions at seven different concentrations
(6.25–500.00 µg/mL) to assess total phenolic content (TPC) and total tannin content (TTC).
To measure the TPC in each sample solution, a methanol sample extract (0.1 mL) was
mixed with 1 mL Folin–Ciocalteu reagent, neutralized using 0.8 mL saturated sodium
carbonate (75 g/L), and incubated at room temperature for 2 h. Absorbance was measured
at 765 nm using a UV–Vis spectrophotometer (Evolution 260 Bio; Thermo Fisher Scientific
Inc., Waltham, MA, USA). A standard calibration curve was prepared with a ferulic acid
equivalent, and the TPC was calculated as milligrams of ferulic acid equivalent per gram of
sample. To measure the TTC, 1 mL of sample extract was mixed with 1 mL distilled water,
1 mL 95% ethanol, 1 mL 5% sodium carbonate, and 0.5 mL 1-N Folin–Ciocalteu reagent.
After 1 h, the absorption was measured at 725 nm using the UV–Vis spectrophotometer. A
standard calibration curve was prepared with a tannic acid equivalent, and the TTC was
calculated as milligrams of tannic acid equivalent per gram of sample.

2.4. RNA Extraction and Sequencing

Total RNA was extracted from grain samples (collected at 14 and 28 DAF) using
an RNeasy Plant Mini Kit (Qiagen, Hilden, Germany) according to the manufacturer’s
instructions. The quantity of RNA was measured using a NanoDrop ND-1000 spectropho-
tometer (NanoDrop Technologies, Wilmington, DE, USA), and equal amounts of total
RNA from three biological replications were pooled before library construction. RNA
quality was checked on a 2100 Bioanalyzer (Agilent, Santa Clara, CA, USA), and RNA
Integrity Number values were confirmed as > 9 for all samples. The cDNA library for RNA
sequencing was constructed using a TruSeq RNA Library Preparation Kit (Illumina, San
Diego, CA, USA) according to the manufacturer’s instructions. The cDNA libraries were
subsequently sequenced in a single lane of an Illumina HiSeqX platform to generate 150-bp
paired-end reads. The raw reads generated via sequencing were subjected to preprocessing
steps. Adaptor sequences were trimmed using cutadapt, and low-quality sequences (phred
score < 20) and short-length reads (read length ≤ 25 bp) were removed using DynamicTrim
and LengthSort in the SolexaQA package. After preprocessing, cleaned reads were mapped
to the rice reference genome (IRGSP-1.0) using HISAT2. Read count, i.e., the number
of reads per gene, was calculated, and normalization was conducted to estimate gene
expression levels using HTSeq [12] and DESeq [12].

2.5. Identification of Differentially Expressed Genes and Enrichment Analysis

Differentially expressed genes (DEGs), according to comparisons of target transcrip-
tome datasets, were identified based on read count, binomial tests, and fold change (FC) in
gene expression. Genes with a false discovery rate (FDR)-adjusted p-value of <0.01 and
|log2 FC| of ≥1.5 were considered DEGs. The DEGs were subjected to Gene Ontology
(GO) enrichment analysis using G:Profiler version e104_eg51_p15_39838c3 with the g:SCS
method (FDR < 0.05) for multiple testing correction of p-values [12]. The list of GO terms
was summarized by eliminating redundant terms using the REVIGO tool [13] with the
SimRel semantic similarity measure and a cutoff value of C = 0.5. Additionally, Kyoto
Encyclopedia of Genes and Genome (KEGG) pathway enrichment was performed using
KOBAS 3.0 [14], and KEGG pathways with a FDR of <0.05 were considered significantly
enriched pathways.

2.6. Validation of Gene Expression via Quantitative Reverse Transcription Polymerase Chain Reaction

For some DEGs thought to be related to PA biosynthesis in RP rice, RNA sequencing-
based gene expression was validated using quantitative reverse transcription PCR (qRT-
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PCR). RT-qPCR was performed using ExcelTaq 2X Fast Q-PCR Master Mix (SMOBIO
Technology, Hsinchu, Taiwan) on a CFX96 Real-Time System (BioRad, Hercules, CA, USA)
following the manufacturer’s instructions. For each target gene, expression data were
generated using three biological replicates with three technical replicates per biological
replicate. Expression levels were normalized using the ∆Ct method, based on the ex-
pression level of OsACT1, as an internal control. Information on primers is provided in
Supplementary Table S1.

2.7. Statical Analysis of Experimental Data

Experiments were carried out at least in triplicate. Significant differences were esti-
mated using Student’s t-test (p < 0.05) in Microsoft Excel 2019.

3. Results
3.1. Pericarp Color Change and Proanthocyanidin Accumulation during Grain Development

To estimate the characteristics of pericarp color according to grain development, grains
were harvested at six developmental stages (7, 14, 22, 28, and 35 DAF, and at full maturity).
In the early stages of development, the pericarp of WP rice was pale green; however, the
green color gradually faded and finally turned white as grain development progressed
(Figure 1A). Up to 21 DAF, the pericarp of RP rice was also pale green and did not differ
from WP rice in this respect; however, the pericarp color changed to reddish-brown at
28 DAF and deepened gradually until full maturity (Figure 1B). Grains of RP and WP rice
harvested at each stage were stained with DMACA, which reacts with PA precursors and
PAs. Although the seeds of WP rice were not stained with DMACA at any stage, those of
RP were stained blue at all stages from 7 DAF (Figure 1C,D). Additionally, TPC and TTC,
including PAs as constituents, were measured to estimate the temporal change in PA content
in grain samples (Figure 1E). Both the TPC and TTC of RP rice rapidly increased up to
14 DAF, with the highest content recorded at 4.87 mg FA/g and 4.24 mg TA/g, respectively,
after which both gradually decreased as grain-filling progressed. Thus, the biosynthesis of
PAs proceeds actively in the early seed developmental stages, but the accumulation of PAs
in the pericarp does not directly lead to color change.

3.2. RNA Sequencing-Based Transcriptome Profiling and Detection of Differentially Expressed Genes

RNA sequencing was performed using grain samples of RP and WP rice from 14 DAF
(i.e., the active PA biosynthesis stage) and 28 DAF (i.e., the pericarp browning stage) to
investigate the pigmentation of red rice. In total, 95.8 million raw reads generated from four
libraries (RP14, RP28, WP14, and WP28) were filtered through preprocessing, resulting in
91.3 million clean reads constituting 12.2 Gb of sequence data. The clean reads were aligned
to the reference genome (Nipponbare: IRGSP-1.0) with a mapping rate of 86.9–89.2%
(Supplementary Table S2). For comparison of gene expression according to the difference
in pericarp color, RP and WP transcriptome datasets at the same stage were determined
as contrast groups (RP14 vs. WP14 and RP28 vs. WP28). In total, 401 and 908 DEGs
were detected in the 14 (RP14 vs. WP14) and 28 DAF (RP28 vs. WP28) contrast groups,
respectively (Figure 2A). The 14 DAF DEG set included 150 and 251 upregulated and
downregulated DEGs, respectively (Figure 2B and Supplementary Table S3), whereas the
28 DAF DEG set included 342 and 566 upregulated and downregulated DEGs (Figure 2B
and Supplementary Table S4).
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in WP (C) and RP (D) rice after 4-dimethyl aminocinnamaldehyde (DMACA) staining. Scale bar: 2 
mm. (E) Quantitative analysis of total phenolic content and total tannin content in seeds of WP and 
RP rice during seed development. Error bars represent the standard deviation of three replicates. 
Asterisks denote significant differences according to Student’s t-test (p < 0.05). FA, ferulic acid; TA, 
tannin acid. 
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Figure 1. Comparison of grain characteristics between red pericarp (RP) and white pericarp (WP)
rice. Pericarp color of WP (A) and RP (B) rice according to seed development. Pericarp color changes
in WP (C) and RP (D) rice after 4-dimethyl aminocinnamaldehyde (DMACA) staining. Scale bar:
2 mm. (E) Quantitative analysis of total phenolic content and total tannin content in seeds of WP and
RP rice during seed development. Error bars represent the standard deviation of three replicates.
Asterisks denote significant differences according to Student’s t-test (p < 0.05). FA, ferulic acid; TA,
tannin acid.
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Figure 2. Differentially expressed genes (DEGs) between the seeds of red pericarp (RP) and white peri-
carp (WP) rice. Venn diagram (A) and MA plot (B) showing the number of DEGs between RP and WP
rice at different seed developmental stages. Red and green dots represent significantly upregulated
and downregulated genes, respectively; black dots represent genes with no significant difference.

3.3. Gene Ontology and Kyoto Encyclopedia of Genes and Genome Pathway Enrichment Analysis

To classify the function of DEGs, the upregulated and downregulated DEG sets were
divided and subjected to GO enrichment analysis. The 14 DAF upregulated DEGs were
significantly enriched in the GO Biological Process (GO-BP) terms—flavonoid biosyn-
thetic process (GO:0009813), DNA strand elongation (GO:0022616), and mitotic DNA
replication initiation (GO:1902975) as well as the GO Molecular Function (GO-MF) term—
DNA replication origin binding (GO:0003688) (Figure 3A). The 28 DAF upregulated DEGs
were significantly enriched in the GO-MF terms—oxidoreductase activity (GO:0016491),
hydrolase activity_hydrolyzing O-glycosyl compounds (GO:0004553), and hydrolase activ-
ity_acting on glycosyl bonds (GO:0016798), as well as the GO Cellular Component (GO-CC)
terms—cell periphery (GO:0071944) and intrinsic component of membrane (GO:0031224)
(Figure 3B). In total, 24 GO terms, including 17 GO-BP, 5 GO-MF, and 2 GO-CC terms,
were enriched in the 14 DAF downregulated DEG set, whereas 31 GO terms, including
14 GO-BP, 15 GO-MF, and 2 GO-CC terms, were enriched in the 28 DAF downregulated
DEG set (Figure 3 and Supplementary Table S5). Several GO terms (13 GO-BP, 5 GO-MF,
and 1 GO-CC terms) were enriched in both downregulated DEG sets, most of which were
related to stress and protein binding and folding. KEGG pathway analysis showed that the
14 DAF upregulated DEGs were enriched in flavonoid biosynthesis (dosa00941) and DNA
replication pathways (dosa03030), whereas the 28 DAF upregulated DEGs were enriched in
diterpenoid biosynthesis pathways (dosa00904). The 14 and 28 DAF downregulated DEGs
were enriched in protein processing in the endoplasmic reticulum pathway (dosa04141),
and most of the genes enriched in this pathway encoded heat shock proteins (Table 1 and
Supplementary Table S6).

Table 1. Kyoto Encyclopedia of Genes and Genome pathway enrichment analysis of differentially
expressed genes between red and white pericarp rice.

Stage DEG Set KEGG ID Pathway Name Count Expected Count FDR

14 DAF
Upregulated dosa00941 Flavonoid biosynthesis 6 41 7.12 × 10−7

Upregulated dosa03030 DNA replication 4 57 1.09 × 10−3

Downregulated dosa04141 Protein processing in
endoplasmic reticulum 20 210 3.91 × 10−15

28 DAF
Upregulated dosa00904 Diterpenoid biosynthesis 4 41 4.25 × 10−2

Downregulated dosa04141 Protein processing in
endoplasmic reticulum 27 210 2.95 × 10−14

Downregulated dosa04626 Plant-pathogen interaction 10 192 2.75 × 10−2

Count: the number of DEGs belonging to a pathway; expected count: the total number of genes in a pathway.
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fold enrichment.

3.4. Expression Profile of Rice PA Biosynthesis-Related Genes

GO and KEGG enrichment analyses revealed that genes in the flavonoid biosynthesis
pathway, which is a major pathway in PA biosynthesis, were enriched in the 14 DAF
upregulated DEGs. To identify genes that affect in RP rice, expression profiling of 23 genes
known to be involved in PA biosynthesis was performed, and the expression levels in
the transcriptome datasets and FC values between RP and WP rice genes were visualized
as a heatmap (Figure 4 and Table S7). Three genes belonging to the phenylpropanoid
pathway, OsPAL, OsC4H, and Os4CL, were highly expressed in both RP and WP rice
without differential expression. In the flavonoid pathway, six structural genes, including
OsCHS, OsF3H, OsF3′H, OsDFR, OsANS, and OsLAR, were differentially upregulated in RP
rice at 14 DAF. In particular, the expression of OsF3H and OsDFR markedly increased in
RP rice compared with WP rice at both 14 and 28 DAF. Among five regulatory genes, Kala3,
known as the regulatory gene in anthocyanin biosynthesis, was differentially upregulated
in RP28, and Rc, known as a key regulatory gene in PA biosynthesis, was differentially
upregulated in both RP14 and RP28. Unlike Kala3, Rc was rarely expressed in WP rice,
but was highly expressed in RP rice, similar to the expression patterns of OsF3H, OsDFR,
OsANS, OsLAR, and OsGSTU34. The expression levels of DEGs were decreased at 28 DAF
compared with 14 DAF, consistent with the phytochemical content results according to seed
development. Thus, PA accumulation in the pericarp of RP rice is apparently determined
by the expression of structural genes in the flavonoid pathway, and Rc may play a pivotal
role in regulating the expression of these DEGs.
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3.5. Potential Candidate Genes Related to Pericarp Browning

To identify candidate genes involved in pericarp browning, we screened 56 DEGs
specifically upregulated in RP28 based on the following criteria: intersection among RP28
vs. RP14 upregulated DEGs, RP28 vs. WP14 upregulated DEGs, and RP28 vs. WP28 upreg-
ulated DEGs (Figure 5A and Supplementary Table S8). GO enrichment analysis of these 56
DEGs revealed five significantly enriched GO terms: lignin catabolic process (GO:0046274)
and phototropism (GO:0009638) in BP, and three oxidoreductase activity-related terms in
MF (GO:0052716, GO:0016679, and GO:0016722) (Figure 5B). Interestingly, four of the five
enriched GO terms were commonly derived from three DEGs, Os11g0641500, Os12g0258700,
and Os12g0257600, all of which encoded laccase protein, a type of polyphenol oxidase
(Figure 5B). Considering previous reports that colorless PAs turn reddish-brown through a
browning reaction caused by an oxidation reaction, these are promising candidate genes
that may play a major role in the pericarp browning of red rice.
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Figure 5. Analysis of RP28-specific upregulated differentially expressed genes (DEGs). Venn dia-
gram (A) of the upregulated DEGs in RP28 vs. RP14, RP28 vs. WP14, and RP28 vs. WP28. GO
enrichment analysis (B) of RP28-specific upregulated genes. GO:0009638, phototropism; GO:0046274,
lignin catabolic process; GO:0016722, oxidoreductase activity, acting on metal ions; GO:0016679,
oxidoreductase activity, acting on diphenols and related substances as donors; GO:0052716, hydro-
quinone:oxygen oxidoreductase activity. Bar charts represent the –log10 false discovery rate (FDR) of
enriched GO terms with an FDR of <0.05, and the gray dots denote fold enrichment.

3.6. Quantitative Reverse Transcription-Polymerase Chain Reaction Validation of RNA
Sequencing-Based Expression Data

To verify the results of RNA sequencing analysis, qRT-PCR was performed on several
DEGs expected to affect PA biosynthesis. Eleven DEGs, including six flavonoid path-
way genes (OsCHS, OsF3H, OsF3′H, OsDFR, OsANS, and OsLAR), one transport gene
(OsGSTU34), one regulatory gene (Rc), and three potential candidate genes related to the
pericarp browning process (OsLAC23, OsLAC28, and OsLAC29) were selected for RT-qPCR
analysis. All genes related to PA accumulation showed significantly different expression
levels in RP and WP rice at 14 DAF, and the expression levels were decreased at 28 DAF. In
contrast, candidate genes related to the browning process were highly expressed in the late
stage of seed development. The expression pattern of each gene obtained using qRT-PCR
at 14 and 28 DAF was highly consistent with that obtained in RNA sequencing (Figure 6).
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4. Discussion

PAs are major phytochemicals and representative bioactive substances that provide
plants with protection from external predation, as well as providing nutritional benefits
to forage crops and edible crops [3]. However, the PA biosynthesis process in rice is not
well-known compared with that in other plants. Therefore, we conducted comparative
transcriptome analysis in RP and WP rice to expand our understanding of PA biosynthesis
and to identify candidate genes related to the pericarp browning process.

Unlike anthocyanins, which are reddish to purple, PAs are colorless at the time of
synthesis and require a browning process for conversion into colored PAs [15]. Hence,
a temporal gap is often observed from PA biosynthesis in tissue to the appearance of
colored PAs in that tissue. In Arabidopsis, uncolored PAs are detected at an early stage of
seed development, i.e., the two-cell embryo stage in the seed coat, but the color change
in the seed coat is observed around 10 days after pollination, concomitant with seed
desiccation [8]. In the present study, the accumulation of PAs in the pericarp of RP rice was
detected using DMACA staining from 7 DAF, but the pericarp color remained pale green,
as in WP rice, until 21 DAF. Subsequently, the pericarp color of RP rice gradually turned
reddish-brown (Figure 1). Additionally, the TPC and TTC in RP seeds rapidly increased
from 7 to 14 DAF, but gradually decreased thereafter according to the progress of grain
filling. Because PAs belong to a class of tannin and polymeric phenolic compounds, and are
known to be positively correlated with TPC [15,16]. PA content may also increase steeply
until 14 DAF based on the results of TPC and TTC analysis in RP rice. Based on these
results, we infer that PAs are actively synthesized in the early stage of seed development,
and that the browning reaction occurs in the late stage of seed development. Accordingly,
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transcriptome analysis of the seeds of RP and WP rice was performed at 14 (i.e., the PA
biosynthesis stage) and 28 DAF (i.e., the PA browning stage).

The flavonoid pathway constitutes a central pathway in the PA biosynthesis path-
way [3]. We found that flavonoid biosynthesis terms (GO:0009813 and dosa00941) were
commonly enriched in 14 DAF upregulated DEGs (Figure 3A and Table 1), indicating that
structural genes in the flavonoid biosynthesis pathway might play important roles in PA
biosynthesis. Six structural genes, OsCHS, OsF3H, OsF3′H, OsDFR, OsANS, and OsLAR,
were upregulated in RP14 and showed a decreasing expression pattern at 28 DAF (Figure 4),
implying that PA biosynthesis actively occurs in the early stages of seed development,
but is reduced in late stages and is mainly regulated by flavonoid biosynthesis pathway
genes. Our expression data is fairly consistent with transcription profile analyses previously
reported in other red rice accessions, particularly for OsCHS, OsF3H, OsF3′H, OsDFR, and
OsLAR [17,18]. Among the flavonoid pathway structural genes, OsCHS, OsF3H, OsF3′H,
OsDFR, and OsLAR were commonly upregulated in RP rice across all studies. Thus, these
commonly upregulated structural genes are likely essential for the expression of the RP
trait and are regulated by a highly conserved regulatory system.

Glucosyltransferases are enzymes that decorate anthocyanidins, resulting in modified
anthocyanins with diverse colors and stabilities [19]. In PA biosynthesis, epicatechin, the
building block of PAs, is modified to epicatechin 3′-O-glucoside by glucosyltransferase,
resulting in transportation to the vacuole via the multidrug and toxic compound extrusion
(MATE)-mediated transport process [20]. In rice, OsUGT (Os06g0192100) and Os07g0148200
have been reported as orthologues of Arabidopsis ANTHOCYANINLESS1, which is in-
volved in the glycosylation of anthocyanin, but glucosyltransferase with specificity for
epicatechin has not yet been reported [21]. In our transcriptome data, Os07g0148200 was
rarely expressed in both RP and WP rice, whereas OsUGT was upregulated in RP14 relative
to WP14, and showed an expression pattern similar to that of Rc (Figure 4). Therefore,
OsUGT could be involved in the PA modification process under the regulation of Rc in the
rice pericarp.

After the PA biosynthetic process occurs at the endoplasmic reticulum, the units of
PAs and PAs are exclusively transported into vacuoles [22]. To date, several genes encoding
proteins, such as MATE transporter, glutathione-S-transferase (GST), and H+-ATPase, have
been found to participate in PA transportation and vacuole sequestration [23]. In the
transport gene category, OsGSTU34, which encodes GST, was significantly upregulated in
RP14, similar to the upregulation of structural genes regulated by Rc (Figure 4). Previously,
functional characterization of OsGSTU34 revealed that the gene was involved in antho-
cyanin accumulation in the leaves of black rice, but it is not known whether OsGSTU34 is
associated with PA transportation in the rice pericarp [24]. However, given that several
GST genes, such as TT19, VviGST3, VviGsT4, and AcGST1, play roles as transporters of Pas,
as well as anthocyanins in various plant species [25], it can be inferred that OsGSTU34 may
also be involved in PA transportation.

Despite sharing a biosynthesis pathway and intermediates with various flavonoids,
such as anthocyanins, PAs are tissue specifically accumulated through regulatory mech-
anisms controlled by several types of transcription factors and their complexes. In Ara-
bidopsis, the TT2 (MYB)/TT8 (bHLH)/TTG1 (WD40) complex is the main MBW complex
that regulates PA accumulation in the seed coat, and three additional complexes with
partially overlapping transcription regulatory functions are known to participate in this
regulation in a tissue-specific manner [26]. In rice, Rc, which encodes a bHLH protein, has
been previously reported as a major regulatory gene in PA biosynthesis [10]. However,
additional regulatory genes, either those acting alone or through interaction with Rc, have
not been reported to date. Rc is undeniably the central regulatory gene of PA accumu-
lation, given that the WP and RP colors of rice germplasm are accurately distinguished
by the Rc allele type [27] and that the expression of the RP trait can be determined by
genetically manipulating Rc [28]. In the temporal expression profiling of Rc conducted
previously, it was found to play a regulatory role during early seed development, and the
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functional allele displayed a higher level of expression than that of the defective allele via a
self-upregulation mechanism [17]. This is consistent with our transcriptome data, in which
Rc was rarely expressed in WP rice and was more actively expressed at RP14 than at RP28
(Figure 4).

The browning process is typically caused by the oxidation of phenolic compounds,
and the oxidation reaction is known to be catalyzed by polyphenol oxidases [29]. To
identify candidate genes related to the browning process, we screened genes specifically
upregulated in RP28, which was the only sample with an RP of the four samples used in
our transcriptome analysis. GO enrichment analysis of 56 DEGs specific to RP28 revealed
the presence of three laccase genes, which encode a type of polyphenol oxidase. Laccases
are members of the multicopper oxidase enzyme family, which catalyze the oxidation
of phenolic substrates [30]. In plants, laccase functions in various processes, including
lignification in cell walls, wound healing, responses to stress, seed yield determination, and
seed coat color determination. In Arabidopsis, TT10/AtLAC15 was identified as the gene
that controls oxidative browning of the seed coat, and its function is well-characterized [9].
Additionally, BnTT10, ADE/LAC, and LAC14-4 have also been reported as browning-
related genes in rapeseed, litchi, and longan, respectively [31–33]. In rice, OsLAC10 and
OsLAC13 are reported to play roles in the Cu stress response and lignin biosynthesis and
the regulation of seed setting rate, respectively [34], but a laccase gene that affects pericarp
color browning has not yet been reported. Therefore, our findings provide important new
insights into the association between laccase and the browning reaction in rice.

5. Conclusions

Comparative biochemical and transcriptomic analyses of RP and WP rice were per-
formed; accordingly, we revealed different expression levels of PA biosynthesis-related
genes in RP and WP rice and identified potential candidate genes that may be responsible
for PA biosynthesis. In particular, OsLAC23, OsLAC28, and OsLAC29 were specifically
upregulated in RP28 undergoing pericarp browning, implying that they are promising
candidate genes for the browning reaction in rice. Overall, these findings broaden our
understanding of PA biosynthesis and pigmentation in color rice, and will help facilitate
in-depth research into the identity and function of the genes involved in this process, which
has not yet been fully characterized.
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