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Abstract: During the crop harvesting process, it is important to obtain the crop yield quickly, accu-
rately and in real time to accelerate the development of smart agriculture. This paper investigated a
denoising method applicable to the impact-type sunflower yield sensor signal under the influence
of complex noise background in the pneumatic seed delivery structure for a sunflower combine
harvester. A signal processing method combining complementary ensemble empirical mode decom-
position (CEEMD) and wavelet threshold denoising (WTD) based on an adaptive decomposition
capability was proposed by analyzing the non-smoothness of the signal with the impact-type sun-
flower yield sensor signal in sunflower fields. CEEMD was used to decompose the sunflower seed
impact analog signal and field impact-type sunflower yield sensor signal adaptively, and the high
frequency components were processed by WTD. Finally the de-noised signal was obtained by re-
construction. An evaluation objective function of the denoising ability of the algorithm based on
signal-noise ratio, root mean square error, smoothness and waveform similarity indexes with dif-
ferent weights was also constructed. The results showed that the evaluation objective functions of
the simulated and measured signals after denoising by the CEEMD-WTD method are 1.9719 and
4.5318, respectively, which are better than the single denoising methods of EMD (1.5096 and 4.0012),
EEMD (1.8248 and 4.0724), CEEMD (1.9516 and 4.3384), and WTD (1.8737 and 4.5294). This method
provides a new idea for signal denoising of the impact-type sunflower yield sensor installed in the
pneumatic seed delivery structure, and further provides theoretical support and technical references
for the development of sunflower high-precision yield measurements in smart agriculture.

Keywords: smart agriculture; sunflower; pneumatic conveying; impact signal; CEEMD; WTD

1. Introduction

Sunflower (Helianthus annuus L.), an important agricultural cash crop and oil crop
in China, is mainly grown in Inner Mongolia, Xinjiang, Jilin, and Gansu [1]. With the
development of information technology, artificial intelligence and biotechnology, Chinese
agriculture has gradually entered into a new stage of modern agriculture with digitalization,
refinement, standardization and scale production, opening up an agriculture 4.0 model
that is integrated with the Internet and highly intelligent [2]. It will face many challenges
in the future [3,4], and will also obtain good development opportunities [5–7]. In the
process of crop planting and production management, acquiring information on crop yield
distribution in farmland in an online, real-time, and effective way is the main starting
point for implementing precision agriculture [8,9], and is the primary task for improving
the precision agriculture production management system and promoting smart agricul-
ture. Along with the development and application of agricultural mechanization, sensor
intelligence and Internet of Things technology, crop yield online monitoring technology
has gradually developed into a key technical means of precision agricultural production
management systems. Crop online yield measurement technology is an important guaran-
tee to promote the intelligent development of agricultural machinery and equipment by
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means of yield measurement sensors, moisture sensors and positioning devices installed
in the combine harvester to achieve online real-time access to information on crop yield
and its spatial distribution variability during the harvesting process. At this stage, do-
mestic and foreign methods for obtaining crop yield information mainly include dynamic
weighing measurement, volume measurement, impact measurement, and radiometric
methods. The main applications of sensors include load cells with cores, such as resistance
strain gauges and pressure ceramics, photoelectric sensors, image sensors, and radiation
sensors with cores, such as X-ray and gamma-ray sources. Among them, impact force
measurement methods are more widely used, and among these, mainly impact-type grain
yield sensors are used [10]. This sensor consists of an impact plate and a force sensor, which
converts the impact force averaged per unit time into a voltage signal. This sensor has a
simpler structure; however, the measurement accuracy is susceptible to the vibration of the
combine harvester.

To improve the yield measurement accuracy of the impact-type grain yield sensor,
Zhou et al. [11] used a thin steel plate at the free end of the cantilever beam for the impact-
type grain yield sensor to form a square cylindrical thin-walled member concentric with
the cantilever beam, and used a polymer damping material to wrap the cantilever beam
to eliminate the effect of vibration. Zhou et al. [12] and Hu et al. [13] designed a two-
plate differential impulse grain flow sensor. One of the force sensors acts as a measuring
beam and receives the impact force influence of grain flow directly, and the other acts as a
reference beam, which is not influenced by the grain flow but only excited by the vibration
of the sensor frame and its own mass, and, finally, the influence of body vibration on the
accuracy of yield measurement is eliminated by a differential vibration elimination circuit.
For the vibration noise of the impact-type grain yield sensor, Maertens et al. [14] designed a
double-trap filter to remove the vibration noise by measuring the mechanical vibration and
the vibration frequency of the lift carrier. Shoji et al. [15] reduced the singular value error
by setting the output threshold of the impact plate at the maximum and minimum flow
rate, and reduced the cumulative error by the sensor output zero. Qian et al. [16] used a
low-pass filter, the addition of vibration isolators, and the design of a two-plate differential
impact-type grain yield sensor to eliminate vibration disturbance signals. Cong et al. [17]
applied a grain-shock frequency harmonic extraction method and a two-parallel beam
signal adaptive interference pair cancellation method for vibration noise cancellation. Wei
et al. [18] used a frequency domain signal processing method. Wang [19] conducted a FIR
low-pass filtering method, which was performed on two parallel beam signals of the sensor.
Chen et al. [20] proposed a de-noise processing method for the output signal of an impact-
type grain yield sensor using wavelet transform. Li et al. [21] reduced the interference of
mechanical vibrations by designing a curved impact plate and double plate differential,
and used a double-threshold filtering method to improve the measurement accuracy.

Comprehensively, and beyond domestic and international development statuses,
existing research scholars have mainly improved the measurement accuracy of impact-type
grain yield sensors through sensor structure optimization and output signal denoising
methods. In terms of structure, the addition of damping materials and additional vibration
detection plates have mainly been used. The method is more costly, with a more complex
design and installation process, and poor feasibility. The methods of sensor output signal
denoising mainly include the filtering method, Fourier spectrum analysis method, wavelet
transform method, etc. The denoising method can reduce the noise of the sensor output
signal to varying degrees and improve the accuracy of measurement yields. The above
denoising algorithms are only applicable to fixed frequency noise in the signal, and the
measurement results are affected by different harvesting machinery and field operation
environments. At the same time, when distinguishing the useful yield measurement signal
from the useless noise, the key parameters need to be set artificially, and the inappropriate
parameter settings will not be able to better distinguish the signal from the noise, and the
existing research has not yet explored the research on the adaptive decomposition of the
output signal of the impulse-type yield measurement sensor, which seriously limits the
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further improvement of the yield measurement accuracy. At present, the impact-type yield
sensor is mainly applied to the combine harvester whose net grain conveying structure is a
scraper-type elevator for the yield monitoring of wheat, rice, and other grains. Compared
with grains, sunflower seeds have huge differences in quality and form, and the net grain
conveying of a sunflower combine harvester is a pneumatic grain conveying structure,
and no research has been conducted on the signal denoising of the impact-type sunflower
yield sensor. Therefore, this impact force yield measurement signal is different from that of
grains, and cannot be directly applied or borrowed from the denoising algorithm of the
impact force yield measurement signal of the scraper-type grain combine harvester.

Based on the above, this study explored the characteristics of the sensor output signal
based on an impulse sunflower seed flow sensor applied to net grain conveying as a
pneumatic structure, and conducted the following studies:

(1) A wavelet threshold denoising method based on complementary ensemble empiri-
cal mode decomposition (CEEMD) was proposed to denoise the sensor signal;

(2) The CEEMD-WTD method was compared with the single empirical mode decom-
position (EMD), ensemble empirical mode decomposition (EEMD), and the field measured
impulse sunflower seed flow sensor signals using numerical simulation signals and field
measurements, including decomposition (EEMD), CEEMD, and wavelet threshold denois-
ing (WTD) methods;

(3) The quantitative analysis of the denoising ability was carried out by the constructed
algorithm denoising evaluation objective function;

The following problems can be solved.
(1) The shortcomings of two single algorithms, CEEMD algorithm and WTD algorithm,

can be solved, and the fused CEEMD-WTD algorithm has adaptive decomposition ability
and fast computation ability to meet the needs of random signal denoising and real-time
yield measurement in field yield measurements;

(2) The shortcomings of the existing single EMD, EEMD, CEEMD and WTD methods
can be solved, which have low applicability in terms of SNR, RMSE, NCC and f, and
provide a feasible idea for the denoising of impulse crop flow sensor signals applied to
pneumatic grain delivery structures.

2. Materials and Methods
2.1. Impact-Type Sunflower Yield Sensor

The grain combine harvester is a type of agricultural equipment that integrates mul-
tiple subsystems, such as walking, cutting, threshing, cleaning, and grain collection [22].
The 4ZXRKS-4 type self-propelled sunflower combine harvester is powered by a diesel
engine and mainly consists of a cutting table, winch, over-bridge, threshing device, cleaning
mechanism, seed pneumatic conveying device, elevator, seed bin, sunflower tray box, etc.
The seed pneumatic conveying device includes a fan and pneumatic conveying pipe, as
shown in Figure 1.

Figure 1. 4ZXRKS-4 type self-propelled sunflower combine harvester: (a) sunflower combine har-
vester structure sketch; and (b) pneumatic conveying device.
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The self-designed impact-type sunflower yield sensor is installed at the outlet of the
seed pneumatic conveying pipe from this combine harvester, as shown in Figure 2.

Figure 2. Impact-type sunflower yield sensor: (a) Front view; (b) Rear view; (c) Structure sketch.

The impact-type sunflower yield sensor consists of two major parts, namely the force
sensor and the impact plate, and both are rigidly fixed as one. Among them, the force
sensor uses an HL-8 double-hole cantilever parallel beam strain gauge force sensor, whose
structure is mainly divided into three parts: elastomer, resistance strain gauge group
bridge, and the power supply circuit of the bridge. In the sunflower harvesting process,
sunflower seeds are threshed, sieved, and cleaned under the action of centrifugal fans, and
continuously impacted on the impact plate of the sensor along the pneumatic conveying
pipeline along the seed outlet. In order to reduce the mechanical damage caused to the
sunflower seeds in the process of measuring the yield, the impact plate is composed of a
rubber buffer plate and acrylic plate stacked back and forth, while using the pressure block
to adjust the distance between the impact plate, the force sensor, and the mounting bracket,
so as to avoid the measurement error caused by the phenomenon of rigid contact. This
causes the deformation of the elastic element affixed with resistance strain gauge, and this
deformation is converted into a voltage signal by the resistance strain gauge bridge, and
this signal is passed through the differential amplifier circuit to obtain the voltage value of
the measurement circuit, but noise, such as the vibration of the combined harvester, will
affect the accuracy of the measurement results and increase the complexity of data analysis.

2.2. Sunflower Yield Signal Characteristics

In this study, the output signal of the impact type sunflower seed yield sensor from
the 2021 field trial was selected for analysis. The voltage signal of the sensor was collected
by STC12C5A60S2 micro controller and saved in real time by using the serial assistant.
Figure 3 shows the change curve of the voltage signal of the impulse sunflower seed flow
sensor in a certain vehicle in the yield measurement test, and the sampling frequency is
set to 50 Hz. Section I is the sensor installation when it is ready and the signal acquisition
starts; section II is the harvester start and fan start; section III is the fan start having finished
and in a stable state; and section IV is the real-time harvesting process of the harvester. The
signal was mainly distributed below 400 mV, with an amplitude range 0~818 mV, a mean
value of 252.39 mV, a standard deviation of 173.26 mV and a variation coefficient of 69%.

In order to reduce the cost of microcontroller computing, this paper only analyzed
and de-noised the sensor output signals of the segment IV real-time harvesting process.
The autocorrelation function and partial correlation function were generated in EViews
9.0 software (Developed by Quantitative Micro Software) after zero-meaning the sampled
signals from any two segments of yield measurement, as shown in Figure 4. If the auto
correlation and partial correlation functions of the sampled signals are neither truncated
nor trailed, the output signal of the impact-type sunflower yield sensors are determined to
be a non-stationary random signal.
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Figure 3. Impact-type sunflower yield sensor voltage original signal.

Figure 4. Sampled signal autocorrelation function and partial correlation function: (a) Sampling
signal 1; and (b) Sampling signal 2.

2.3. Algorithm Theory
2.3.1. Complementary Ensemble Empirical Mode Decomposition (CEEMD)

CEEMD is a noise-assisted analysis method with the advantages of EMD to deal
with non-stationary signals, and the added auxiliary noise is in the form of positive and
negative pairs, which can effectively solve the phenomenon of EMD modal mixing and
the error of reconstructing the model due to EEMD white noise residue [23]. This method
is computationally efficient and is an effective algorithm for dealing with nonlinear and
non-stationary signals [24,25].

The main steps of the CEEMD method are shown below.
Step 1: Add white noise of positive and negative paired form with amplitude k and I

times to the original noisy signal to generate an ensemble signal, where I is the average
number of the ensemble. Generally, I is taken as 100 and k is taken as 0.02 [26];

Step 2: Apply EMD to decompose each ensemble signal to obtain 2I sets of intrinsic
mode functions (IMF) components;

Step 3: The j-th IMF component of the signal decomposition is obtained by summing
and averaging the 2I sets of IMF components, denoted as

cj =
1
2I

2I

∑
i=1

cij (1)

where cj denotes the j-th IMF component of the CEEMD decomposition and cij denotes the
j-th IMF component of the i-th signal.

2.3.2. Wavelet Threshold Denoising (WTD)

The basic principle of WTD is to set a critical threshold λ. If the wavelet coefficients < λ,
the coefficients are mainly generated by noise and this part of the coefficients is removed; if
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the wavelet coefficients > λ, the coefficients are mainly generated by the signal and this part
of the coefficients is retained, and finally the processed wavelet coefficients are inverted to
obtain the de-noised signal [27,28]. It is essentially a band-pass filter, which acts as a series
of low-pass and high-pass filters equivalent [29–31].

The main steps of WTD are shown below.
Step 1: Do N-point discrete sampling of F(t) to get the discrete signal F(n), n = 0, 1, . . . ,

N−1, after a suitable wavelet basis and the best wavelet decomposition layer j, the wavelet
transform is

ωj,k = 2−j/2
N−1

∑
n=1

F(n)ψ(2−jn− k) (2)

A set of wavelet decomposition coefficients is obtained ωj,k, where j is the number
of wavelet decomposition layers, i.e., the wavelet decomposition scale, and k denotes the
position. ωj,k consists of two parts, one is the wavelet coefficients uj,k corresponding to the
useful signal, and the other is the wavelet coefficients vj,k corresponding to the noise.

Step 2: For the high-frequency coefficients of each layer from layer 1 to layer j, a rea-
sonable threshold function is selected to correct the wavelet coefficients, and the estimated
wavelet coefficients ω̂j,k are obtained by implementing a threshold quantization process for

the high-frequency coefficients, and making
∥∥∥ω̂j,k − uj,k

∥∥∥ as small as possible.
Step 3: The estimated wavelet coefficients ω̂j,k after the threshold quantization process

are wavelet inverse transformed to complete the signal reconstruction and obtain the
estimated signal F̂(n), which is the signal after wavelet threshold denoising.

Therefore, the wavelet basis function, the number of decomposition layers, the thresh-
old function and the threshold value need to be determined when using WTD for the
analysis of sensor signals. Only by choosing appropriate parameter values for these key
parameters can the desired noise reduction effect be achieved [32].

2.3.3. WTD Denoising Method Based on CEEMD

For the sunflower yield measurement signal in this study, when the noisy yield
measurement signal contains valid information about the smaller amplitude, direct wavelet
threshold denoising will remove most of the noise while removing some high-frequency
valid signals [33]. In contrast, direct discarding of high-frequency IMF components when
using CEEMD decomposition denoising will cause the problem of incomplete removal of
high-frequency noise or loss of high-frequency effective signals. Meanwhile, it is difficult
to choose the best parameters for the wavelet basis and threshold of the wavelet threshold
denoising method, and the inappropriate wavelet basis and threshold directly affect the
quality of denoising, but it can suppress the effect of modal aliasing and facilitate the noise
reduction of IMFs with different noise contents; the CEEMD method has strong application
adaptability, which can make up for the shortcomings of the length of the wavelet basis
function and the decomposition transform method cannot be adaptive [34]; considering
the non-smoothness of the impulse sunflower seed flow sensor signal and the adaptability
of the denoising method to the non-smooth signal, this paper combined CEEMD with the
wavelet threshold denoising method to solve the above problems in the denoising process
by a complementary approach.

In this paper, we took advantage of CEEMD to decompose the vibration signal into
several IMF. The noise component was then removed by calculating the correlation coef-
ficient of the IMF. Since there was still noise in the removed noise signal, this noise was
denoised by the wavelet threshold denoising method. Finally, the processed signal was
reconstructed to obtain the final denoised signal. Figure 5 shows the flow chart of WTD
based on CEEMD.
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Figure 5. Impact-type sunflower yield sensor signal denoising flow chart combining CEEMD
and WTD.

Step 1: The original signal x(t) is CEEMD-decomposed to obtain each IMF compo-
nent, which satisfies a series distribution from high to low frequencies, with the first few
components being high-frequency components and random noise distributed in these
high-frequency IMF components.

Suppose the reconfiguration signal ỹk is

ỹk =
n

∑
j=k

IMFj(t) + rn(t), k = 1, 2, . . . , n− 1 (3)

where: IMFj (t) is the j-th order IMF component obtained by CEEMD decomposition; n is
the total number of IMF components; rn (t) is the residual component.

Step 2: According to the criterion of calculating the continuous mean square error, the
boundary between the signal and the noise (i.e., the high-frequency and low-frequency
IMF demarcation points) is determined, resulting in

CMSE
(
ỹk, ỹk+1

)
=

1
N

N

∑
i=1

[
ỹk(ti)− ỹk+1(ti)

]2
=

1
N

N

∑
i=1

[IMFk(ti)]
2 (4)

where: N is the signal length; [IMFk(ti)] is the k-th order IMF component after
CEEMD decomposition.

The CMSE calculated for this signal is taken as the minimum value to obtain the high
and low frequency cutoffs js:

js = argmin
1≤k≤n−1

[
CMSE

(
ỹk, ỹk+1

)]
(5)

By calculating the minimum value of the continuous mean square error of the mea-
sured output signal, the demarcation point js = m between the signal and the noise is
obtained, and the wavelet threshold denoising is done for each high frequency IMF before
this point to obtain the first m IMF components, i.e., IMFj’ (j = 1, 2, . . . , m).



Agriculture 2023, 13, 166 8 of 21

Step 3: The high frequency IMF component IMFj’, the remaining low frequency
component IMFj” and the residual rn(t) after wavelet threshold denoising are reconstructed
to finally obtain the sunflower seed yield measurement signal after denoising, as

x′(t) =
m

∑
j=1

IMFj
′(t) +

n

∑
j=m+1

IMFj
′′ (t) + rn(t) (6)

Among them, the key parameters of WTD are specifically set as follows.
(1) Wavelet basis function.
Wavelet basis functions are commonly Bior wavelet, dB wavelet, Sym wavelet and Ciof

wavelet. To determine the noise reduction level of the four wavelet bases, Bior, dB, Sym
and Ciof are used as the test signals, and the noise standard deviation σ = 2 is set for signal
decomposition, and the signal pseudo-noise reduction is evaluated by the signal-to-noise
ratio and root mean square error as the signal pseudo-noise reduction criterion. According
to the denoising effect, Sym8 signal-to-noise ratio is the largest, 5.6651; root mean square
error is the smallest, 4.0126. Therefore, Sym8 wavelet basis is chosen in this paper.

(2) Number of decomposition layers.
The number of wavelet decomposition layers determines the separation effect of noise

and signal. In order to achieve a good denoising effect and signal reconstruction without
distortion, this paper compared the noise reduction effect of different decomposition layers
of wavelet threshold denoising of measured signal and found that the best noise reduction
effect is achieved when the number of decomposition layers of wavelet threshold denoising
of measured signal is four layers.

(3) Threshold function.
Currently, the commonly used threshold functions are mainly hard threshold functions

and soft threshold functions [35].
Hard threshold function:

Ŵj,k =

 Wj,k

∣∣∣Wj,k

∣∣∣≥ λ

0
∣∣∣Wj,k

∣∣∣< λ
(7)

where, Ŵj,k denotes the wavelet coefficients after threshold denoising; Wj,k denotes the
wavelet decomposition coefficients; and λ denotes the threshold value.

Soft threshold function:

Ŵj,k =

 sign(Wj,k)(
∣∣∣Wj,k

∣∣∣−λ)
∣∣∣Wj,k

∣∣∣> λ

0
∣∣∣Wj,k

∣∣∣< λ
(8)

where Ŵj,k is the wavelet coefficient after threshold denoising; Wj,k is the wavelet decompo-
sition coefficient; sign(·) is the sign function; λ is the threshold value; N is the total length
of the signal; and σ is the standard deviation of the noise.

To verify the denoising effects of hard and soft threshold functions, different amounts
of white noise are added to the original data, and the Sym8 wavelet basis is selected to do
4-layer smooth wavelet decomposition of the noise-containing signal under different signal-
to-noise conditions, and the high-frequency coefficients on each time scale are denoised
by applying hard and soft threshold functions, respectively. The results show that the
signal-to-noise ratio after soft threshold is significantly higher than that of hard threshold
under the same condition of signal-to-noise ratio. Therefore, the soft threshold function is
chosen in this paper.

(4) Threshold
When performing wavelet threshold denoising on a signal, the size of the threshold

plays a decisive role in the denoising effect. There are four main methods commonly
used for threshold selection: unbiased likelihood estimation threshold, very large and
very small threshold, fixed threshold and heuristic threshold criterion [36], among which,
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heuristic threshold is a combination of fixed threshold criterion and unbiased likelihood
estimation threshold criterion, which is a more reasonable selection criterion for predicting
the threshold of variables. Therefore, the heuristic threshold criterion is chosen in this paper.

Let s be the sum of squares of N wavelet decomposition coefficients such that
η = (s− N)/N, µ = (log2 N)2/3√N. Then, the heuristic threshold λh is calculated as shown:

λh =

{
λs η ≤ µ

min(λs, λr) η > µ
(9)

where λs is the fixed threshold and λr is the unbiased likelihood estimation threshold,
calculated from Equations (9) and (10), respectively.

λs = δ
√

2 log N (10)
Rigrsure(λ) = ‖wλ−w‖2+(N−2N0)δ

2

N
λr = argmin

0≤λ≤
√

2 log N

Rigrsure(λ) (11)

where δ is the noise standard deviation; N is the signal length; wλ is the wavelet coefficients
obtained using threshold shrinkage; w denotes the original wavelet coefficients; N0 is the
number of wavelet coefficients after they are set to zero.

2.3.4. Criteria for Judging Denoising Effect

Based on the requirements of sunflower yield measurement signals, this study con-
structed an effect judgment criterion applicable to the signal denoising of impact-type
sunflower yield sensor. According to the signal-to-noise ratio (SNR), root mean square er-
ror (RMSE), smoothness (S) and waveform similarity (WS) of the denoised signal, where the
larger the SNR and WS the better, and the smaller the RMSE and S the better [37,38]. Con-
sidering the case where RMSE and S are equal to zero, the reciprocal of (1 + RMSE) is called
the algorithmic approximation and is denoted as RMSE−1, and obviously, 0 < RMSE−1 ≤ 1;
the reciprocal of (1 + S) is called the algorithmic smoothness and is denoted as S−1, then
0 < S−1 ≤ 1.

In this paper, different weights were given to the above indicators according to the
requirements of the measured output signal, and the following criteria were established to
determine the denoising effect.

Constraints:

max{SNR} = max
{

10 lg
(

n
∑

i=1
x2

i /
n
∑

i=1

(
xi −

^
x i

)2
)}

max
{

RMSE−1
}
= max

{
1/1 +

√
1
n

n
∑

i=1

(
xi −

^
x i

)2
}

max
{

S−1
}
= max

{
1/
(

1 +
n−1
∑

i=1

[
^
x i+1 −

^
x i

]2
/

n−1
∑

i=1
[xi+1 − xi]

2
) }

max{WS}= max

{
n
∑

i=1

^
x ixi/

√
n
∑

i=1
xi

2
n
∑

i=1

^
x i

2
}

(12)

where xi is the original signal;
^
x i is the denoised signal; n is the signal length.

The denoising algorithm evaluates the objective function f as

max{ f } = max
{

αSNR+βRMSE−1 + γS−1 + δWS
}

(13)

where α is the influence factor of SNR; β is the influence factor of RMSE−1; γ is the influence
factor of S−1; δ is the influence factor of WS; and α + β+γ + δ = 1.
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Consider that the signal post-processing work is mainly for yield measurement signal
extraction and yield analysis. Therefore, the smaller the noise in the signal is expected to be
better. We pay more attention to the denoising ability and denoising effect of the denoising
method, so we set the SNR and RMSE−1 influence factor to be larger, at 0.3. The influence
factor of S−1 and WS is set to be smaller, at 0.2, i.e., α = β = 0.3 and γ = δ = 0.2.

3. Results and Discussion
3.1. Simulation Signal Verification

Considering the actual working conditions of the sunflower combine harvester, the
impact-type sunflower yield sensor was approximated as a single-degree-of-freedom
second-order linear system in this paper. Meanwhile, the simulated output signal of
the impact-type sunflower yield sensor was constructed by combining the impact function
of single grain [39]. Gaussian white noise was added to the simulated signal as the noise in
the measured yield. The simulated signal was set as

x(t) = s(t) + n(t) (14)

s(t) =
F̂

m
√

1− ξ2
e−ξωnt sin

(√
1− ξ2ωnt

)
(15)

where x(t) is the noise-containing simulation signal output from the sensor, s(t) is the pure
simulation signal, n(t) is the Gaussian white noise signal, F̂ is the pulse force, taking the
range of the sensor as 5 N; ωn is the intrinsic frequency of the sensor, taking 28.105 Hz; ζ is
the damping ratio of the sensor, taking 0.7; m is the mass of a single sunflower seed, taking
0.0002 kg; the Gaussian white noise amplitude is set to 0.5, and the sampling frequency is
50 Hz.

The time domain signals of the pure simulation signal and the noisy simulation signal
are shown in Figure 6.

Figure 6. Time domain signal diagram of the simulated signal.

To compare the effectiveness of existing decomposition algorithms for denoising, this
paper performs EMD, EEMD and CEEMD decomposition on the numerically simulated
impact-type sunflower yield sensor output signal x(t). Among them, the white noise signal-
to-noise ratio in the EEMD and CEEMD algorithms is set to 0.2, the overall average number
of iterations is 100, and the maximum number of iterations is 1000. the decomposition
results are shown in Figure 7. As can be seen from Figure 7, EMD adaptively decomposes
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the simulated signal into 8 components, i.e., IMF1~IMF7 and residual res; EEMD and
CEEMD adaptively decompose the simulated signal into 10 components, i.e., IMF1~IMF9
and residual res. The IMF components obtained after the decomposition of EMD and
EEMD have obvious modal mixing problems: IMF1 does not extract the high-frequency
components separately but adulterates the low-frequency ones. Similarly, the other IMFs
contain fluctuating factors of different frequencies. This makes the IMF lose the character-
istics of a single feature scale, complicating the signal analysis and making it impossible
to identify the exact components in each IMF. In contrast, the IMF components obtained
after CEEMD decomposition are least affected by modal confounding, and the obtained
IMF5 contains only one time-scale feature component, which is beneficial to the subsequent
signal denoising.

Figure 7. Simulation signal decomposition: (a) EMD; (b) EEMD; and (c) CEEMD.
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The energy distribution of each order IMF component is obtained according to the
continuous mean square error calculation Equation (3) as shown in Figure 8, and it is
determined that the IMF of local energy abrupt change is the demarcation point of noise
and signal. Therefore, the demarcation point js = 4 for EMD, js = 4 for EEMD and js = 4 for
CEEMD in this paper.

Figure 8. IMF energy per order for the simulated signal: (a) EMD; (b) EEMD; (c) CEEMD.

According to the demarcation point js of EMD, EEMD and CEEMD, the IMF compo-
nents after the 5-th order of EMD, EEMD and CEEMD are reconstructed separately, and
the simulated signals denoised by EMD, EEMD and CEEMD decomposition are obtained
as shown in Figure 9. It can be seen that the noise reduction effect of EMD, EEMD and
CEEMD is basically ideal, which can effectively suppress the noise, and the denoised
signal is smooth and almost burr-free. the waveform after denoising of CEEMD can better
restore the fluctuation of the simulated signal compared with EMD and EEMD, and EEMD
appears to be smoother. However, since the high frequency component still contains valid
information, the high frequency component is directly discarded according to the high
and low frequency dividing points, which makes the signal amplitude decrease while
noise reduction.

Figure 9. Time domain diagram of the simulated signal before and after denoising: (a) EMD;
(b) EEMD; (c) CEEMD.

Meanwhile, the simulated signal is processed by using wavelet threshold denoising
method, and according to the parameters determined above, the wavelet basis function
is chosen as Sym8, the number of decomposition layers is 4, and the results of wavelet
multilayer decomposition are shown in Figure 10. Where, a is the approximation coefficient
and d is the detail coefficient. Therefore, the low-frequency signal corresponds to the
approximate signal a4 of the decomposition, which has the same trend as the simulated
signal; the high-frequency signal corresponds to the detail signal d1 of the decomposition,
which is mainly the noise signal. A soft threshold function with a threshold selection
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heuristic threshold criterion is used to perform wavelet threshold denoising on the high-
frequency part obtained from wavelet decomposition and reconstruct it with the low-
frequency signal, and the results are shown in Figure 11. It can be found that the simulated
signal after wavelet threshold denoising can filter out the high-frequency noise well, and
the characteristics of the original signal can be well retained.

Figure 10. Simulated signal wavelet decomposition.

Figure 11. Simulated signal before and after wavelet threshold denoising.

In addition, the simulated signal is denoised using the method CEEMD-WTD pro-
posed in this paper, and the denoising steps are shown in 2.3.3. The denoising results of
CEEMD-WTD are shown in Figure 12, and the denoising effect is relatively satisfactory,
and the method effectively avoids the weakening of signal features after noise reduction
caused by the direct removal of high-frequency components.
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Figure 12. Simulated signal before and after CEEMD-WTD denoising.

In order to compare and analyze the advantages of the proposed method CEEMD-
WTD denoising method and other decomposition denoising methods (EMD, EEMD,
CEEMD, WTD), the denoising results of the above five denoising methods on the simulated
signals are compared and analyzed, and the denoising results are shown in Figure 13.

Figure 13. Time domain diagram of the simulated signal after denoising: (a) global signal; (b) locally
amplified signals-1; (c) locally amplified signals-2; and (d) locally amplified signals-3.
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As can be seen in Figure 13, EMD, EEMD, CEEMD, WTD, and our newly proposed
method (CEEMD-WTD) can all reduce the signal amplitude to reduce or eliminate the noise
in the middle and high frequencies. The local amplified signals of 0–2 s, 0.5~2 s and 4~6 s
are selected for clearer observation. Among them, EMD, EEMD, and CEEMD reduced the
signal amplitude, while WTD showed some panning in the time axis, all of which caused
the loss of useful information in the signal. The simulated signal after denoising based
on the CEEMD-WTD method has a curve mostly between these five methods, and the
data at the peaks and valleys are smoother, and the amplitude of the signal at the peaks
and valleys is well preserved, which ensures the amplitude of the simulated signal to the
maximum extent. Therefore, in general, the method proposed in this paper has a good
denoising effect and is suitable for the denoising of the output signal of the impact-type
sunflower yield sensor.

In order to quantitatively compare the effects of the above five noise reduction methods
more intuitively from the data, we use SNR, RMSE, S, and WS as evaluation indexes, and
combine the algorithm denoising effect judgment criterion constructed in this paper, i.e.,
the denoising algorithm objective function (f ) as reference, to compare the simulated signals
processed by the above noise reduction, and the comparison results are shown in Table 1.
From Table 1, it can be seen that CEEMD-WTD has the largest SNR, WS and f and the
smallest RMSE compared with EMD, EEMD, CEEMD and WTD, then the CEEMD-WTD
method proposed in this paper has the strongest denoising ability compared with the other
four methods.

Table 1. Simulated signal denoising evaluation.

SNR RMSE S WS f

EMD 3.8455 98.4998 0.0015 0.7665 1.5096
EEMD 4.8594 99.9524 0.0010 0.8209 1.8248

CEEMD 5.2715 95.3205 0.0031 0.8385 1.9516
WTD 5.0185 98.1376 0.0023 0.8277 1.8737

CEEMD-WTD 5.3375 94.5993 0.0037 0.8412 1.9719

3.2. Sensor Real Signal Verification

In this paper, the measured signals from a field impulse sunflower seed flow sensor
were de-noised and analyzed on 16 October 2021, in Nai Zigai Township, Tokoto County,
Hohhot City, Inner Mongolia Autonomous Region, China. The trial field was planted
with an SH363 sunflower hybrid variety and the moisture content at harvest was 23.4%,
which was within the standard moisture content range for sunflower harvests. The impulse
sunflower seed mass flow sensor was equipped with a 4ZXRKS-4 self-propelled sunflower
combine harvester (Inner Mongolia Hongchang Machinery Factory, China) with factory
number XB0087. The field test is shown in Figure 14.

Figure 14. Sunflower harvesting field experiment: (a) 4ZXRKS-4 type self-propelled sunflower
combine harvester; and (b) impact-type sunflower yield sensor.

The output voltage signal of the impact-type sunflower yield sensor is shown in
Figure 15.
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Figure 15. Sensor original signal.

In this paper, EMD, EEMD, CEEMD and wavelet decomposition were performed on
the output signal of impact-type sunflower yield sensor. Among them, the white noise
signal-to-noise ratio in EEMD and CEEMD algorithms was set to 0.2, the overall average
number is 100, and the maximum number of iterations was 1000; the wavelet basis function
of wavelet decomposition was selected as Sym8, and the number of decomposition layers
was four. The decomposition results are shown in Figure 16. From the decomposition
results, it can be seen that the frequency domain amplitude of the sensor output voltage
signal is high, and the frequency is close to 0 Hz, which is mainly because the sensor signal
is a DC component. the IMF components all meet the distribution from high frequency
to low frequency, it can be seen that the high frequency noise mainly exists in the first
three orders of IMF components, but there is still the phenomenon of modal aliasing. In
the wavelet decomposition, the four-layer wavelet decomposition effectively reveals the
high-frequency signal but cannot better realize the adaptive decomposition of the signal
according to the time-scale characteristics of the sensor signal itself. EMD adaptively
decomposes the sensor signal into 12 components, i.e., IMF1~IMF11 and residual res,
and the high-frequency signal exists in IMF1~IMF5; EEMD adaptively decomposes the
sensor signal into 13 components, i.e., IMF1~IMF12 and residual res, with high-frequency
signals present in IMF1~IMF5; CEEMD adaptively decomposes the simulated signal into
14 components, i.e., IMF1~IMF13 and residual res, with high frequency signals present in
IMF1~IMF7.
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To further determine the high and low frequency cut-off points accurately, the energy
distribution of each order IMF component was obtained according to the continuous mean
square error as shown in Table 2. It was finally determined that the cut-off points js for
EMD, EEMD and CEEMD of the sensor signals are all 5, and js = 7 for CEEMD.

Table 2. Sensor signal per order IMF energy.

IMF EMD EEMD CEEMD

1 0.0394 0.0193 0.0193
2 0.0762 0.0498 0.0009
3 0.0433 0.0298 0.0226
4 0.0255 0.0126 0.0350
5 0.0171 0.0081 0.0128
6 0.0236 0.0103 0.0139
7 0.0456 0.0193 0.0085
8 0.0662 0.0223 0.0108
9 0.1039 0.0378 0.0270
10 0.0205 0.0432 0.0153
11 0.0920 0.1949 0.0653
12 3.3800 1.4921 0.0328
13 - 0.0537 0.0630
14 - - 3.1563

Unit: 1 × 104.

The signals were denoised by EMD, EEMD, CEEMD, WTD and the method proposed
in this paper, CEEMD-WTD, respectively. In the CEEMD-WTD method proposed in this
paper, the CEEMD decomposition to obtain the first 7-th order IMF high-frequency com-
ponents was processed by the wavelet threshold denoising method, and the processed
IMF high-frequency components and the remaining IMF low-frequency components were
reconstructed. Other decomposition methods use direct filtering of high-frequency com-
ponents. Comparing the original signal, the EMD processed signal, the EEMD processed
signal, the CEEMD processed signal, the WTD processed signal and the CEEMD-WTD
processed signal proposed in this paper is shown in Figure 17, and the evaluation of the
denoising effect is shown in Table 3.

Figure 17. Time domain diagram of the sensor signal after denoising.
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Table 3. Sensor signal denoising evaluation.

SNR RMSE S WS f

EMD 12.6667 44.9673 0.00054 0.97257 4.0012
EEMD 12.9026 43.7625 0.00064 0.97404 4.0724

CEEMD 13.1225 42.6684 0.00136 0.97533 4.3384
WTD 13.7635 39.6329 0.01413 0.97876 4.5294

CEEMD-WTD 13.7715 39.5962 0.01412 0.97880 4.5318

It can be seen that EMD, EEMD, and CEEMD can provide reasonable decomposition
results, and the signal smoothing effect is outstanding, which can obtain a better noise
reduction effect, and the adaptive decomposition ability fundamentally gets rid of the
interference of human factors. Among them, the SRN, RMSE, and WS of CEEMD are the
highest, which indicates that the denoising and waveform restoration ability of CEEMD
is stronger. Although waveform distortion exists in WTD, the SRN, RMSE, and WS are
better than those of EMD, EEMD, and CEEMD, while the smoothing performance of EMD
and EEMD is better, but the degree of detail retention is slightly worse. The CEEMD-WTD
method proposed in this paper better preserves the main information of the impact-type
sunflower yield sensor signal, suppresses the modal aliasing phenomenon of the adaptive
decomposition process, and significantly reduces the burrs near the signal extremum point.
Although the smoothing performance seems to be poor, the fluctuation of the signal is well
restored, and the similarity between the denoised waveform and the original waveform
is high, and the signal is almost undistorted, and the denoising effect is better than the
other four algorithms both visually and quantitatively analyzed. It proves that the method
proposed in this paper is applicable to the signal noise reduction of impact-type sunflower
yield sensor with pneumatic grain delivery structure, which has good reasonableness
and superiority.

4. Conclusions

(1) Analyzing the output signal of the impact-type sensor for sunflower combine
harvester, it was observed that the autocorrelation function and partial correlation function
of the sampled signal are neither truncated nor trailing, and the output signal of the
impact-type sunflower yield sensor is determined to be a non-stationary random signal;

(2) Based on the characteristics of the non-smooth random signal of the impact-type
sunflower yield sensor, a targeted CEEMD-WTD denoising method is proposed for the
impact-type sensor signal adapted to the pneumatic seed delivery structure. The method
combines the adaptive decomposition capability of CEEMD and the fast computation
capability of WTD, which can meet the needs of field yield measurement random signal
denoising and real-time yield measurement;

(3) By constructing the CEEMD-WTD algorithm denoising ability evaluation objective
function (f ) and evaluating the denoising effect with different weights of signal-to-noise
ratio (SNR), root mean square error (RMSE), smoothness (S) and waveform similarity (WS),
the algorithm achieves a balance between denoising effect and signal fidelity;

(4) By comparing and analyzing the denoising effect of the sunflower seed impact
simulation signal and the actual measured signal of the field impulse type sunflower seed
flow sensor, it can be seen that CEEMD-WTD has significant advantages over the existing
single EMD, EEMD, CEEMD, and WTD methods in terms of SNR, RMSE, WS, and f, and is
suitable for application to the pneumatic grain delivery structure of impact-type sunflower
yield sensor signal de-noising.

Author Contributions: Conceptualization, S.W. and Z.Y.; methodology, S.W., X.Z. and Z.Y.; software,
S.W. and W.L; validation, X.Z. and D.Z.; formal analysis, J.D.; resources, J.D.; data curation, W.L. and
J.D.; writing—original draft preparation, X.Z. and D.Z.; writing—review and editing, S.W., D.Z. and
Z.Y.; visualization, S.W. and W.L.; supervision, Z.Y.; project administration, Z.Y.; funding acquisition,
Z.Y. All authors have read and agreed to the published version of the manuscript.



Agriculture 2023, 13, 166 20 of 21

Funding: This research was funded by NATIONAL NATURAL SCIENCE FOUNDATION OF
CHINA, grant number 51865047.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We would like to thank Changwei Niu, Aorigele, Yipeng Du, Zhizhen An, Jian
Song, Xiaochao Chen, and Ke Wang for their vital support to the sunflower field experiment.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Yang, H.; Duan, X.; Wei, L.; Liu, B.; Qu, Y.; Lian, J. Demand of Sunflower Market and Breeding Direction. J. Shanxi Agric. Sci. 2018,

46, 1057–1060+1064.
2. China Telecom Smart Agriculture Research Group. Smart Agriculture: ICT Leads to Green Development; Publishing House of

Electronics Industry: Beijing, China, 2013; pp. 50–51.
3. Araujo Zanella, A.R.; Silva, E.; Albini, L.C.P. Security challenges to smart agriculture: Current state, key issues, and future

directions. Array 2020, 8, 100048. [CrossRef]
4. Tzounis, A.; Katsoulas, N.; Bartzanas, T.; Kittas, C. Internet of Things in agriculture, recent advances and future challenges.

Biosyst. Eng. 2017, 164, 31–48. [CrossRef]
5. Torky, M.; Hassanein, A.E. Integrating blockchain and the internet of things in precision agriculture: Analysis, opportunities, and

challenges. Comput. Electron. Agric. 2020, 178, 105476. [CrossRef]
6. Shankarnarayan, V.K.; Ramakrishna, H. Paradigm change in Indian agricultural practices using Big Data: Challenges and

opportunities from field to plate. Inf. Process. Agric. 2020, 7, 355–368.
7. Tang, Y.; Dananjayan, S.; Hou, C.; Guo, Q.; Luo, S.; He, Y. A survey on the 5G network and its impact on agriculture: Challenges

and opportunities. Comput. Electron. Agric. 2021, 180, 105895. [CrossRef]
8. Li, M. The technique of crop yield monitor and key equipment. Agric. Netw. Inf. 2004, 4, 34–38.
9. Wang, M. Thinking Through the Experiment, Demonstration and Development Research on Precision Agriculture. Rev. China

Agric. Sci. Technol. 2003, 5, 7–12.
10. Wang, S.; Yu, Z.; Zhang, W.; Yang, L.; Zhang, Z.; Aorigele. Review of recent advances in online yield monitoring for grain combine

harvester. Trans. Chin. Soc. Agric. Eng. (Trans. CSAE) 2021, 37, 58–70.
11. Zhou, J.; Zhou, G.; Miao, Y.; Liu, C. Damping design of impact-based grain yield sensor. Trans. Chin. Soc. Agric. Mach. 2005, 36,

127–129+133.
12. Zhou, J.; Cong, B.; Liu, C. Elimination of vibration noise from an impact-type grain mass flow sensor. Precis. Agric. 2014, 15,

627–638. [CrossRef]
13. Hu, J.; Luo, X.; Ruan, H.; Chen, S.; Li, Y. Design of a dual-plate differential impact-based yield sensor. Trans. Chin. Soc. Agric.

Mach. 2009, 40, 69–72.
14. Maertens, K.; Reyns, P.; Baerdemaeker, J.D. Double adaptive notch filter for mechanical grain flow sensors. J. Sound Vib. 2003, 266,

645–654. [CrossRef]
15. Shoji, K.; Miyamoto, M. Improving the accuracy of estimating grain weight by discriminating each grain impact on the yield

sensor. Precis. Agric. 2013, 15, 31–43. [CrossRef]
16. Qian, P.; Lu, T.; Shen, C.; Chen, S. Influence of vibration on the grain flow sensor during the harvest and the difference elimination

method. Int. J. Agric. Biol. Eng. 2021, 14, 149–162. [CrossRef]
17. Cong, B.; Zhou, J. Vibration Noise Elimination for a Grain Flow Sensor of Dual Parallel Beam Load Cells. Chin. J. Sens. Actuators

2013, 26, 377–381.
18. Wei, X.; Zhang, J.; Dan, Z.; Liu, C. Signal processing method of impact-based grain flow sensor for predicted yield. Trans. Chin.

Soc. Agric. Eng. (Trans. CSAE) 2014, 30, 222–228.
19. Wang, H. Development of Data Processing System for Impact-based Grain Flow Sensor Based on DSP. Master’s Thesis, Nanjing

Agricultural University, Nanjing, China, 2015.
20. Chen, J.; Wang, K.; Li, Y. Wavelet denoising method for grain flow signal based on Mallat algorithm. Trans. Chin. Soc. Agric. Eng.

(Trans. CSAE) 2017, 33, 190–197.
21. Li, X.; Li, M.; Wang, X.; Zheng, L.; Zhang, M.; Sun, M.; Sun, H. Development and denoising test of grain combine with remote

yield monitoring system. Trans. Chin. Soc. Agric. Eng. (Trans. CSAE) 2014, 30, 1–8.
22. Li, Y.; Xu, L.; Lv, L.; Shi, Y.; Yu, X. Study on Modeling Method of a Multi-Parameter Control System for Threshing and Cleaning

Devices in the Grain Combine Harvester. Agriculture 2022, 12, 1483. [CrossRef]
23. Ding, Y.; Yu, G.; Tian, R.; Sun, Y. Application of a Hybrid CEEMD-LSTM Model Based on the Standardized Precipitation Index

for Drought Forecasting: The Case of the Xinjiang Uygur Autonomous Region, China. Atmosphere 2022, 13, 1504. [CrossRef]

http://doi.org/10.1016/j.array.2020.100048
http://doi.org/10.1016/j.biosystemseng.2017.09.007
http://doi.org/10.1016/j.compag.2020.105476
http://doi.org/10.1016/j.compag.2020.105895
http://doi.org/10.1007/s11119-014-9359-4
http://doi.org/10.1016/S0022-460X(03)00590-X
http://doi.org/10.1007/s11119-013-9327-4
http://doi.org/10.25165/j.ijabe.20211405.6748
http://doi.org/10.3390/agriculture12091483
http://doi.org/10.3390/atmos13091504


Agriculture 2023, 13, 166 21 of 21

24. Niu, D.; Wang, J. Elevator Car Vibration Signal Denoising Method Based on CEEMD and Bilateral Filtering. Sensors 2022, 22, 6602.
[CrossRef] [PubMed]

25. Chen, N.; Sun, H.; Zhang, Q.; Li, S. A Short-Term Wind Speed Forecasting Model Based on EMD/CEEMD and ARIMA-SVM
Algorithms. Appl. Sci. 2022, 12, 6085. [CrossRef]

26. Yang, M.; Wang, J.; Zhou, X.; Guo, Q. De-noising method based on CEEMD and wavelet packet. J. Nanjing Univ. Posts Telecommun.
(Nat. Sci. Ed.) 2018, 38, 41–47.

27. Ghosh, S.K.; Ponnalagu, R. Investigation of Discrete Wavelet Transform Domain Optimal Parametric Approach for Denoising of
Phonocardiogram Signal. J. Mech. Med. Biol. 2022, 22, 2250046. [CrossRef]

28. Branco, N.W.; Cavalca, M.S.M.; Stefenon, S.F.; Leithardt, V.R.Q. Wavelet LSTM for Fault Forecasting in Electrical Power Grids.
Sensors 2022, 22, 8323. [CrossRef]

29. Wu, F.; Ma, C.; Cheng, K. Study on wavelet denoising method of vibration signal based on improved threshold. J. Hefei Univ.
Technol. (Nat. Sci.) 2022, 45, 873–877+900.

30. Liu, Y.; Liu, J.; Cao, Y. An improved method for wavelet threshold de-noising. J. Hebei North Univ. (Nat. Sci. Ed.) 2012, 28, 30–33.
31. Peng, S.; Chen, R.; Yu, B.; Xiang, M.; Lin, X.; Liu, E. Daily natural gas load forecasting based on the combination of long short term

memory, local mean decomposition, and wavelet threshold denoising algorithm. J. Nat. Gas Sci. Eng. 2021, 95, 104175. [CrossRef]
32. Shi, Y.; Zhang, J.; Jiao, J.; Zhao, R.; Cao, H. Calibration Analysis of High-G MEMS Accelerometer Sensor Based on Wavelet and

Wavelet Packet Denoising. Sensors 2021, 21, 1231. [CrossRef]
33. Wang, B.; Wang, Z.; He, D.; Yang, H.; Gao, X. A multiscale local pattern filtering method for noise mode identification of dynamic

signals in bridges. Meas. Sci. Technol. 2022, 33, 125102. [CrossRef]
34. Zhao, Y.; Le, Y.; Huang, J.; Wang, J.; Liu, C.; Liu, B. CEEMD and wavelet transform jointed de-noising method. Prog. Geophys.

2015, 30, 2870–2877.
35. Bayer, F.M.; Kozakevicius, A.J.; Cintra, R.J. An iterative wavelet threshold for signal denoising. Signal Process. 2019, 162, 10–20.

[CrossRef]
36. Zhou, X.; Wang, X.; Yang, Y.; Guo, J.; Wang, P. De-noising of high-speed turnout vibration signals based on wavelet threshold.

J. Vib. Shock. 2014, 33, 200–206.
37. Chen, K.; Zhang, X.; Liu, Y.; Ma, J. An improved denoise method based on EEMD and optimal wavelet threshold for model

building of OPAX. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2021, 235, 3530–3544. [CrossRef]
38. Yu, X. Research on Anti-Noise Processing Method of Grain Production Signal Based on EEMD. Master’s Thesis, Northeast

Agricultural University, Harbin, China, 2018.
39. Gao, J.; Zhang, G.; Yu, L.; Li, Y. Chaos detection of grain impact at combine cleaning loss sensor. Trans. Chin. Soc. Agric. Eng.

(Trans. CSAE) 2011, 27, 22–27.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.3390/s22176602
http://www.ncbi.nlm.nih.gov/pubmed/36081059
http://doi.org/10.3390/app12126085
http://doi.org/10.1142/S0219519422500464
http://doi.org/10.3390/s22218323
http://doi.org/10.1016/j.jngse.2021.104175
http://doi.org/10.3390/s21041231
http://doi.org/10.1088/1361-6501/ac856e
http://doi.org/10.1016/j.sigpro.2019.04.005
http://doi.org/10.1177/09544070211012563

	Introduction 
	Materials and Methods 
	Impact-Type Sunflower Yield Sensor 
	Sunflower Yield Signal Characteristics 
	Algorithm Theory 
	Complementary Ensemble Empirical Mode Decomposition (CEEMD) 
	Wavelet Threshold Denoising (WTD) 
	WTD Denoising Method Based on CEEMD 
	Criteria for Judging Denoising Effect 


	Results and Discussion 
	Simulation Signal Verification 
	Sensor Real Signal Verification 

	Conclusions 
	References

