
Citation: Dimitrov, D.D. Internet and

Computers for Agriculture.

Agriculture 2023, 13, 155.

https://doi.org/10.3390/

agriculture13010155

Received: 21 December 2022

Revised: 2 January 2023

Accepted: 5 January 2023

Published: 7 January 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

agriculture

Editorial

Internet and Computers for Agriculture
Dimitre D. Dimitrov

Department of University Transfer, Faculty of Arts & Sciences, NorQuest College,
Edmonton, AB T5J 1L6, Canada; dimitre@ualberta.ca

The Special Issue “Internet and Computers for Agriculture” reflects the rapidly grow-
ing need for new information and communication technology (ICT) involvement in agri-
culture which is changing globally. The aim was to cover the recent and current progress
in various aspects of ICT applications in precision agriculture, such as web applications
and mobile apps, Internet of Things (IoT) platforms and smart devices, cloud technologies,
artificial intelligence (AI), machine learning (ML), and deep learning (DL)-based solu-
tions via neural networks (NNs) and convolutional neural networks (CNNs) for detection,
classification, computer/machine vision, and language processing purposes, as well as
for scientific modeling in agriculture and natural ecosystems. This Special Issue brought
together twenty peer-reviewed articles, including eighteen original research articles, [1–18]
(chronologically presented), one case report article, [19], and one review article, [20], as
summarized in Table 1 and described below.

In article [1], a novel CNN-based DL method for grape variety identification was pro-
posed based on the canonical correlation analysis (CCA) applied to fuse selected deep fea-
tures from various CNNs, i.e., AlexNet, GoogLeNet, ResNet18, ResNet50, and ResNet101,
and a multi-class support vector machine (SVM) classifier trained in these fused features.
To test the proposed method, grape images from the open-source Embrapa Wine Grape
Instance Segmentation Dataset (WGISD) were initially resized to meet the CNN require-
ments and then used for selected deep feature extraction. In general, the fused deep feature
approach outperformed the single deep feature approach, as indicated by the best perfor-
mance of the former (AlexNet and ResNet50) with an F1 score of 96.9% compared to the
best performance of the latter (ResNet101) with an F1 score of 88.2%. The proposed method
can be applied in developing the computer/machine vision of smart machinery for a more
targeted and accurate identification of grape varieties, thus improving grape yield.

In article [2], an adversarial contextual embeddings-based model for agricultural
diseases and pests (ACE-ADP) was proposed to be implemented as a web application for
named entity recognition in Chinese agricultural diseases and pests domains (CNER-ADP).
While the adversarial training enhanced the robustness of identifying rare named entities,
the ACE-ADP dealt with the polysemous issues (multiple meanings of the same word)
and quality of text representation by fine-tuning the bidirectional encoder representations
for transformers (BERT) ML framework, a neural-network-based technique originally
developed by Google for natural language processing (NLP). Thus, the multi-vector BERT-
based ACE-ADP performed better by 4.23%, reaching an F1 score of 98.31%, compared to
the single-vector baseline word2vec-based BiLSTM-CRF model when both applied to the
Chinese named entity recognition dataset for agricultural diseases and pests (AgCNER).

In article [3], a novel, end-to-end, AI-powered, IoT-based platform and agro-weather
station were introduced into smart farming. The multi-agent agile and containerized
system consisted of low-cost hardware and software components, organized in five layers,
for continuous real-time monitoring and AI-based forecasting of various meteorological
factors, e.g., air temperatures (minimum, maximum), humidity, pressure, precipitation,
wind speed, and dew point. These meteorological factors were surveyed by heterogeneous
nodes, located at the base station and at various distances from it, thereby constituting the
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perception back-end layer of various sensors. The collected data were transmitted to the
local webserver (Apache) for pre-processing and to the cloud server for backup using the
transmission back-end layer, tasked with ensuring the wired and wireless communication
of heterogeneous protocols, e.g., MQTT, NRF24L01, HTTP, and WiFi. To spare resources in
the local webserver, Cronjob was run to send series of measurements from the database to
Google Collaboratory free computing resources (Colab), where the AI-based predictions of
meteorological factors were conducted using ML regression methods on the TensorFlow
framework, using the Keras neural network library, optimizer Adam, and the mean squared
error (MSE) as a loss function. Upon completion of model training using Keras, Colab
would generate a TensorFlow Lite (tflite) outcome to be sent back to the base station and
be used by the local webserver for AI modeling embedded within the platform website.
The middleware back-end layer was designed to orchestrate the performance of all agents,
including the virtual private network (VPN) and the database. The two front-end layers
with user-friendly web-based graphical user interfaces (GUIs) formed the presentation
layer for reporting weather observations and AI-based predictions to different users based
on their personal profiles, and the purpose of the management layer was for operation and
maintenance. The agro-weather station was successfully tested in Casablanca, Morocco,
with mean absolute scale error (MASE), root mean square deviation (RMSE), and Willmott’s
index of agreement stabilizing after the fifth epoch of AI modeling at 0.0012, 0.034, and
0.987, respectively.

Table 1. Summary of presented research.

Article Implemented
Application Types Agricultural Activities Outcomes

[1] AI application
(DL and CNN) Grape variety identification Computer/machine vision

[2] Web application,
AI application (NN)

Disease and pest name
recognition

Natural language
processing system

[3]
Web application

(cloud-based), IoT platform,
AI application (ML)

Weather measurements
and prediction

Meteorological
station

[4] AI application
(DL and CNN)

Maize variety seed
recognition and classification Computer/machine vision

[5] Modeling software Quantifying uncertainties in
modeling hydrology

Decision
support system

[6] Modeling software Product distribution
Transport

optimization
system

[7] Mobile app,
modeling software Farm management Information system

[8] AI application
(DL and CNN)

Grape disease
recognition and classification Computer/machine vision

[9] AI application
(DL and CNN)

Fishery product price
prediction Forecasting system

[10]
Web application

(cloud-based), mobile app,
IoT platform

Collecting soil, air, and light
properties

Smart
monitoring system

[11]
Web application
(cloud-based),

modeling software
Predicting olive crop yield

Management and
decision making

system

[12] AI application
(DL and CNN) Grape detection Computer/machine vision

[13] AI application
(DL and CNN)

Buffalo breed
recognition and classification Computer/machine vision

[14] AI application
(DL and CNN) Tea picking Computer/machine vision



Agriculture 2023, 13, 155 3 of 7

Table 1. Cont.

Article Implemented
Application Types Agricultural Activities Outcomes

[15] Modeling software Agricultural e-commerce Behavior system

[16] AI application
(DL and CNN) Monitoring duck flocks Real-time

detection system

[17] IoT application Measuring environmental,
Plant, and soil water status Monitoring system

[18] Modeling software Planning uncertainties
in horticulture market Decision-making system

[19] Modeling software Selecting
leisure agricultural parks

Intelligence
approach

[20] Review Digital technologies
in agriculture Summary

In article [4], the open-source software framework PyTorch was used to build upon
the existing ResNet CNN [21] and to create a P-ResNet network with 17,960,232 param-
eters, optimizer Adam, batch normalization between convolutions, and rectified linear
unit (ReLU) during training. P-ResNet models were developed using PyCharm Integrated
Development Environment (IDE) and were trained for classification using a server with
NVIDIA GeForce GTX 1660 SUPER GPU and 16 GB GDDR4 on-board memory. The pro-
posed DL network was intended to be used in machine/computer vision tasks, particularly
in the classification of various seeds. Thus, P-ResNet was applied to the classification of
seeds of five main maize varieties in China, i.e., BaoQiu, ShanCu, XinNuo, LiaoGe, and
KouXian, by using 6464 RGB images for training and 1616 ones for validation. According to
classification accuracy, P-Resnet outperformed well-known DL networks, such as AlexNet,
VGGNet, GoogLeNet, MobileNet, and DenseNet, by several percentage points.

In article [5], a multi-model hydrological framework decision support system (DSS)
was proposed to deal with water security modeling in the context of environmental sus-
tainability and climate resilience. As water supply is critical to life on Earth and soil
water contents are key controls in many biogeochemical processes in natural and modeled
ecosystems [22], the DSS was applied to quantify the uncertainty in inputs of various hy-
drological models in order to improve their climate resilience. The water security modeling
was coupled to food security in different model development scenarios. As a result, a
four-dimensional dynamic space mapping source, resource availability, infrastructure, and
economic options were suggested to capture the climate resilience phenomenon. The out-
comes of the DSS can be made available to farmers to help with sustainable food production.
The proposed DSS was tested for four catchments in Australia.

In article [6], a model for timely management of the distribution of various agricultural
products was introduced to enhance the benefits and satisfaction that both agriculture
producers and consumers experience. The proposed model was based on solving the
time-dependent, split delivery green vehicle routing problem with multiple time windows
(TDSDGVRPMTW) for both economic cost and customer satisfaction purposes, and thus
could be seen as a modern version of the transportation math problem in contemporary
agriculture. The objective to minimize the sum of the economic cost and maximize average
customer satisfaction was achieved by optimizing time-varying vehicle speeds, fuel con-
sumption, and carbon emissions in multiple time windows. Applying the model with real
data from China suggested reduced total distribution costs, balanced energy conservation,
and improved customer satisfaction.

In article [7], a mobile app on an Android application interface platform was in-
troduced to farm management information system (FMIS) services to assist farmers in
managing their farms. To reduce the price of and enhance the access to FMIS services, a
new conceptual FMIS model for farm efficiency was proposed based on identifying com-
modity and research areas, and performing information needs assessments. The new model



Agriculture 2023, 13, 155 4 of 7

consisted of five layers for information needs, data quality assessment, data extraction,
split, match and merge (SMM) processes, and presentation. The new FMIS model was
used to address the needs of smallholder chili farmers in Indonesia and outlined areas for
improvement in FMIS services.

In article [8], a novel lightweight CNN GrapeNet was introduced to deal with inher-
ent difficulties in identifying crop diseases at different stages due to their wide gamut
of symptoms and various plant tissues and color changes. GrapeNet was designed as
a modern deep network of residual blocks and convolutional block attention modules
(CBAMs) for extracting rich features and key disease information. Special residual feature
fusion blocks (RFFBs) were introduced to achieve feature fusion at different depths, the
article are dealing with vanishing gradient issues of ultra-deep networks [23]. Identification
accuracy of GrapeNet outperformed other deep networks, such as ResNet34, DenseNet121,
MobileNetV2, MobileNetV3_large., by ~1.5 to 4 percentage points, while the training time
of GrapeNet decreased due to a reduced number of parameters. GrapeNet was tested for
grape leaves of the AI challenger 2018 dataset.

In article [9], a recurrent neural network (RNN)-based long short-term memory (LSTM)
model was coupled with a novel adaptive signal decomposition method, called variational
modal decomposition (VMD), and a new improved bald eagle search algorithm (IBES) to
propose the innovative fishery product price forecasting model VMD-IBES-LSTM, capable
of dealing with time series data efficiently. Compared to other ML forecasting models,
VMD-IBES-LSTM showed high prediction accuracy and better explained the seasonality
and trends of changes in China’s aquatic product consumer price index. Thus, VMD-IBES-
LSTM was shown to be an effective tool for addressing management and decision-making
tasks related to predicting the aquatic product consumer prices in China.

In article [10], a cloud-based web application interconnected to an IoT smart system
was introduced to address the needs of rural farmers in Pakistan in an attempt to overcome
the illiteracy-related absence of proactive decision making in all phases of crop production.
The smart system was connected to accessible devices and sensors for real-time capturing of
soil moisture, temperature, pH, light intensity, and air humidity. The system was designed
to help farmers understand environmental factors related to soil fertility, suitable crop
cultivation, automated irrigation, harvest schedule, pest and weed control, crop diseases,
and fertilizer usage. The system was upgraded to a mobile app for bilingual usage, i.e., in
‘Urdu’ and ‘English’, and was equipped with visual, audio, and voice components as well
as iconic and textual menus designed for farmers of various literary levels.

In article [11], predictive software was proposed for management and decision-making
purposes in profitability and the economic balance of agricultural farms. The software
consisted of a cloud-based web application with a nested user-friendly model for predicting
crop yields based on different ML regression algorithms, such as the generalized linear
model (GLM), and the Gaussian and Linear kernel support vector machine (SVM). As part
of the training, the model was fed more than 20 spatio-temporal meteorological parameters
and data for the yields of eight consecutive years. The proposed software performed well
in the early prediction of crop yield with absolute errors being less than 20%. The results
were crucial for decision making related to tillage investments and crop marketing. The
web application was tested on an olive orchard in Spain.

In article [12], a novel method for grape detection was proposed related to com-
puter/machine vision. The method was based on the lightweight network Uniformer,
capable of capturing long-range dependencies while improving feature extraction, and
the bi-directional path aggregation network (BiPANet), capable of fusing low- and high-
resolution feature maps for optimizing semantic and detailed information. The reposition
non-maximum suppression (R-NMS) algorithm improved the localization accuracy, and
the novel cross-layer feature enhancement strategy in BiPANet resulted in a significant
reduction in the number of parameters and computational complexity. The novel method
for grape detection outperformed other CNN-based algorithms for computer vision, such
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as YOLOx, YOLOv4, YOLOv3, Faster R-CNN, SSD, RetinaNet, and the mAP. The proposed
method was tested on grape datasets from China.

In article [13], a self-activated multilayered CNN, consisting of five blocks of convolu-
tion, batch normalization, ReLU activation function, and max pooling, was proposed as a
computer-vision-based recognition framework to identify different buffalo breeds. Particu-
larly, the Nili-Ravi breed, one of the best worldwide for milk and meat production, was
successfully identified from other breeds in an attempt to satisfy the great demand for breed
selection and breed production. All seven of the classifiers that were tested and compared
for breed identification, i.e., Fine-KNN, Med-KNN, Coarse-KNN, LP-Boost, Total-Boost,
Bag-Ensemble, and the support vector machine (SVM), performed well and managed to
recognize and classify the Nili-Ravi breed from the Khundi breed and a miscellaneous
class of other buffalo breeds. The accuracy of identification reached 93% for the CNN
performance with the SVM classifier and exceeded 85% for the other classifiers. The CNN
framework was tested in Pakistan.

In article [14], a lightweight CNN, named MC-DM (Multi-Class DeepLabV3+), was
proposed as a computer vision approach for tea sprout segmentation and picking point
localization, based on improved Mobile Networks Vision 2 (MobileNetV2) with an inverted
residual structure [24]. The MC-DM architecture allowed for a reduced number of param-
eters and calculations. In addition, an image dataset of high-quality tea sprout picking
points was built to train and test the MC-DM network. The atrous spatial pyramid pooling
module in MC-DM acted to obtain denser pixel sampling for the purpose of enhancing
the accuracy of picking point identification, which reached 82.52%, 90.07%, and 84.78%
for a single bud, one bud with one leaf, and one bud with two leaves, respectively. The
MC-DM has been proposed and tested as an effective method for fast segmentation and
visual localization for automated machine picking of tea sprouts in China.

In article [15], e-commerce interest linkage mechanisms were studied using the theory
of planned behavior and the evolutionary game model involving the causal relationship
between farmers’ characteristics, experiences, cognition, behaviors, and willingness, and
government policies. The influence of government policies on farmers’ cognition, partici-
pation, and behaviors surrounding e-commerce interest linkage mechanisms were studied
using the structural equation model. The results showed that the basic characteristics
and experiences of farmers affected their cognition surrounding e-commerce interest link-
age mechanisms, their willingness to participate, and the way in which they behave in
e-commerce activities. While government policies had a positive effect on farmers’ cogni-
tion surrounding e-commerce, it was found that they did not directly stimulate farmers to
participate. Despite this, government policies and farmers’ basic characteristics interacted
and acted together when it came to willingness to participate and the behavior of farmers
in e-commerce. The proposed methodology was tested in China.

In article [16], a CNN-based DL algorithm was proposed for real-time monitoring
of dense hemp duck flocks as an alternative to manual duck counting in the intelligent
farming industry. Particularly, the authors applied a modified YOLOv7 DL algorithm for
the recognition and detection of moving objects in real time. The YOLOv7 algorithm has
been further improved by implementing a convolutional block attention module (CBAM)
for feature extraction, which can perform attention operations in the channel and spatial
dimensions. A large-scale image dataset consisting of 1500 hemp ducks was introduced for
the purposes of full-body frame labeling and head-only frame labeling. The results showed
that CBAM-YOLOv7 had outstanding precision. The comparison between the two labeling
methods demonstrated that the head-only labeling method resulted in a loss of feature
information, while the full-body frame labeling method appeared to be better suited to
detection in real time. The proposed algorithm was tested in China.

In article [17], the LoRaWAN point-to-multipoint networking protocol was used for
implementing an IoT application of sensors for inexpensive and continuous monitoring
of environmental, plant, and soil water status in a vineyard. Results showed that the IoT
system communicated data continuously and without loss. LoRaWAN was already known
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as an alternative with reduced cost and superior range compared to WiFi and Bluetooth.
Its importance in IoT was justified by its applicability to resource management in a time of
global change, especially in remote, rural areas where cellular networks have little coverage
and 5G networks of prohibitive costs still lack infrastructure. The IoT system was tested
in Portugal.

In article [18], MAXQDA software for qualitative and mixed-methods data was used
to investigate the planning uncertainties and to provide data-driven support in the decision-
making process along the supply chain of horticultural companies for ornamental plants,
perennials, and cut flowers. Real-life planning issues were explored by interviewing experts
and the management of typical companies operating in the market. The results showed that
tactical planning domains of material/product requirement and production and demand
planning are especially critical for the market. An outstanding need emerged for practically
developing relevant decision support systems, in addition to some existing ones of a limited
extent that were not fully compatible with marketing requirements in the horticultural
sector. The methodology was tested in Germany.

In article [19], a case report was presented proposing a fuzzy collaborative intelligence
(FCI) approach for selecting leisure agricultural parks during times of great restrictions,
such as the recent COVID-19 pandemic. The novelty of the proposed approach was in
combining the asymmetrically calibrated fuzzy geometric mean (acFGM), fuzzy weighted
intersection (FWI), and fuzzy Vise Kriterijumska Optimizacija I Kompromisno Resenje
(fuzzy VIKOR) function. The approach was tested for Taiwan and showed that agricultural
parks were among the favorite locations for traveling for leisure during the COVID-19 pandemic.

In article [20], a review was conducted on the impact of new information and commu-
nication technologies (ICT) on sustainable food systems (SFSs) and their transformation in
the context of global food security and nutrition. The main focus was on digital agriculture
technologies involving IoT, AI, and ML, such as drones, robots, autonomous vehicles,
and advanced materials, as well as various gene technology, such as biofortified crops,
genome-wide selection, and genome editing. Eight action initiatives were suggested, which
coupled to appropriate incentives, regulations, and permits, and would be expected to
critically influence adoption and usage of modern technologies for promoting various
SFS types.

All of the above original research demonstrated the potential for worldwide applica-
tion in corresponding or similar domains. The contributions of this Special Issue may be
seen in the background of a rapidly growing human population with needs surrounding
sustainable and secure food production, water management, and reduced GHG emissions,
which clarify the need for smart agriculture solutions as an imminent priority on a planetary scale.

Conflicts of Interest: The author declares no conflict of interest.
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