
Citation: Chen, L.; Xu, L.; Wei, R.

Energy-Saving Control Algorithm of

Venlo Greenhouse Skylight and Wet

Curtain Fan Based on Reinforcement

Learning with Soft Action Mask.

Agriculture 2023, 13, 141.

https://doi.org/10.3390/

agriculture13010141

Academic Editor: Panos Panagakis

Received: 6 November 2022

Revised: 8 December 2022

Accepted: 28 December 2022

Published: 5 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

agriculture

Article

Energy-Saving Control Algorithm of Venlo Greenhouse
Skylight and Wet Curtain Fan Based on Reinforcement
Learning with Soft Action Mask
Lihan Chen , Lihong Xu * and Ruihua Wei

College of Electronics and Information Engineering, Tongji University, Cao’an Road, No. 4800,
Shanghai 201804, China
* Correspondence: xulihong@tongji.edu.cn; Tel.: +86-136-363-62684

Abstract: Due to the complex coupling of greenhouse environments, a number of challenges have
been encountered in the research of automatic control in Venlo greenhouses. Most algorithms are only
concerned with accuracy, yet energy-saving control is of great importance for improving economic
benefits. Reinforcement learning, as an unsupervised machine learning method with a framework
similar to that of feedback control, is a powerful tool for autonomous decision making in complex
environments. However, the loss of benefits and increased time cost in the exploration process make it
difficult to apply it to practical scenarios. This work proposes an energy-saving control algorithm for
Venlo greenhouse skylights and wet curtain fan based on Reinforcement Learning with Soft Action
Mask (SAM), which establishes a trainable SAM network with artificial rules to achieve sub-optimal
policy initiation, safe exploration, and efficient optimization. Experiments in a simulated Venlo
greenhouse model show that the approach, which is a feasible solution encoding human knowledge
to improve the reinforcement learning process, can start with a safe, sub-optimal level and effectively
and efficiently achieve reductions in the energy consumption, providing a suitable environment for
crops and preventing frequent operation of the facility during the control process.

Keywords: greenhouse control; energy saving; reinforcement learning; learning with knowledge

1. Introduction

The Venlo-type greenhouse originates from the Netherlands. It is a kind of small-
roofed glass greenhouse that has become the most widely used type of glass greenhouse in
the world. It has the characteristics of small cross-sectional members, convenient instal-
lation, high light transmission rate, good sealing, and a large ventilation area. A typical
Venlo-type greenhouse is shown in Figure 1. The equipment of a Venlo-type greenhouse
generally includes skylights, wet curtain fans, sunshades, heating equipment, etc. Ow-
ing to the interaction of greenhouse microclimate factors, including light, temperature,
humidity, carbon dioxide concentration, etc., the design of the control algorithm for a
Venlo-type greenhouse faces some challenges. In practical application, the multi-factor
coordinated control algorithm [1–3] effectively decouples control from the action of the
actuator, but relies on experience and repeated experiments to set control parameters, and
the parameters of the algorithm need to be adjusted manually, often with seasonal changes.
Additionally, the energy consumption of greenhouse control facilities is seldom considered
in the control algorithm. In the context of a greenhouse, higher control accuracy is bound up
with greater energy consumption. Considering the comprehensive benefits of greenhouse
environmental control, it is extremely important to reduce energy consumption on the
premise of a comparatively suitable microclimate for crops. The energy consumption of
heating equipment in the cold season and the electrical energy consumption of wet curtain
fans for cooling in hot climates are the main components of consumption in this type of
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greenhouse, followed by the electrical energy consumption of the motor of the skylight and
other facilities in the switching stroke.

Air flowAir flow

meteorological stations

skylight skylight

sunshade

wet curtain
fan wet curtain

heating
equipment

Figure 1. The overview of a typical Venlo-type greenhouse with main facilities.

This paper conducted in-depth research on the energy-saving optimization problem of
the skylight and the wet curtain fan for cooling control in a hot climate. The skylight cools
the indoor air through indoor and outdoor air heat exchange, while the wet curtain fan
system forms a low-temperature airflow that speedily passes through the wet curtain wall
and carries moisture from the curtain into the room through fan exhaust to achieve cooling;
its cooling capacity is stronger than the skylight’s. Nonetheless, when the wet curtain fan is
opened, the skylight needs to be closed to ensure the effect, and the actions between the
two are mutually exclusive. As a result, our optimization goal is to ensure that the factors
in the greenhouse are comparatively appropriate, to shorten the use time of the fan, and to
avoid the frequent action of the sunroof resulting from the mutual exclusion of the actions
of the two mechanisms.

Some researchers have applied multi-objective optimization [4–6] or model prediction
methods [7,8] to optimize energy conservation, but the proposed algorithms usually have
problems such as the high difficulty of solving and online optimization, as well as an
over-reliance on model prediction accuracy [9]. In recent years, intelligent methods have
gradually been adopted in the field of energy consumption model prediction and energy
conservation control [10–13], where reinforcement learning is a new idea to explore opti-
mization policies in complex environments. It continuously optimizes the multi-objective
strategy through the rewards and punishments obtained by interacting with the unknown
environment. In the field of greenhouse control, several researchers [14–16] optimized
heating, fruit yield, and planting cost while maintaining effective control over greenhouse
factors. Andrey et al. [17] and Afzali et al. [18] reduced the average light supplement
duration on the basis of maintaining the performance of the leaf area. Nonetheless, most
of the above research is on the basis of offline simulation experiments that are dissimilar
from the actual complex environment. The direct use of the control strategies obtained in
the actual environment often has poor benefits, but the reinforcement learning process that
directly interacts with the actual environment online requires a lot of time and benefit costs
for early training, and even unsafe actions may occur, causing damage to the facilities.

For the practical application of reinforcement learning, relevant theoretical research has
also developed a multitude of branches. For instance, offline reinforcement learning aims to
conduct pre-training through offline data obtained from existing policy interactions [19–24],
and security reinforcement learning aims to ensure the security of the final policy and even
the exploration process by defining the cost function [25], focusing on bad samples [26], or
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controlling stability theory [27]. Nevertheless, the offline learning effect is limited by the
sample quality, and most of the safe learning does not guarantee the safety of the training
process. Methods to explore the safety of the process [27] are mostly theoretical on account
of the strong assumptions based on the object model.

As a model-less method, although its network structure has a strong learning ability
for complex problems, the initialization and exploration of policies are random, which is the
main reason for the low and unstable early benefits of this method. However, in practical
terms, part of the knowledge about the environment is summarized from the past, which
can be used to guide the policy initialization and even optimization process, avoiding low
returns and dangerous actions from the initial stage of learning, reducing the time cost,
and speedily improving the benefits. At present, it is feasible to reconstruct the policy into
a specific space constrained by rules [28,29] or initialize the policy network based on a
decision tree [30]. Nonetheless, the former rule space is determined before learning, while
the second method’s learning effect depends on the design quality of the initial decision tree,
which requires perfect rules and is difficult to apply to complex greenhouse environments.

Under the background of the above problems, this paper deals with the energy-saving
control of a skylight and wet curtain fan over temperature and humidity in a Venlo-type
greenhouse in summer by integrating some existing knowledge and rules into the rein-
forcement learning method to reduce energy consumption while ensuring environmental
suitability. The control problem and the proposed approach are described in detail in the
following Section 2. Section 2.1 starts with an introduction to the controlled microclimate
factors in Venlo-type greenhouses, describing the summer control problem in Venlo-type
greenhouses as well as the control objectives of the problem in a mathematical form.
Section 2.2 presents the recommended approach, which is based on reinforcement learning
combined with the structure of the Soft Action Mask (SAM) designed to enable knowledge-
initiated reinforcement learning, a safe and efficient training process for reinforcement
learning, and optimizable rules. Section 3 compares and analyzes the training results
with several existing methods in terms of efficiency gains, control effectiveness, and safety.
Section 4 summarizes the conclusions and implications of the work.

2. Method
2.1. Problem Description

Generally, in Venlo-type greenhouses, the mathematics of the change process can be de-
scribed by Equation (1) [31], considering the three microclimate factors of the temperature,
the humidity, and the concentration of CO2 in the greenhouse, where f and G are unknown
functional relations characterizing the mechanism of the control object, respectively:

F(x) =
dx
dt

= f (x, v) + G(x, v)u (1)

x = [Tair, Hair, CO2,air]
T

v =
[

Iglob, Tout , Hout , CO2,out, Vwind

]T

u =
[
uvent , upad , uscr

]T

(2)

Variables in (2) are shown in Table 1 below.
The mechanism in a practical environment provides qualitative knowledge, but suffers

from difficulties in decoupling and parameter determination. The skylight heat exchange
Qvent

[
W
m2

]
described in (3) is taken as an example. The explanation of symbols is shown

in Table 1.

Qvent = ρair Cp, air ϕvent (Tair − Tout ) (3)
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Table 1. Explanation of symbols of variables and parameters.

Symbol Explanation Unit

x The indoor data
Tair The temperature of indoor air ◦C
Hair The absolute humidity of indoor air g

m3

CO2,air Indoor carbon dioxide concentration mg
m3

v The outdoor data
Tout The temperature of outdoor air ◦C
Hout The absolute humidity of outdoor air g

m3

Iglob The light intensity W
m2

CO2, out Outdoor carbon dioxide concentration mg
m3

Vwind Outdoor wind speed m
s

u The controller input vector
uvent Skylight opening output
upad The wind speed scale of the wet curtain fan
uscr Opening output of the shading screen

Qvent The heat exchange by the skylight W
m2

ρair The air density kg
m3

Cp, air The heat capacity J
K·kg

ϕvent The ventilation flow rate m3

m2·s

s State of observation
a Action space

∆Tair The temperature change of indoor air ◦C
∆Tout the temperature change of outdoor air ◦C
tvent Time steps the skylight keeps one state
tpad Time steps the fan keeps one state

It is clear from this mechanism that a skylight can be opened to cool the room when
the outdoor temperature is suitable, but it is difficult to quantify precisely the range of
‘suitable’ by summarizing this knowledge as a quantitative rule. In addition, the wet curtain
fan forcibly draws out the indoor air by starting the fan to cause negative pressure, so
that the curtain wall is wetted by cold water. This allows the airflow to pass quickly and
carries moisture into the room in order to evaporate heat absorption to achieve cooling [32].
Generally, the cooling effect is related to the ventilation rate of the wet curtain fan, outdoor
temperature and humidity, and the humidity difference between the wet curtain and the
outdoor humidity. Therefore, high outdoor air humidity can cause poor cooling effects
using wet curtain fans. The interaction of fans and skylights on the greenhouse environment
easily gives rise to unnecessary frequent actions and energy consumption waste, making it
difficult to formulate control parameters under multiple actuators and controlled factors.
Considering that the main energy consumption of the wet curtain fan is generated by
the fan that operates for a long time, while the skylight only generates a small amount
of energy consumption in the opening and closing stroke, our goal is to reduce the fan’s
operation time and the change in sunroof control quantity as much as possible within the
reasonable range of temperature and humidity control errors. The specific optimization
goal is as follows (4):

J =
∫ T

0
upad (t)dt +

T

∑
i=0

∆uvent (4)

The form of the problem to be optimized is shown in (5), where cj refers to the
microclimate suitability and the actuator safety constraints.
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min
u

J

s.t. F(x)− f (x, v)−G(x, v)u = 0

cj(x, u, v) ≤ 0, j = 1, 2, . . . , n

(5)

2.2. Algorithm

In a practical application of reinforcement learning, if an invalid action can be predicted
in the current state, the Action Mask can be used to prune it to accelerate learning [33–35].
However, this method sets the probability of some actions directly to zero under particular
situations, so too many hard rules result in too many limitations on exploration. It is
difficult to design a set of perfect rules and parameters for a greenhouse control problem
with complexly coupled factors, but empirically, some fuzzy conditions from experience
can be summarized to determine whether a particular facility is currently suitable for use.
Our method proposes the design of a network of masking rules that can be manually
initialized by partially empirical rules and that can be updated with parameters based on
feedback by a policy gradient algorithm during reinforcement learning, which was referred
to as SAM.

2.2.1. Overview

The overall algorithmic architecture of the proposed method is shown in Figure 2. The
agent includes the Actor and the Critic, and the Actor includes two networks: one fully
connected feedforward neural network, which is originally randomly initialized, and one
soft-action-mask network (in Section 2.2.2), which is manually initialized according to the
rules. The output of the SAM network, which is a bias layer, biases the probability of the
logits layer of the original neural network before the softmax activation function, suppress-
ing the sampling of low-benefit actions and obtaining the final policy πθ(a | s), which is
the probability of each action and where θ is the parameter of completed Actor-network.

Environment

Agent with soft mask net

Soft
Action-Mask Net

Original
Actor
Net

fc1

fc2
tanh

tanh
fc3

Actor

mask bias logits layer+

softmax()

input S

Value
NetCtrtic 

fc1

fc2
tanh

tanh
fc3

u

trans    to u

s

Rewards

experience (s,a,r,s')1~K

Replay buffer pool

Advantage Calculator

Loss Function

Optimizer

PPO Update
Module

Update parameters
of Actor 

Update parameters
of Crtic 

Figure 2. The overall architecture of our provided reinforcement learning method with SAM.
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The form of each variable in Figure 2 is shown in (6), where x, v, and u are the same as
in Equation (2). ∆Tair (

◦C) and ∆Tout (◦C), observing the trend and the intensity of indoor
and outdoor temperature change, denote the difference between the sampled temperature
at the moment t and its previous moment. tvent , tpad are the time steps in which one
state of the facilities lasts. a is the output of the Actor with dimension os, i.e., the set of
actions to be selected by RL agent policy, and the final selected action ai is sampled from
the policy distribution.

s =
[

xT , vT , uT , ∆Tair , ∆Tout , tvent , tpad

]T

u =
[
upad , uvent

]T

a = {ai}i=0,1,...,os−1

(6)

where
{

∆Tout = Tout ,t − Tout ,t−1
∆Tair = Tair ,t − Tair ,t−1

After the action decoupling module, a is converted into the facilities’ control input
quantity u. The agent continuously selects the action according to the current policy Actor
and observes the state of the environment to collect the reward information from the
historical feedback, which is put into the experience recovery pool of the PPO Update Loss
module in Figure 2. After several rounds, based on the PPO algorithm [36], the agent’s
parameters are updated.

The PPO algorithm is based on the Actor–Critic framework [37] and invokes the con-
cept of importance sampling to enhance efficiency. The loss function for policy optimization
based on the advantage function is as shown in (7), where Â(s, a) is the estimated advan-
tage. Forcing a constraint on the ratio of old to new probabilities in the update, the new loss
function is described as in (8) and (9), where r(θ) is the ratio of the probability distribution
of the updated policy πθ to the old policy πθold

, ε is a small positive constant close to zero,
and the final loss function is as in (10), considering the error and entropy terms:

LPG(θ) = Eπ

[
ln πθ(a | s)Â(s, a)

]
(7)

LCLIP(θ) = Eπ

[
min

(
r(θ)Aθold

(s, a), clip(r(θ), 1− ε, 1 + ε)
)

Âθold
(s, a)

]
(8)

r(θ) =
πθ(a | s)

πθold
(a | s)

(9)

LCLIP+VF+S(θ) = Eπ

[
LCLIP(θ)− c1

(
Vθ(S)−Vtarget

)2 − c2H(s, πθ)
]

(10)

When updating the parameters, the Actor estimates the advantage function by inter-
actively collecting sample data over K time steps in (11), where λ is the discount factor of
advantage, γ is the reward discount, δt is the TD error, rt is the immediate reward at t, and
V is the state value calculated based on the Critic network. Vtarget is the actual long-term
cumulative benefit, usually estimated as (12):{

Ât(s, a) = δt + (γλ)δt+1 + . . . + (γλ)K−t+1δK−1
δt = rt + γV(st+1)−V(st)

(11)

Vt arget = Ât(s, a) + V(st) (12)

The PPO algorithm flow pseudo-code is shown in Algorithm 1. The symbols and
parameters involved are explained in Table 2.
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Algorithm 1 PPO Algorithm

Input: total numbers of iterations N, max steps per round K,replay buffer pool of history
experience RB,policy before update πθold , update epoch Z

1: for episode = 1, 2, . . . , N do
2: for step = 1, 2, . . . , K do
3: Get observation state s from environment
4: Choose action a by policy πθold
5: Run a in environment
6: Observe reward r and new state s

′

7: Add experience information {s,a,r,s
′
} into RB

8: end for
9: Calculate advantage Â1, Â2,. . . , ÂK, with RB based on (11)

10: Optimize loss function (8–10) and (12) with respect to θ for Z epochs
11: Update θold to θ
12: end for

Table 2. Explanation of symbols in formulas.

Symbol Explanation

πθ The updated policy
πθold

The old policy
ε A small positive constant close to zero
N Total numbers of iterations
K Update every K time steps
Z Optimize the parameters for Z epochs every K steps
λ The discount factor of advantage
γ The reward discount
δt The TD error
rt The immediate reward at t
V The state value calculated based on the Critic network

Vtarget The actual long-term cumulative benefit
σi The output of the judgment nodes

wi, ci
The initialization weights and bias parameters of the judgment nodes,

respectively
αi The degree of uncertainty of the discriminant conditions

Pn×k
The path matrix initialized by k discriminative paths composed of n different

conditions in series according to k rules
Mout The final output of the bias layer after SAM

Is The dimension of observation input space
Os The dimension of action output space

2.2.2. Soft Action-Mask Net

In the study [34], it was mentioned that the use of action masks allows the pruning of
invalid actions. It was demonstrated that this process can be regarded as a state-dependent
differentiable function [35], which is in line with the assumptions of the Policy Gradient
Algorithm. In the greenhouse, there are also several invalid actions that can be predicted.
Significantly, exploration in a real greenhouse requires avoiding the execution of dangerous
actions in particular states in order to ensure the safety of the crops and the facilities.

To distinguish it from the SAM proposed later, this type of action mask for dan-
gerous actions in greenhouses is referred to as a Hard Action Mask (HAM). Take action
a = {a0, a1, a2, a3} for an example: if a3 corresponds to the action of turning on the fan,
it is not advisable to choose this action in low temperatures according to human expe-
rience. Assuming that state s0 is in a low temperature, the logits output of the Actor is
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l = [l0, l1, l2, l3] = [1.0, 1.0, 1.0, 1.0] and the policy network output transformed into action
sampling probabilities after softmax activation is πθ(a | s0):

πθ(a | s0) = [πθ(a0 | s0), πθ(a1 | s0), πθ(a2 | s0), πθ(a3 | s0)]

= softmax([l0, l1, l2, l3])
= [0.25, 0.25, 0.25, 0.25]

where πθ(ai | s0) =
eli

∑os
i=0 eli

(13)

The HAM sets the logits corresponding to action a3 to an extremely small value, Min,
and the probability of selecting a3 will be set to zero as:

π′θ(a | s0) = softmax([l0, l1, Min, l3]) = [0.33, 0.33, 0, 0.33] (14)

HAM ensures the safe process by completely setting the sampling probability of unsafe
or invalid actions to zero. However, exploration in the safe region does not guarantee
good gains for all action trajectories. Furthermore, in addition to dangerous actions,
low benefits in the early stages of learning are also undesirable, and initialization of a
high level can effectively shorten the learning period. Actually, in realistic scenarios,
instructive human knowledge can be provided beforehand. To combine knowledge with
reinforcement learning, ref. [30] proposed a method of initializing neural networks in
the form of decision trees to implement a warm start. However, the human experience
summarized in greenhouses is usually ambiguous, and it is hard to cover the complete
state domain. In addition, the multi-factor coupling relationship results in a complex of
conditional rules, leading to difficulty in applying the results of [30], where the initialization
of the decision tree is too complicated and the over-regulated exploration restricts boosting
capabilities of the agent. We propose a method transforming several ruled soft masks into a
network form and incorporating partial experience to guide the agent’s exploration process,
finally achieving reinforcement learning of better initialization for greenhouse control. The
networked form is shown in Figure 3.

+
* *

*

C1

Mask a1

C2

True

True

Rule1:if C1∩C2=True

        then mask a1

Mask a2

C3
True

Rule2Rule1

Rule2:if C3=True

               then mask a2

...

...

Rule Set

*

Soft Action-Mask Net

bias of Actor logits layer

X=[x1,x2,...,xn]

X=[x1,x2,...,xn]

Figure 3. Initialization of Soft Action-Mask Net from the original rules set by human knowledge.

By manually initializing the network weights and comparators, the judicial process
with combined first-order rules is transformed through the network into a bias layer that
reduces the probability of sampling improper actions, which is referred to as SAM. Unlike
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the direct masking of HAM, SAM adds a bias layer to the output of the logits layer of
the original policy network of the agent. The offset base value is initialized to a relatively
small value, avoiding full suppression of the policy gradient backpropagation found in
HAM. Secondly, the rules set by manual experience are sometimes vague and one-sided.
The networked SAM allows the weights and offsets of the rule nodes in the network to be
dynamically trained through the gradient, allowing the intelligent agent to explore better
policy and rule parameters through the reward mechanism.

The network initialization requires manual pre-establishment of the masking rules,
and the rules build the network in the form of weights and comparators. The initialization
process is Algorithm 2. Assuming a total of k rules consisting of n first-order discrimi-
nant conditions, as in Figure 3, σi is the output of the judgment nodes, wi and ci are the
initialization weights and bias parameters of the judgment nodes, respectively, and αi is the
degree of uncertainty of the discriminant conditions, taken from 0 to 1. Equations (15)–(21)
comprise the calculation process from the input to the bias layer, where Pn×k is the path
matrix initialized by k discriminative paths composed of n different conditions in series
according to k rules, and Mout is the final output of the bias layer after SAM.

Algorithm 2 Initialize of SAM net

Input: Expert knowledge rules collection Rini = {rj}, numbers of rules k, count of all
conditions n

1: initialize collection of path P = {}
2: initialize collection of weight W = {}
3: initialize collection of comparison c = {}
4: initialize collection of mask M = {}
5: for j = 1, 2, . . . , k do
6: pj = {}
7: mj = {}
8: for i = 1, 2, . . . , n do
9: if condition Ci ∈ rj then

10: W = W ∪wi
11: c = c ∪ ci
12: initialize pij by (17)
13: pj = pj ∪ pij
14: end if
15: end for
16: P = P ∪ pj
17: initialize mj by (20-21)
18: M = M ∪mj
19: end for

σ = {σi}i=1,..,n =
{

relu
[
αi

(
wT

i x− ci

)]}
i=1,.,n

= relu
[
αT
(

WTx− c
)]

(15)

Bn×k =
{

bij
}

n×k = Filter
(
[σi]i=1,...,n · Pn×k

)
(16)

where


Pn×k =

{
pij
}
=

{
1, condition i in Rule j

0, otherwise

Filter (X) =
{

1, xij = 0
xij, otherwise

(17)

BM1×k =
[
BM j

]
1×k =

[
tanh

(
n

∏
i

bij

)]
(18)

Mout =
[
m1, . . . , mj, . . . , mk

]
· BMT

1×k (19)
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mj =
[
mod

]
1×os

= [m0, m1, . . . , mos ] (20)

where mod =

{
M, if mask action o_d in Rule j

0, otherwise
(21)

Still considering the fan action, suppose there are rules as follows: when the indoor tem-
perature is below 30 degrees Celsius and the outdoor temperature is below 28, try not to turn
on the fan. State s = [Ti, To, Hi, Ho], action space a = {a0, a1, a2, a3}, where a3 corresponds

to turning on the fan. Initialize C1 : Ti < 30 →
{

w1 = [−1, 0, 0, 0]
c1 = −30

, C2 : To < 28→{
w2 = [0,−1, 0, 0]

c2 = −28
, and m1 : [0, 0, 0, M]. When the condition is not met, the offset is 0,

otherwise the larger the absolute value of the offset, the higher the degree of inhibition of
the action, with less inhibition near the critical value of the judgment condition.

2.2.3. Region Reward

The reward function consists of two main components: a control interval error penalty
Rerr and a fan loss penalty R f an_on, as shown in Equations (22) and (23), respectively.
cerr , c f an_on, c f req are the weights for each, and xset indicates the target, in which xset is the
target for each factor:

Rerr = cerr|x− xset|2 (22)

The fan loss penalty R f an_on is an indirect measure of fan energy consumption based
on the cumulative hours of the fan running, T is the data sampling period, and the element
value xset is determined based on the current state and the upper and lower limits xhigh_com
and xlow_com of suitability, as in (24):

Rfan_on = cfan_on

∫ T

0
ufan,tdt (23)

xset =

{
xhigh_com , x > xhigh_com

xlow_com , x < xlow_com
(24)

Depending on the crop’s growth requirements and tolerance, three levels of condition
areas are distinguished. <comf is an excellent environmental condition for growth, <toleran
is a sub-optimal condition that can be tolerated for a long period, and<extreme is an extreme
condition that can only be tolerated for a short period. If the environment has difficulty
in running at <comf with the lack of precise control equipment, then running in <toleran
is expected and <extreme should be avoided at all costs. The setting of the penalty term is
therefore differentiated by the current state, as shown in Equation (25):

R =


Rfan_on + Rfreq , x ⊂ <comf

Rerr + Rfan_on + Rfreq , x ⊂ <toleran
Rerr + p , x ⊂ <extreme

(25)

The complete RL with SAM algorithm flow is shown in Algorithm 3.
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Algorithm 3 RL with Soft Action-Mask
Input: Dimension of state observation Is , dimension of action Os, expert knowledge Rini, total

numbers of iterations N, max steps per round K, replay buffer pool of history experience RB,
update epoch Z

1: randomly initialize actor and critic parameters in Agent
2: initialize mask net in Agent with Rini by Algorithm 2
3: for episode = 1, 2, . . . , N do
4: for step = 1, 2, . . . , K do
5: get observation state s from environment
6: get logits layer l forward the actor net
7: get bias Mout forward the soft mask net by (15)–(21)
8: πθold

(a
∣∣s) = so f tmax(l + Mout)

9: choose action a by policy πθold
(a
∣∣s)

10: run a in environment
11: observe new state s

′
and calculate reward r by (22)–(25)

12: add experience information {s,a,r,s
′
} into RB

13: end for
14: update θold to θ for Z epochs by Algorithm 1
15: end for

3. Experimental Results and Discussion

A series of comparative experiments were conducted in a three-state simulation green-
house model. The hyperparameters for the reinforcement learning process were selected as
follows: Is = 11, Os = 3, Z = 10, N = 1600, K = 288, and learning rate = 6 × 10−4.

3.1. RL Efficiency

Firstly, in terms of reward enhancement, the comparison methods included RL with
a reward function alone, RL with HAM, and our proposed RL with SAM. Five learning
sessions were performed for each learning method, and the results of recording their mean
reward profile and standard deviation are shown in Figure 4.

Figure 4. The record of historical mean reward and standard deviation of three RL method.

SAM and HAM have significantly higher initial rewards compared to purely learning
by reward, as both HAM and SAM suppress adverse actions in a given state based on
existing experience. The SAM trajectory in the figure has a slightly higher initial reward
than the HAM, due to the fact that the SAM rules can be optimized during the learning
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process, allowing for more leeway when initializing the masking rules. In addition, it can
be seen from the late training period that the average reward level of HAM is surpassed by
the pure reward learning method that is allowed to explore randomly. Although the pure
reward method shows potential in the later stages, the the range shows that its efficiency
and effectiveness are influenced by the initialized parameters and the randomness of
sampling during training, which is difficult to accept in the early stages. SAM, on the
other hand, is based on rule-based initialization and is expected to start sub-optimally
with knowledge. Compared to learning from rewards alone, SAM achieves a significant
improvement upfront and stabilizes at a superior level of performance. In addition, the
exploration is based on a soft rule framework with a small standard deviation of rewards,
which is more stable than the original approach.

3.2. Effect Comparison

The strategies obtained by the three reinforcement learning methods were validated
on 30 days of test data and compared with the threshold control strategy. As the threshold
control strategy has different control effects when different thresholds are selected, two
sets of thresholds were implemented in the experiment for comparison. The results are
shown in Figure 5, which compares the control effect in terms of the percentage of the total
fan running time, the time percentage when the temperature and humidity are out of the
appropriate range, and the percentage when the skylight is in frequent operation.

Figure 5. The control effect comparison between two threshold methods and policies trained by RL
with HAM/SAM in terms of the percentage of the total running time of fans, the time percentage
when the temperature and humidity are out of the appropriate range, and the percentage when the
skylight is in frequent operation.

In the threshold control strategy with two sets of parameters, the more aggressive one
for maintaining a suitable environment is less likely to result in frequent operation, but
at the same time has a longer fan running time, accounting for 26.35% and 23.82% of the
total control process time, respectively. The effect of adjusting the threshold parameters to
reduce consumption is very limited and leads to frequent movements. Compared to the
threshold control, the reinforcement learning method is effective in reducing the runtime,
but the original reward RL cannot completely avoid frequent actions, which may be related
to the reward weight setting as well as the limited generalization ability and low learning
efficiency. With the addition of the Action Mask, frequent actions were completely avoided
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and unsuitable states were effectively reduced. The policy trained by SAM resulted in better
temperature suitability. Although the frequency of out-of-range humidity was slightly
higher than HAM, it remained at a lower level. What is more important is that the SAM fan
runtime was only 16.56% of the total process, a reduction of 37.15% and 30.47% compared
to the threshold control policy with two sets of parameters, and 22.07% compared to the
HAM method with the same training rounds, significantly reducing the fan runtime while
maintaining better environmental suitability.

3.3. Performance Comparison
3.3.1. Threshold Control vs. RL

Temperature and humidity controlled by threshold control, the HAM and SAM train-
ing policies, and the corresponding control output upad , uvent over five days are shown
and compared in Figure 6; the sampling period Ts is 900 s.

(a)

(b)

Figure 6. Comparison of the control effect in terms of temperature, humidity, the output of wet
curtain fan and skylight. (a) Comparison of temperature, humidity, and the output of wet curtain
fan for 5 days under the threshold control and policies trained by RL with HAM/SAM; Ts = 900 s.
(b) Comparison of temperature, humidity, and the output of skylight for 5 days under the threshold
control and policies trained by RL with HAM/SAM; Ts = 900 s.
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It is clear that SAM and HAM effectively shorten the fan running time and that there
are no frequent movements caused by improperly set threshold parameters, resulting
in energy-saving optimization. In a few cases, the threshold control effect resulted in
temperatures outside the appropriate range, due to large fluctuations in temperature
caused by frequent actions, whereas the temperatures under both HAM and SAM policy
control were maintained within the appropriate range. The study was conducted in a
summer and autumn greenhouse. The data did not appear to be below the lower limit,
so only the upper appropriate limit is plotted on the graphs. In fact, the temperatures
under the HAM and SAM policies are sometimes slightly higher than those under the
threshold control, since the regional reward is within the appropriate range for the factor,
i.e., it penalizes mainly energy consumption, sacrificing some cooling effect in return for
a reduction in fan operating hours. In a few cases, the RL method may exceed the upper
limit of the suitable range because the temperature target in the reward is weighted higher
than the humidity, while a short time spent out of the suitable range has less impact on
the long-term benefits, and it quickly returns to the suitable area, which can be considered
within the control target allowed.

3.3.2. HAM vs. SAM

SAM tends to have lower temperature peaks than HAM, slightly lower humidity curve
exceedances than HAM, more stable control overall, and shorter fan run times compared
to HAM. These benefits are considered to be mainly related to the trainable adjustment
capability of SAM, where setting a masking rule in HAM prevents the exploration of policy
under some condition state, whereas SAM can still learn a potentially better condition
judgment than human experience. The second possible reason is SAM is more efficient
than HAM, and it is more likely to learn better policies in the same amount of time.

In conclusion, through simulated environment experiments, it has been proven that
the method provided has significant advantages over RL with pure rewards or HAM in
terms of improving the levels of the initialization policy, learning efficiency, stability, and
potential of optimization effect. Starting exploration from a safe and sub-optimal policy,
our algorithm regulates the greenhouse environment with a lower initial cost, further
reducing energy consumption and preventing facilities from running frequently due to
environmental changes during the control process.

4. Conclusions

This work put forward a SAM net initialized on rules to start reinforcement learning
to cope with the problem of energy conservation control in a Venlo-type greenhouse. It
combines the interpretability of knowledge and rules with the strong learnability of a
randomly initialized fully connected network, guiding exploration and ensuring the warm
start of the policy, the safety of the training process, and the potential of policy exploration.

The advantages of the method proposed in this paper are summarized as follows:
Model-free dynamic optimization: Without model control objects, the agent dynami-

cally optimizes policies through interaction with the environment and feedback on long-
term benefits.

Safe Exploration: By adopting action masks, unsafe and unstable actions under specific
conditions can be avoided. Moreover, energy consumption for the motor operation of the
three-state actuator can be indirectly reduced.

Exploration guided by human knowledge: Random exploration in the early stage
of learning results in a high cost of trial-and-error to the actual greenhouse application.
The proposed approach embeds part of human knowledge into the randomly initialized
policy network, ensuring that training starts from a higher level, and the learning process is
constrained by the manually initialized rule framework, which effectively guides the stable
and safe learning of agents.

Trainable networked rules of masks: Considering the difficulties in establishing com-
plete rules in the greenhouse and determining rules that are disadvantageous for in-depth
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exploration, the proposed method constructs networked rules on the basis of fuzzy knowl-
edge, and the initialized parameters can be updated by the policy gradient algorithm
during the learning process, so as to intelligently adjust more appropriate rules. This
approach combines the interpretability of rules and the learnability of neural networks.

The proposed method is one of generalization, especially in large, precisely controlled
greenhouses, where energy-saving optimization has greater value for improving economic
benefits. In addition, the rich data available can provide more feedback information, which
greatly benefits control based on reinforcement learning. As a consequence, this method
is worthy of further in-depth study and has a long-term significance in improving the
economic benefits of modern agricultural facilities.
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