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Abstract: This study aimed at correlating image features with the lycopene content of tomato fruit.
Tomato cultivars with different fruit colors, such as ‘Ożarowski’ (yellow), ‘Marvel Striped’ (yellow-
orange-pink), ‘Green Zebra’ (green), Sandoline F1 (red), Cupidissimo F1 (red), and Sacher F1 (brown)
were selected for the study. The tomato fruits were imaged using a digital camera. The texture
parameters were computed from the images converted to color channels R, G, B, L, a, b, X, Y, and Z
based on the histogram, autoregressive model, gradient map, co-occurrence matrix, and run-length
matrix. Lycopene content was determined using high-performance liquid chromatography (HPLC).
Pearson’s correlation coefficients (R), regression equations, and coefficients of determination (R2)
were determined. The lycopene content in fruit ranged from 0.31 mg 100 g−1 for ‘Green Zebra’
to 11.83 mg 100 g−1 for Sacher F1. The correlation coefficient (R) between lycopene content and
selected image textures reached −0.99 for selected textures from color channels G, b, and Y. The
highest positive correlation (R parameter equal to 0.98) was obtained for texture from color channel Y.
Based on the individual color channel providing the highest results, one texture was selected for the
determination of regression equations. Coefficients of determination (R2) of 0.99 were obtained for
texture from color channel G. The regression equations may be used in practice for nondestructive,
objective, and precise estimation of the lycopene content in tomato fruit.

Keywords: tomato cultivars; fruit color; tomato lycopene; image analysis; correlation; regression

1. Introduction

Tomato (Solanum lycopersicum L.) is a species of plant in the nightshade family. It
comes from Central America and came to Europe in the 16th century. Initially, it was
grown only for ornamentation, as it was considered a poisonous plant. Currently, it is
highly appreciated by consumers and is valued not only for its taste and culinary qualities,
but mainly for its health and dietary properties and low energy value [1]. Tomato fruits
are an important source of pro-health compounds such as carotenoids (mainly lycopene,
β-carotene, α-carotene, lutein, zeaxanthin), phenolic compounds, and vitamins such as
ascorbic acid, niacin, biotin, thiamin, riboflavin, pantothenic acid and folate, and vitamin
K1 [2,3]. These cover 50 to 120% of the recommended daily intake of vitamin C, 10 to 30%
of vitamin A and 12% of vitamin E [3].

Currently, there are over 15,000 varieties of tomatoes in the world, mainly due to the
growing market demand. In recent times, there has been an increase in the awareness of
consumers and the medical world about healthy eating. Today, attention is paid to what
constitutes the composition of food, because in addition to the basic nutritional value, what
we eat can have a positive effect on health. The substances contained in fresh tomato fruit
and their preserves play an important role in the prevention of cardiovascular diseases and
cancer [4–6]. Among these substances, the most important is lycopene, which has strong
health-promoting properties, and participates in the scavenging of singlet oxygen and
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peroxide radicals [7]. It is also involved in the regulation of the cell cycle and the induction
of programmed cell death. This compound is increasingly more often treated not only as a
dietary supplement but also as a potential medicine. It also affects the hormonal balance
and the body’s immunity [8]. Lycopene accounts for about 80–90% of the pigments found
in tomato fruits, the remainder being β-carotene and other carotenoids. It is located mainly
in the peel of tomatoes, where it is about five times more than in the flesh. It accumulates
mainly during the final period of fruit ripening [9,10]. The carotenoid content can be
determined, for example, using spectrophotometric measurements, but high-performance
liquid chromatography (HPLC) can be characterized by its higher accuracy for identifying
and quantifying individual carotenoids from the extracts [11]. The lycopene content in
tomatoes is commonly determined by HPLC [12,13]. Numerous studies show that lycopene
is better absorbed from processed products than from fresh raw materials. The use of high
temperature for technological processing and for preserving ready-made products destroys
the cell walls of fresh tomato fruits. This causes lycopene to be easily released from the
cell juice [14–16]. The largest number of fresh tomatoes in the world is consumed in North
America—about 40 kg per person. The second region with high consumption of tomatoes
is Asian countries. In the case of European countries, consumption is approximately 30 kg
per person per year [17].

The tomato cultivars can differ in color, size, shape, and fruit flavor. The color and
shape of the fruit in the phase of consumption maturity depend on the presence of a system
of genes—biological information stored in the cells of every living organism. The color of
tomato buds is always green, and other colors appear only as the fruit ripens. Chlorophyll
disappears, and as a result of natural transformations, the synthesis of carotenoids occurs:
lycopene and ζ-carotene (red pigment), β-carotene (orange pigment), γ-carotene (pink
pigment), α-carotene, lutein or zeaxanthin (yellow pigment). Sometimes during maturation,
purple anthocyanins appear in the form of streaks or complete dark purple discoloration
of the skin. The disappearance of chlorophyll may be so slow that the fruit becomes
consumable before the carotenoids appear, or it may be so low that the fruit appears
white. The most common red color in tomato fruits is due to the gene responsible for the
synthesis of lycopene. Other genes are responsible for the yellow color or suppression of
red carotenoids. Raspberry tomatoes have pink γ-carotene and few yellow pigments. Two
genes limiting the formation of lycopene in the fruit are responsible for the orange color.
Yellow and orange pigments become visible only during the fruit’s over ripening, and the
genes responsible for them completely dominate the “red” gene. Various natural genetic
variations, sometimes due to exceptional stress conditions (e.g., viruses), are responsible for
uneven maturation. This is generally a disadvantage but if the fruit looks attractive, growers
consolidate these features through appropriate crosses. Then, the tomatoes are shaded,
striped red-yellow, green-green, green-brown, or golden and white spots. Different cultivars
may have the same fruit color but vary in other characteristics. It happens, however, that
the color is the only difference—then a cultivar is created in several color versions [18–20].
Considering color, image texture, and geometric parameters, the cultivar discrimination
of fruit can be performed using nondestructive, objective, and fast procedures involving
image processing and machine learning [21–23].

Owing to their size, tomatoes are divided into small-fruit cultivars with fruit up to
50 g (cocktail, cherry, bead), mid-fruit cultivars—most cultivars up to 170 g, and large-fruit
cultivars (raspberry, buffalo heart, gargamel) with fruit weight of 200–300 g. The taste
and smell, structure of the flesh and skin, and juiciness and durability after harvest are
determined by both genetic characteristics and growing conditions. The shape of the
tomatoes is an equally important varietal feature. The basic shapes of fruit in cultivars
are ball, oval and flattened, or ribbed (inside chambers are marked). In the process of
crossing and selection, unforeseen features become apparent over time and fruit with
unusual shapes is obtained. Thus, many cultivars with different degrees of ball flattening
or elongation were obtained: plum-shaped, long and narrowed (San Marzano type) or
resembling a pointed pepper, pear-shaped, heart-shaped, more or less ribbed, including
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pouch-shaped, and even quite irregular. The shape does not affect consumption values.
Both genetic characteristics and growing conditions determine the taste and smell, flesh
and skin structure, juiciness, and shelf life [24].

The objective of this study was to correlate image features of tomato fruit belong-
ing to different cultivars with the lycopene content. By determining the relationship
between the features of tomato images and the lycopene content, it is possible to es-
timate the content of lycopene without the need for destructive, more expensive, and
time-consuming measurements. The regression equations developed may allow for precise,
objective, and nondestructive determination of the lycopene content in tomato fruit, which
is the great novelty of this research and may be of practical use in food processing and
tomato consumption.

2. Materials and Methods
2.1. Material

The research material was six cultivars of tomato: ‘Ożarowski’ (yellow), ‘Marvel
Striped’ (yellow-orange-pink), ‘Green Zebra’ (green), Sandoline F1 (red), Cupidissimo
F1 (red), and Sacher F1 (brown). The tomatoes from potted seedlings were grown in an
unheated tunnel from April to September. All tomato fruit cultivars were purchased from
the producer in the last week of June, in the consumption maturity phase. For each cultivar,
fifty fruits were obtained. For the analysis of lycopene, samples were finely sliced and
frozen prior to freeze-drying, after which they were powdered and stored at −20 ◦C.

2.2. Image Analysis

The imaging system used in the experiment consisted of a digital camera mounted on
a tripod and placed in a black box with LED (light emitting diodes) illumination. The digital
camera included optical image stabilization, auto white balance, F 2.4, 8× digital zoom, and
SD (secure digital) card. The LED illumination was characterized by the light sources of
24 LED, related input voltage of AC 110–240 V at 50–60 Hz, related input current of 0.07 A,
and related output power of 2.2 W [25]. The tomato fruits were imaged against a black
background. Each tomato was imaged individually, and each image was saved separately.
Fifty images for each of the ‘Ożarowski’, ‘Marvel Striped’, ‘Green Zebra’, Sandoline F1,
Cupidissimo F1, and Sacher F1 tomato cultivars were acquired. The sample tomato images
are presented in Figure 1.

The images were uploaded to a computer using a USB cable. The image processing
was performed using the Mazda software (Łódź University of Technology, Institute of
Electronics, Łódź, Poland) [26]. First, the images were converted to individual color
channels R, G, B, L, a, b, X, Y, and Z. The tomato images from selected color channels are
shown in Figure 2.

The image segmentation was carried out using the thresholding method to separate
each object from the black background and overlay the ROI (region of interest). About
200 textures based on the histogram, autoregressive model, gradient map, co-occurrence
matrix, and run-length matrix were determined for each ROI [26]. Textures determined
in this study are considered as numerical data extracted from images and are defined as
a function of the spatial variation of the brightness intensity of the pixels. Objects can
be characterized by different textures even if they have the same color histograms and
number of pixels but a dissimilar color distribution. These changes can be difficult to
perceive visually [27,28]. After imaging, the tomatoes were used to determine the lycopene
content. The flowchart for the stages involved in the proposed procedure for determining
the relationship between image textures of tomato fruit and lycopene content is presented
in Figure 3.
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2.3. Lycopene Extraction

Lycopene content was determined by the method reported by Bohoyo-Gil et al. [29].
Two grams of the ground sample was homogenized in the extraction solution (hex-
ane:acetone 6:4) with the addition of 0.1 g of magnesium carbonate. The solution was
filtered through a Büchner funnel under reduced pressure. The extract was transferred to a
separating funnel, and 50 mL of water was added and shaken. After phase separation, the
water–acetone phase was discarded. The acetone rinsing operation was repeated until the
lower phase was free of acetone and the upper hexane phase containing lycopene was fil-
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tered into an evaporation flask through a filter paper containing anhydrous sodium sulfate.
Hexane was evaporated to dryness in a vacuum evaporator at 40 ◦C; the dry residue was
quantitatively transferred to a 25 mL flask with a solution of acetonitrile:methanol:ethyl
acetate 55:25:20 + 0.1% BHT + 1 mL TEA and 4 mL of hexane. The flask extract was filtered
with a 45 µm PTFE filter into an amber bottle and analyzed by HPLC.
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2.4. HPLC Analysis of Lycopene

The content of lycopene in tomato samples was determined by high-performance
liquid chromatography (HPLC). Separation was performed using a Kinetex C-18 column
(250 mm × 4.6 mm; 5 µm) on an Agilent 1200 HPLC system equipped with a DAD detector.
The elution conditions were as follows: 0.7 mL min−1; temperature 28 ◦C; wavelength
472 nm; mobile phase: acetonitrile, ethyl acetate, methanol + 1 mL TEA + 1 g BHT in
gradient flow. The calculations were made according to a standard curve for the lycopene
standard (Sigma-Aldrich, Taufkirchen, Germany). Lycopene content was expressed in
mg 100 g−1.

2.5. Statistical Analysis

Statistical analysis was performed with STATISTICA 13.3 (StatSoft Polska Sp. z o.o.,
Kraków, Poland) as a one-way analysis of variance. The normality of the distribution was
analyzed by Kolmogorov–Smirnov, Lilliefors, and Shapiro–Wilk tests. The homogeneity
of variance was checked using Brown–Forsythe and Levene’s tests. The significant dif-
ferences between means were determined at p = 0.05 by Tukey’s test. Lycopene content
was conducted in triplicates (n = 3). The results are based on the fresh weight of the
products obtained.

Additionally, the linear relationships between the lycopene content and the texture
parameters of tomato fruit cultivars were determined using STATISTICA 13.3. Pearson’s
correlation coefficients (R) at a significance level of p < 0.05, regression equations, and coef-
ficients of determination (R2) for the lycopene content and the selected textural parameters
were computed.

3. Results

The results of lycopene content for the six cultivars of tomato are shown in Table 1. The
dependence of the lycopene content on the cultivar and thus on the color of the tomato fruit
was observed. Four homogenous groups were found. Cultivars with red and brown fruit
were characterized by the highest content of lycopene. Tomatoes belonging to Cupidissimo
F1 (11.74 mg 100 g−1) and Sacher F1 (11.83 mg 100 g−1) were in one homogenous group.
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The lowest lycopene content was found in the case of ‘Green Zebra’ with green fruit
(0.31 mg 100 g−1) and ‘Ożarowski’ with yellow fruit (0.37 mg 100 g−1), which formed one
homogenous group.

Table 1. The lycopene content in tomato fruit of various cultivars with different colors.

Tomato Cultivar Fruit Color Lycopene Content (mg 100 g−1)

‘Ożarowski’ yellow 0.37 d
‘Marvel Striped’ yellow-orange-pink 1.19 c

‘Green Zebra’ green 0.31 d
Sandoline F1 red 9.89 b

Cupidissimo F1 red 11.74 a
Sacher F1 brown 11.83 a

Note: Means in the column marked with the same letter are not different according to Tukey’s HSD test (p = 0.05).

It was found that the difference in lycopene content was related to the values of the
outer surface textures of tomato fruit images. Up to five textures from each color channel
for which the highest statistically significant correlation coefficients greater than 0.80 were
obtained without considering whether it was a positive or negative correlation were chosen
to be presented in this paper. For some color channels, fewer than five textures were
statistically significantly correlated with the lycopene content, or no texture was correlated
with the lycopene content. In the case of RGB color space (Table 2), statistically significant
correlation coefficients (R) were determined only for textures from color channels G and
B. No texture from the color channel R was statistically significantly correlated with the
lycopene content of tomato fruit. The highest values of the R parameter (−0.99) were
obtained in the case of selected textures from color channel G. In the case of this color
channel, all the highest correlation coefficients were negative. For color channel B, slightly
lower negative values reaching −0.97 and positive values of correlation coefficient reaching
0.94 were determined. The scatter plots for lycopene content and one selected image texture
of each color channel G and B of tomato fruit are presented in Figure 4. In the case of both
textures, the linear negative relationships with lycopene content are visible.

Table 2. Correlation coefficients (R) between lycopene content (mg 100 g−1) and selected image
textures from RGB color space for ‘Ożarowski’, ‘Marvel Striped’, ‘Green Zebra’, Sandoline F1,
Cupidissimo F1, and Sacher F1 tomatoes; p < 0.05.

Texture Parameter Correlation Coefficient

GHPerc90 −0.99
GHDomn01 −0.99
GHDomn10 −0.99
GS5SV1SumAverg −0.99
GS5SV3SumAverg −0.99
BHMaxm10 0.94
BSGPerc50 0.94
BSGPerc90 0.94
BS4RZRLNonUni −0.96
BS4RNGLevNonU −0.97

G—color channel G; B—color channel B; Perc—percentile; Domn—dominant; SumAverg—sum average; Maxm—
maximum of moments; RLNonUni—run length nonuniformity; GLevNonU—gray-level nonuniformity.

Textures from Lab color space (Table 3) were statistically significant linearly negatively
and linearly positively correlated with lycopene content, and the R parameter reached
−0.99 (texture bHPerc99 from color channel b) and 0.92 (texture LHSkewness from color
channel L), respectively. In the case of color channel L, the negative correlation reached
−0.97. For color channel a, slightly lower correlation coefficients (R) than for color channels
L and b were observed. A negative correlation reaching −0.95 (aS4RHShrtREmp) and
positive correlation reaching 0.83 (aS5SV1InvDfMom) were determined. The scatter plots
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shown in Figure 5 confirmed the highest correlation between lycopene content and texture
from the color channel b.
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Table 3. Correlation coefficients (R) between lycopene content (mg 100 g−1) and selected image tex-
tures from Lab color space of ‘Ożarowski’, ‘Marvel Striped’, ‘Green Zebra’, Sandoline F1, Cupidissimo
F1, and Sacher F1 tomatoes; p < 0.05.

Texture Parameter Correlation Coefficient

LHSkewness 0.92
LHPerc90 −0.94
LHPerc99 −0.97
LHDomn01 −0.91
LHDomn10 −0.91
aS5SV1InvDfMom 0.83
aS4RHShrtREmp −0.95
aS4RVShrtREmp −0.94
aS4RVFraction −0.83
aS4RNShrtREmp −0.83
bHPerc50 −0.92
bHPerc90 −0.98
bHPerc99 −0.99
bHDomn01 −0.93
bHDomn10 −0.97

L—color channel L; a—color channel a; b—color channel b; Skewness—skewness coefficient; Perc—percentile;
Domn—dominant; InvDfMom—inverse difference moment; ShrtREmp—short run emphasis; Fraction—fraction
of image in runs.

The correlation coefficients between lycopene content and textures from XYZ color
space (Table 4) were very high, reaching −0.99 for YHVariance from color channel Y. The
highest positive correlation was 0.98 and also belonged to color channel Y (YHMaxm10).
In the case of color channels X and Z, only two textures were statistically significantly
correlated with lycopene content. The R parameter reached −0.98 for XHVariance and
−0.93 for ZHDomn01. The highest correlations between lycopene content and textures
from XYZ color space for textures from the color channels X and Y were confirmed by
scatter plots, shown in Figure 6.
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Table 4. Correlation coefficients (R) between lycopene content (mg 100 g−1) and selected image
textures from XYZ color space of ‘Ożarowski’, ‘Marvel Striped’, ‘Green Zebra’, Sandoline F1, Cupidis-
simo F1, and Sacher F1 tomatoes; p < 0.05.

Texture Parameter Correlation Coefficient

XHVariance −0.98
XHMaxm10 0.87
YHVariance −0.99
YHPerc90 −0.97
YHPerc99 −0.97
YHMaxm10 0.98
YS5SN5SumOfSqs −0.94
ZHPerc50 −0.90
ZHDomn01 −0.93

X—color channel X; Y—color channel Y; Z—color channel Z; Maxm—maximum of moments; Perc—percentile;
SumOfSqs—sum of squares; Domn—dominant.
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Regression equations and coefficients of determination (R2) for relationships between
lycopene content and selected texture parameters are presented in Table 5. In the case of
individual color channels, one texture with the highest correlation coefficient (Tables 2–4)
and providing the highest results of regression equations and coefficients of determination
was selected. The R2 value of 0.99 was reached in the case of texture from color channel
G (GS5SV3SumAverg). Additionally, a very high value of the coefficient of determination
(R2) equal to 0.98 was obtained for textures from color channels b (bHPerc99) and Y
(YHVariance), 0.96—for texture from color channel X (XHVariance), and 0.94—for textures
from color channels B (BS4RNGLevNonU) and L (LHPerc99). These indicate a high accuracy
for the derived regression equation.
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Table 5. The regression equations between lycopene content and selected image textures of
‘Ożarowski’, ‘Marvel Striped’, ‘Green Zebra’, Sandoline F1, Cupidissimo F1, and Sacher F1 tomatoes.

Regression Equation Coefficient of
Determination (R2)

Lycopene content [mg 100 g−1] = 831.95 – 25.74 × GS5SV3SumAverg 0.99
Lycopene content [mg 100 g−1] = 18.994 – 0.0008 × BS4RNGLevNonU 0.94
Lycopene content [mg 100 g−1] = 66.744 – 0.3208 × LHPerc99 0.94
Lycopene content [mg 100 g−1] = 57.754 – 156.2 × aS4RHShrtREmp 0.90
Lycopene content [mg 100 g−1] = 104.82 – 0.5577 × bHPerc99 0.98
Lycopene content [mg 100 g−1] = 22.166 – 0.0361 × XHVariance 0.96
Lycopene content [mg 100 g−1] = 15.251 – 0.0217 × YHVariance 0.98
Lycopene content [mg 100 g−1] = 18.090 – 1.860 × ZHDomn01 0.86

G—color channel G; B—color channel B; L—color channel L; a—color channel a; b—color channel b; X—color
channel X; Y—color channel Y; and Z—color channel Z; SumAverg—sum average; GLevNonU—gray level
nonuniformity; Perc—percentile; ShrtREmp—short run emphasis; Domn—dominant.

4. Discussion

In the research performed, the tested tomato cultivars differed significantly in the
content of lycopene. The content of lycopene in the tested samples ranged from 0.31 in
the fruit of ‘Green Zebra’ tomato to 11.83 mg 100 g−1 in the fruit of the Sacher F1 cultivars.
Color is generally an accurate indicator of the lycopene content. The results of other authors
confirm that the content of lycopene in tomato fruits depends on the cultivar and may
be within a wide range [30–34]. The darker the red color, the more lycopene in tomato
fruits, and the less β-carotene. Brown fruits of tomato fruits have the most lycopene and
little β-carotene [20]. Additionally, our research found that red and brown cultivars con-
tained more lycopene than cultivars with other colors. The content of this compound in
tomato fruit depends not only on the varietal characteristics that determine the color of
ripe fruit, but also on the place of cultivation, fertilization, and agroclimatic conditions.
The temperature during the growth of tomato vegetation is of significant importance,
and for the optimal content of lycopene, during fruit growth, it should be in the range
16–22 ◦C. Significant increase in temperature, above 35 ◦C, causes the conversion of ly-
copene into β-carotene [35]. The content of lycopene in plant tissues depends on many
factors and may undergo changes not only in living plants, but also during their processing
and storage [35–39].

The results indicated the usefulness of texture parameters obtained using image
processing for the estimation of the lycopene content in fruit. The previous studies reported
in the literature also provided a statistically significant correlation between image textures
and other properties of plant material. For example, image textures of wheat kernels
were highly correlated with the quantity of DNA of fungi of the genus Fusarium. For the
ventral side of kernels, the correlation coefficient (R) reached 0.86 in the case of texture
from channel a in cultivar 1 and 0.80 for texture from channel R in cultivar 2. In the case of
images of the dorsal side of wheat kernels, the highest correlation coefficient of 0.89 was
obtained for texture from channel V in cultivar 3 [40]. Nazari et al. [41] correlated image
textures and the content of phenolic compounds, tannin, and protein of sorghum grain. The
protein content was most highly correlated with texture from channel L and the correlation
coefficient was equal to 0.83. The highest correlation coefficients for tannin content of −0.91
and total phenolic content of −0.94 were determined for textures from color channel S [41].
The satisfactory results of the present study and the abovementioned literature data on
the existence of correlations between the image textures and other features, including the
chemical properties of plant material, suggest further research in this field. First, more
cultivars of tomato and cherry tomato can be included. Additionally, research using other
species of fruit and vegetables can be carried out.
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5. Conclusions

This study revealed the relationship between image textures and lycopene content,
determined in a nondestructive, objective, and simple way. This contrasts with lycopene
content determined by high-performance liquid chromatography, which is destructive,
more expensive, and time-consuming. High correlation coefficients (R) between lycopene
content and texture parameters reaching −0.99 were obtained. It was found that textures
from color channel G were the most useful for the estimation of lycopene content. The
models predicted the lycopene content in tomato fruit with a coefficient of determination
(R2) reaching 0.99. It was concluded that the lycopene content may be estimated with high
precision using determined regression equations based on image textures. The results can
have practical application in tomato processing and consumption for the selection of fruit
with desirable lycopene content. Further research may include more cultivars of tomato
and cherry tomato.
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