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Abstract: Fusarium head blight (FHB) disease reduces wheat yield and quality. Breeding wheat
varieties with resistance genes is an effective way to reduce the impact of this disease. This requires
trained experts to assess the disease resistance of hundreds of wheat lines in the field. Manual
evaluation methods are time-consuming and labor-intensive. The evaluation results are greatly
affected by human factors. Traditional machine learning methods are only suitable for small-scale
datasets. Intelligent and accurate assessment of FHB severity could significantly facilitate rapid
screening of resistant lines. In this study, the automatic tandem dual BlendMask deep learning
framework was used to simultaneously segment the wheat spikes and diseased areas to enable the
rapid detection of the disease severity. The feature pyramid network (FPN), based on the ResNet-50
network, was used as the backbone of BlendMask for feature extraction. The model exhibited positive
performance in the segmentation of wheat spikes with precision, recall, and MIoU (mean intersection
over union) values of 85.36%, 75.58%, and 56.21%, respectively, and the segmentation of diseased
areas with precision, recall, and MIoU values of 78.16%, 79.46%, and 55.34%, respectively. The final
recognition accuracies of the model for wheat spikes and diseased areas were 85.56% and 99.32%,
respectively. The disease severity was obtained from the ratio of the diseased area to the spike area.
The average accuracy for FHB severity classification reached 91.80%, with the average F1-score of
92.22%. This study demonstrated the great advantage of a tandem dual BlendMask network in
intelligent screening of resistant wheat lines.

Keywords: deep learning; wheat spike; Fusarium head blight; object recognition; image segmentation

1. Introduction

Wheat is one of the main food sources for humans, contributing about 20% of the
total dietary calories and proteins [1]. With the growing world population, the steady
increase in wheat production is of great significance. Wheat production has traditionally
been threatened by various diseases, pests, and abiotic stresses. According to statistics, the
global wheat yield loss caused by fungal diseases is as high as 15% to 20% [2]. Among
them, wheat Fusarium head blight (FHB) is one of the most harmful fungal diseases. It is
mainly caused by Fusarium graminearum, infecting spike flowers at the flowering stage
and expanding along the panicle axis during grain filling and maturation. The production
and accumulation of toxins, such as deoxynivalenol (DON), Fusarium nivalenol (NIV),
and zearalenol (ZEN) [3], can reduce the yield and quality of wheat, causing great harm
to human and animal health [4]. The breeding of FHB-resistant varieties is one of the
most important means to mitigate the effects of the disease. In order to develop resistant
varieties, hundreds of lines must be assessed each year for FHB severity. Protocols for
assessing FHB resistance often rely on manual detection. The severity of FHB in wheat
can be accurately scored by counting infected spikelets and calculating its percentage in

Agriculture 2022, 12, 1493. https://doi.org/10.3390/agriculture12091493 https://www.mdpi.com/journal/agriculture

https://doi.org/10.3390/agriculture12091493
https://doi.org/10.3390/agriculture12091493
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/agriculture
https://www.mdpi.com
https://orcid.org/0000-0003-1745-4722
https://doi.org/10.3390/agriculture12091493
https://www.mdpi.com/journal/agriculture
https://www.mdpi.com/article/10.3390/agriculture12091493?type=check_update&version=1


Agriculture 2022, 12, 1493 2 of 18

total spikelets [5]. However, this traditional approach is time-consuming, labor-intensive,
and prone to human error. Thus, there is an important need to develop a more effective,
non-destructive, and high-throughput approach to assess this disease in the field.

The commonly used methods for FHB detection mainly focus on visual analysis, chro-
matography, polymerase chain reaction (PCR), and enzyme-linked immunosorbent assay
(ELIS). Inspection by experienced experts is prone to subjective interference and human
error. Biochemical methods, such as chromatography and ELIS, are very accurate, but
they often require complex processing steps, which are not suitable for analyzing a large
number of FHB-infected wheat spikes in reality [6]. In recent years, imaging and spectro-
scopic methods, including near infrared spectroscopy (NIRS) and hyperspectral imaging
(HSI), have shown strong potential in agriculture and food, especially in crop disease
detection [7–16]. NIRS is based on differences in the absorption, emission, or transmission
of light by substances, whose fingerprint features are related to changes in the apparent
color, internal composition, and structure of the sample [17]. Peiris et al. [18] proposed an
automated single-kernel NIRS method for classifying healthy and FHB-infected wheat with
accuracy as high as 99.9%. However, NIRS can only obtain point features of the kernel and
cannot achieve large-scale and rapid classification. As a non-invasive, high-throughput,
and remote sensing method for plant phenotyping, HSI can merge the spatial and spectral
information into a 3D data matrix, but the data in the matrix is too large to be used in
real-time analysis [4,19].

With the development of artificial intelligence, color imaging based on machine learn-
ing has made great progress. Conventional machine learning methods, such as random
forest (RF), K-nearest neighbor (KNN), linear discriminant analysis (LDA), and partial
least squares discriminant analysis, have been widely used for crop plant detection and
disease evaluation [4,9]. However, these methods perform poorly on large-scale datasets
and complex feature scenarios. As a new field of machine learning, deep learning (DL)
has gradually begun to show its advantages in image classification, object detection, and
natural language processing [20,21]. Deep learning methods have become a preferred ap-
proach for disease identification in agricultural fields [22]. Convolutional neural networks
(CNN) have been widely used in agriculture in recent years by extracting key features that
use different combinations of layers, the translation invariance of convolutional operators,
and spatial relationships between adjacent data. Classical CNNs, such as LeNet-5 [23],
AlexNet [24], ResNet [25], and VGG [26] were successfully employed for plant disease
detection [27,28]. By combining the machine learning and deep learning methods, Has-
san SM et al. [29] proposed two methods including shallow VGG with RF and shallow
VGG with Xgboost to identify the diseases in corn, potato, and tomato, with the average
accuracy as high as 95.70%. Hassan et al. [30] proposed a novel CNN model based on
the inception and residual connection to classify the disease of four different plants. The
testing accuracies on plant village, rice, and cassava datasets were 99.39%, 99.66%, and
76.59%, respectively. In practical application, the increase of convolutional layers and
convolutional kernels of a CNN can enable the model to extract more abstract and refined
features, thereby exhibiting excellent performance [26]. However, this procedure may cause
the CNN to lose focus on the features and suffer from a vanishing gradient. Residual
modules effectively create shortcuts in a sequential network. It leverages a shortcut connec-
tion method to weaken the continuous multiplication effect in gradient backpropagation
to solve the vanishing gradient problem [25,31]. Girshick, the first author to apply deep
learning for object detection, used the region-based convolutional neural network (R-CNN)
model to increase the detection rate from 35.1% to 53.7% on the PASCAL VOC dataset [32].
Subsequently, Girshick launched Fast R-CNN and Faster R-CNN network models based on
R-CNN, which greatly improved the accuracy and speed of the algorithm in wheat spike
detection [33–35]. A pulse-coupled neural network (PCNN) with K-means clustering of
the improved artificial bee colony (IABC) was developed by Zhang et al. [36] to segment
wheat spikes infected with FHB. However, in that research, only one spike in the picture
was taken into consideration, which was not practical for high throughput detection in
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the field condition. Kumar et al. [37] used a deep convolution neural network (DCNN) to
automatically classify four wheat rust diseases, achieving an accuracy of 97.16%.

Mask R-CNN is a deep learning algorithm that achieves instance segmentation [38].
Mask R-CNN extends Faster R-CNN by adding a branch that predicts an object mask,
replacing the RoI Pooling layer with RoI Align. ROI Align solves the problem of mis-
alignment caused by quantization in RoI Pooling operations. Kumar et al. [39] quantified
the severity of loose smut in wheat using Mask R-CNN. However, the degree of disease
was not graded. Additionally, the accuracy for disease degree classification was not verified.
In addition, the calculation of the proportion of the diseased area of the whole leaf was
not clearly indicated. Kumar et al. [40] used the Mask R-CNN to recognize the wheat
yellow rust disease. However, this study did not include enough datasets, and the result of
background segmentation was not adequate. Yang et al. [41] demonstrated the potential
of Mask R-CNN to identify leaves in plant images for rapid phenotyping with an average
accuracy of up to 91.5%. Su et al. [42] utilized a dual deep learning framework based on
Mask R-CNN to detect the wheat for FHB severity in field trials. Due to the deficiencies
of the previous strategies, more advanced models are needed to evaluate the resistance
of wheat to FHB. In recent years, Chen et al. [43] proposed a more advanced instance
segmentation model of BlendMask compared to Mask R-CNN. BlendMask is a state-of-the-
art instance segmentation method based on a fully convolutional one-stage (FCOS) object
detection network [43]. Xi et al. [44] used two instance segmentation networks including
BlendMask and Mask R-CNN to delineate the ginkgo tree crowns. The results showed that
the capability of BlendMask outperformed Mask R-CNN. Compared to Mask R-CNN, the
BlendMask network model has the characteristics of less computation, higher mask quality,
and stable inference time. Therefore, it is necessary to apply the BlendMask model for the
image segmentation of wheat spikes and target recognition of the diseased areas.

The assessment of plant disease severity is another important and challenging task in
agriculture. Efficient evaluation methods should be of great help to growers and breeders.
Table 1 summarizes some studies using advanced deep learning methods to assess crop
disease severity. Esgario et al. [45] established five models to successfully classify the
severity of coffee disease into five grades. ResNet50 achieved the best accuracy of 84.13%.
Pan et al. [46] proposed Faster R-CNN (VGG16) and Siamese networks for strawberry leaf
scorch severity estimation. An accuracy of 88.3% was achieved on a new dataset, but the
manual labeling method is time-consuming and prone to subjective errors. Joshi et al. [47]
used VirLeafNet to classify Vigna mungo disease into three grades and the accuracy reached
91.5%. Although the aforementioned studies performed well in determining the severity
of plant diseases, the accuracy was lower than the protocol proposed in the current study.
In another study, Zhang et al. [48] used the ratio of the number of diseased wheats to
the total number of wheats as a method for evaluating disease severity. However, this
method ignored the overlapping wheat spikes in the image. In the studies of Ji et al. [49]
and Wu et al. [50], improved YoLo V5 and deeplabV3+ achieved the accuracies of 97.75%
and 95.34%, respectively, in evaluating disease severities of grape and pepper, respectively.
Different from the single-stage segmentation methods mentioned above, Liu et al. [51]
developed a two-stage framework to automatically estimate the severity of apple leaf
disease in the field, yielding an accuracy of 96.41%. However, the applicability of the
framework used in their study lacked validation on multi-leaf images.

With the advancements in machine learning and deep learning techniques, the meth-
ods for plant disease detection have shown promising performance. However, the original
data for model training were mostly acquired in a lab, which would limit the performance
of the method in real field conditions [52]. The main objective of this study was to inves-
tigate the feasibility of automatic tandem dual BlendMask networks for assessments of
wheat for FHB severity in field trials. The specific steps of this study were to: (1) capture
high-quality images of wheat spikes in the field, (2) annotate wheat spikes and diseased
areas in the raw images, (3) train a BlendMask model to detect and segment wheat spikes in
full-size images, (4) train a second BlendMask model to predict diseased areas in individual



Agriculture 2022, 12, 1493 4 of 18

spikes, (5) write a program that combines dual BlendMask networks to simultaneously
display the results of wheat spike detection and diseased area segmentation in full-size
images, and (6) evaluate the disease grade of wheat FHB based on the ratio of the diseased
area to the overall wheat spike. To our knowledge, this is the first study to assess the
severity of wheat FHB based on automatic tandem dual BlendMask networks.

Table 1. Summary of the studies on the evaluation crop disease severities based on deep learning methods.

References Model Crop Severity Levels Accuracy (%)

Esgario et al. [45] AlexNet, GoogleNet, VGGNet,
ResNet, MobileNet Coffee Healthy, low, very low, high,

very high 84.13

Pan et al. [46] Faster R-CNN (VGG16) Strawberry Healthy, general, serious 88.3
Joshi et al. [47] VirLeafNet Vigna mungo Healthy, mild, severe 91.5

Zhang et al. [48] Improved YoLo V5 Wheat Minor, light, medium, heavy,
major 91.0

Ji et al. [49] DeeplabV3+ Grape Healthy, mild, medium, severe 97.75
Wu et al. [50] MultiModel_VGR Pepper Healthy, general, serious 95.34

Liu et al. [51] DeeplabV3+, PSPNet, UNet Apple Healthy, early, mild, moderate,
severe 96.41

2. Materials and Methods
2.1. Data Collection and Annotation

Images of wheat spikes from the late flowering stage to maturity were collected in
different weather conditions (sunny, cloudy, rainy, etc.) and different backgrounds (other
spikes, sky, clouds, and soil). A total of 690 images were captured using an autofocus
single-lens reflex (SLR) camera (Canon EOS Rebel T7i, resolution: 6000 × 4000). Each
image consists of several wheat spikes. For spike identifications, 524 images (includ-
ing 12,591 spikes) were selected for the training set and the other 166 images (including
4749 spikes) were selected for the validation set by random. For diseased area detection,
a total of 2832 and 922 sub-images of diseased spikes were selected for the training set
and validation set by random, respectively. An image annotation software (Labelme,
https://github.com/wkentaro/labelme (accessed on 30 October 2021)) was used to label
the ground truth for spikes in full-size images and FHB-diseased areas in sub-images. The
first step in image annotation was to label wheat spikes in the raw images (Figure 1a,b).
After segmenting the labeled individual spikes into sub-images, the diseased regions in the
sub-images were then annotated in the second step (Figure 1c,d).
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is very susceptible to the disease. According to these principles, the FHB severity can be
divided into four grades: healthy [0–5%), mild [5–10%), moderate [10–20%), and severe
[20–50%]. The result of the Levene variance equivalence test and quality t-test of the means
are both zeros, which means there are significant differences between any two classes.

2.2. BlendMask

BlendMask is a one-stage dense instance segmentation method model. The main con-
tribution of BlendMask is to propose the Blender module, which can merge the feature both
from top-down and bottom-up methods. Specifically, BlendMask is composed of a detector
network and a mask branch. In the detector module, FCOS is used to generate the feature
from top-down, including the bounding boxes and attention maps. FCOS is composed of a
fully convolutional network, which is similar to the pixel-by-pixel prediction method of
semantic segmentation to solve target detection. This detection not only becomes anchor
free and proposal free, but also reduces the amount of design parameters significantly.
The mask branch consists of three parts, including bottom module, top layer, and blender
module. Bottom module is used to process the underlying features, generating a score map
called Base. The top layer is concatenated on the box head of the detector, which predicts
top-level attentions through a convolution layer on each of the detection towers. The
blender module is the most important module of BlendMask, which can merge bounding
boxes, attention maps and masks to generate the final prediction of instance segmentation.

The backbone of this study is a ResNet model with 50 layers (ResNet-50) mentioned by
He et al. [25]. With the increase of the CNN depth, the problems of vanishing gradients [53]
and the degradation [25] have been exposed. ResNet applies the shortcut connection of the
residual module, which alleviates the problems of gradient disappearance and network
degradation to a certain extent [54]. FPN is a top-down hierarchy with lateral connections
for constructing high-level semantic features at various scales [55]. The raw images with
annotated wheat spikes and the sub-images with annotated diseased areas were used as
the inputs to train two BlendMask models for the detection of wheat spikes and diseased
areas, respectively. After training the dual BlendMask models, the images in the validation
set can be used for the segmentation of the wheat spikes and FHB-diseased areas. The
recognition and segmentation results are displayed on the image below as output (Figure 2).
The workflow of training dual BlendMask models is presented in Figure 3.
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2.3. Evaluation Metrics

In order to evaluate the segmentation results of BlendMask networks on wheat spikes
and FHB-diseased areas, several evaluation metrics were computed. It includes precision,
recall, F1-score, and average precision (AP). Precision is defined as the proportion of
the number of real positive instances among the total number of instances predicted as
belonging to the positive category. Recall is defined as the proportion of the number of
real positive instances in the total number of instances actually belonging to the positive
category [56]. F1-score denotes the harmonic weighted average of precision and recall
values, which takes both false positives and false negatives into account [57]. Precision and
recall are used to calculate AP, which represents the area under the precision–recall (P-R)
curve. The intersection over union (IoU) is defined as the degree to which the manually
annotated ground truth box overlaps the bbox (category score) generated by the model.
The IoU threshold was used to determine whether a wheat spike was correctly segmented.
If the predicted result exactly matches the ground truth, the IoU reaches 100%. The mean
intersection over union (MIoU) is another standard metric for image segmentation, which
can be calculated as the number of true positive (TP) over the sum of true positive (TP),
false negative (FN), and false positive (FP) [58]. The equations of precision, recall, F1-score,
AP, IoU, and MIoU are shown below:

precision =
TP

TP + FP

recall =
TP

TP + FN

F1 =
2× Precision× Recall

Precision + Recall

AP =
1

10

0.95

∑
IoU=0.5

∫ 1

0
PIoU(r)dr

IoU(E, F) =
∣∣∣∣E ∩ F
E ∪ F

∣∣∣∣
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MIoU =
1

k + 1

k

∑
i=0

Pii

∑k
j=0 Pij + ∑k

j=0 Pji − Pii

where TP (true positive) is the number of correctly segmented wheat spikes or FHB-diseased
areas, FP (false positive) is the number of wrong segmented wheat spikes or FHB-diseased
areas, and FN (false negative) is the number of ground truth that were not segmented.
PIoU(r) is the precision–recall curve with different IoU values. E represents the manually
labeled ground truth box. F represents the bbox generated based on the BlendMask model.
The intersection over union (IoU) computes the overlapping area between the predicted
wheat spike and the ground truth wheat spike divided by the area of union between them.
In some studies, the IoU threshold value is set to 50%, which means that a wheat spike is
considered to be correctly segmented if IoU ≥ 0.5. It is considered to be mis-segmented
if IoU < 0.5. k + 1 is the total number of output classes, including an empty class (the
background). Pii denotes TP, while Pij and Pji represent FP and FN, respectively.

2.4. Equipment

A computer with a graphics processing unit (GPU) mode (NVIDIA RTX 3090 24 Gb,
Shanghai, China) was used to complete the process for model training and validation. It is
important to emphasize that these eight GPUs are leased from a GPU sharing platform, and
the personal computer can control these leased GPUs on the GPU rental website. Table 2
shows the BlendMask modeling parameters. Table 3 depicts the time for model training
and validation.

Table 2. Modeling hyperparameter settings.

Hyperparameter Values

Backbone Resnet-50
Batch size 16

Base learning rate 0.01
Attention size 14
Max iteration 1,700,000

Bottom resolution 56
Number of classes 2

Table 3. The total time for model training and validation.

Application Training Time Validation Time

Wheat spike identification 72 h 45 min 28 s 14 min 36 s
FHB disease detection 46 h 25 min 43 s 2 min 30 s

3. Results
3.1. Model Training

Dual BlendMask networks were trained based on the labeled images of wheat spikes
and FHB-diseased areas. Figure 4a shows the changing trend of loss during the model
training for wheat spike identification. It can be seen from the figure that the curves of the
loss of the bbox and the mask decrease sharply in the initial iteration, but the downtrend
slows down after 30,000 iterations. The loss curve then fluctuates until the curve trend
stabilizes after 160,000 iterations. It can be seen that the loss value of the mask is always
greater than that of the bbox. Finally, the loss value of the bbox and mask reached the
lowest levels: 0.0012 and 0.024, respectively. Similarly, Figure 4b describes the variation of
the loss in the model training for FHB disease. The overall change trend of the loss curve in
the image is similar to the previous model for segmenting spikes. The loss values of the
mask and the bbox reduced to 0.032 and 0.0016, eventually.
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3.2. Wheat Spike Identification

The segmentation results of the wheat spikes on the BlendMask network are shown in
Table 3. As can be seen from the data in Table 4, it is apparent that the algorithm showed
an outstanding performance for wheat spike segmentation, with the AP of the mask and
the bbox at 57.16% and 56.69%, respectively. In the 166 test images, the overall values of
IoU, F1-score, precision, and recall were 48.23%, 80.17%, 85.36%, and 75.58%, respectively.
According to statistics, 4053 were correctly identified from the 4749 wheat spikes, yielding a
recognition accuracy of 85.56%. All the above results indicate that the BlendMask network
has a strong capability to identify wheat spikes under field conditions.

Table 4. Results of BlendMask for wheat spikes and FHB disease detection.

Type Precision (%) Recall (%) F1-score (%) IoU (%) Ap of Mask (%) MIoU (%)

Wheat spike 85.36 75.58 80.17 48.23 59.28 56.21
FHB disease 78.16 79.46 78.89 52.41 66.74 55.34
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Figure 5 depicts the prediction of selected wheat spike images from the validation
dataset. It was observed that most of the spikes were successfully detected. The network
model successfully detected the high-density wheat spikes in the field (Figure 5a). Due
to the shooting position of the camera and the natural growth state of the wheat spikes,
the wheat spikes in many images are partially occluded. There are mainly three types of
occlusions, including occlusion by the leaves of the wheat (Figure 5b), occlusion by the
wheat awns or straw (Figure 5c), and occlusion by the other wheat spikes (Figure 5d). The
training results of the model showed that BlendMask successfully segmented the occluded
spikes of wheat, demonstrating the strong performance of the model. Figure 5e shows
that wheat spikes cut at the image borders were successfully identified. It is important to
identify local spikes, as this allows full utilization of wheat spikes in the dataset to enhance
the robustness of the model.
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Figure 5. Successful segmentation results for wheat in five complex environments: (a) high-density
wheat spikes in the field; (b) wheat spikes occluded by the leaves of other wheat; (c) wheat
spikes occluded by other wheat awns or stems; (d) wheat spikes occluded by the other spikes;
(e) wheat spikes cut at the image borders. (The red boxes are to emphasize different situations with
complex backgrounds.)

3.3. FHB Disease Evaluation

The trained BlendMask model was used to detect the diseased areas on wheat spikes.
Figure 6 shows the diseased area detection and segmentation results from the individual
wheat spikes under different conditions including diseased areas with shadow, diseased
areas under strong light, diseased areas under low light, and diseased areas under awn
occlusion. The bboxes, masks, and category scores were shown in individual spikes. The
MIoU value reached 55.34%. The AP values of the mask and the bbox for FHB disease
detection were 66.74% and 65.38%, respectively. As seen in Table 3, the overall values of
precision, recall, F1-score, and IoU were 78.16%, 79.46%, 78.8%, and 52.41%, respectively.
Due to the complexity of crop growth in natural fields and the interference of light intensity
or weeds, the individual wheat spikelet that is segmented from full-sized images generate
a certain amount of noise, which is mainly manifested in the partial shadow area of the
wheat spike, weak light, strong light, and occlusion by wheat awns or straw. All of these
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bring challenges to the accurate recognition of diseased areas. Nevertheless, the BlendMask
model was effective in identifying the lesion areas of these conditions (Figure 6). Eventually,
a total of 916 diseased spikes were recognized from 922 samples with an accuracy of
99.32%. The results prove that BlendMask achieved the accurate identification of FHB-
diseased areas. Figure 7 shows the flowchart of the combination of dual BlendMask models
for evaluating FHB disease severity. Figure 8 shows the visualization of the recognition
accuracy and disease severity of different wheat spikes from a full-sized image based on the
automatic tandem dual BlendMask framework. It is worth noting that the dual BlendMask
framework runs very fast. The recognition results can be output in about 2 s.
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Figure 6. Illustration of diseased area detection and segmentation results from the individual wheat
spikes in test set: (a) diseased areas with shadow; (b) diseased areas under strong light; (c) diseased
areas under low light; (d) diseased areas under awn occlusion.

Agriculture 2022, 12, x FOR PEER REVIEW 11 of 19 
 

 

 
Figure 7. A flowchart of the combination of dual BlendMask models for evaluating FHB disease 
severity. 

 
Figure 8. Visualization of the recognition accuracy and disease severity of different wheat spikes 
from a full-sized image based on automatic tandem dual BlendMask framework. 

Figure 7. A flowchart of the combination of dual BlendMask models for evaluating FHB disease severity.



Agriculture 2022, 12, 1493 11 of 18

Agriculture 2022, 12, x FOR PEER REVIEW 11 of 19 
 

 

 
Figure 7. A flowchart of the combination of dual BlendMask models for evaluating FHB disease 
severity. 

 
Figure 8. Visualization of the recognition accuracy and disease severity of different wheat spikes 
from a full-sized image based on automatic tandem dual BlendMask framework. Figure 8. Visualization of the recognition accuracy and disease severity of different wheat spikes

from a full-sized image based on automatic tandem dual BlendMask framework.

Although the trained model performed very well in diseased area detection, some
mistakes occurred during validation. For the case of identification failure, the main reasons
were model error and annotation error. As shown in Figure 9a, the part adjacent to the
lesion area is identified as the lesion area (red rectangle). This type of error belongs to FP.
The same error is also shown in Figure 9d in the blue box. The color of the wheat spikes
near the diseased area is similar to the unique color of the diseased area due to natural light.
Figure 9b shows that the model incorrectly identifies several adjacent lesion areas as one.
Figure 9c shows that some lesions (blue rectangle) are not identified due to model errors,
which belongs to FN. Figure 9d shows a failure due to annotation errors (red rectangle).
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4. Classification of Wheat FHB Severity Grades

Figure 10a depicts the ground truth (the visual rating of spikes in the acquired images
by an expert) of wheat spikes with different disease grades in the training sets. As seen in
Figure 10a, 21.2%, 28.2%, 32.5%, and 18.1% of the samples in the training set are categorized
as healthy, mild, moderate, and severe, respectively. Figure 10b shows the ground truth
and prediction of wheat spikes with different disease grades in the validation sets. It
was noticed that 20%, 29.6%, 30.3%, and 20.1% of the samples in the validation set were
categorized as healthy, mild, moderate, and severe in the ground truth, which is generally
similar to those from the training set. The distribution of the predicted results on the four
grades is almost identical to that of the ground truth. The maximum error between the
predicted quantity and the actual quantity occurs for the severe grade and the number is
10, while the minimum bias is only 1 when it comes to the mild grade.
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Figure 10. Frequency of wheat spikes for each disease grade: (a) the number of wheat spikes for
different disease grades in the training set; (b) the number of predicted and ground truth spikes for
different disease grades in the validation set.

Through the statistical analysis of the actual value and predicted value of the disease
severity in the four disease grades shown in Table 5, it can be seen that the predicted
value is always less than or equal to the actual value whether it is the average value or the
maximum and minimum value of the disease severity. Therefore, the model may have a
tendency to underestimate the severity of the disease in practical applications.
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Table 5. Statistical results of wheat spike FHB disease severity for four grades.

Grade Type
Severity (%)

Means ± SD Max Min

Healthy Ground truth 2.8 ± 1.1 5.0 0.0
Prediction 2.9 ± 0.8 4.9 0.0

Mild
Ground truth 7.4 ± 2.1 10.0 5.1

Prediction 6.9 ± 1.4 9.8 5.0

Moderate
Ground truth 15.5 ± 2.3 20.0 10.3

Prediction 14.4 ± 2.1 18.9 10.1

Severe
Ground truth 38.6 ± 4.6 49.8 21.2

Prediction 36.4 ± 4.1 48.7 20.8

To further verify the accuracy of the classification results obtained from the model,
the confusion matrix was applied to analyze the similarities and differences between the
predicted results and the ground truth. Precision and sensitivity were first obtained. Based
on the precision and sensitivity, the F1-score for each of the four grades was calculated.
As shown in Table 6, it is obvious that all the values are around 90%. The lowest F1-score
score was 91.1% while the highest score was 93.2%. The average F1-score was 92.22%.
Figure 11 depicts a confusion matrix for wheat FHB grades. The average accuracy for FHB
severity classification was 91.8%. Accuracies of 90%, 91%, 93%, and 93% were obtained for
the four grades, respectively. As shown in Figure 11, mild grade samples are most easily
misclassified to the healthy grade. This may be because the healthy and mild grades have
similar area ratios. Since the diseased area for these two grades is relatively small, the
probability of misidentification is likely to increase. Additionally, moderate grade samples
are more likely misclassified to the severe grade. This may be due to the smaller difference
in the ratio of diseased areas to spike areas for the moderate and severe grades.

Table 6. Results of precision, sensitivity, and F1-score for four grades.

Grade Precision (%) Sensitivity (%) F1-score (%)

Healthy 93.6 88.9 91.1
Mild 93.7 90.9 91.7

Moderate 92.6 92.8 92.9
Severe 94.8 93.1 93.2
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5. Discussion

The research proposed a new approach using tandem dual BlendMask networks for
automatic severity estimation of wheat FHB in the field. Three main parts were involved in
this study, including wheat spike segmentation, FHB disease segmentation, and disease
severity classification. RGB images were used to train the dual BlendMask framework
to evaluate the severity of wheat FHB disease. Although positive detection results were
obtained, there were still some errors in the prediction of the disease severity. These
errors may come from the algorithm model or the image annotation. Data annotation is
a bottleneck for segmentation tasks [59]. The annotation process is laborious and time-
consuming. The annotation results are greatly affected by human factors. In the future,
instance segmentation based on semi- and weakly-supervised methods can be considered.
In order to maximize the utilization of the dataset, data augmentation is also an essential
step. Fang et al., used data augmentation to solve the issue of insufficient training datasets
in instance segmentation [60]. The application of random transformations, such as flipping,
cropping, and changing saturation to generate new images, can generate new images that
effectively augment the training set.

It is a challenging task to realize the recognition of wheat spikes in the field. In
this study, FCOS in the BlendMask deep learning framework was used for wheat FHB
detection. The model was capable of detecting wheat spikes within a complex environment.
Comparing the neural network method with Laws texture energy [61], the BlendMask
model achieved a higher accuracy of 85.56% for identification of high-density wheat spikes.
The main reason for the success of the proposed model is the FCOS used in the detector
module, which can generate the feature from top-down. Although the SpikeSegNet model
achieved an accuracy of 99.91% in the study of Misra et al. [62], the wheat spikes were
low-density in collected images.

Two trained BlendMask models are connected in series to directly display the recog-
nition results of wheat spikes and diseased areas in the original images. The BlendMask
performed very well, yielding a detection rate as high as 99.32% for FHB detection com-
pared to 98.81% for the study of Su et al. [42]. The main reasons for the success of our model
are as follows:(1) compared to Mask R-CNN, the Blender module of BlendMask provides
higher-quality masks and (2) the wheat in the dataset has been marked with high precision,
which helps to improve the performance and robustness of the BlendMask model. The
proportion of diseased areas of the whole wheat spike displayed directly on the original
input image, thus high-throughput and real-time analysis can be constructed in the field.
Many deformation models of the transformer, such as vision transformer (VIT) [63] and
swin transformer [64], perform well in image classification, target recognition, and image
segmentation. In the future, more advanced semantic segmentation algorithms based on
transformers should be considered.

It was noticed that the automatic tandem dual BlendMask networks successfully
segmented individual wheat spikes and FHB-diseased areas simultaneously from images
of multiple spikes with complex backgrounds. The proposed method showed great po-
tential for non-destructive and high-throughput evaluation of the severity of wheat FHB
disease. Su et al. [42] used the same dataset as this study and the Mask R-CNN model to
segment wheat individuals and the disease spots on wheat individuals, and the accuracy
of segmentation detection reached 77.76% and 98.81%, respectively. In this study, the
segmentation detection accuracy of these two parts has been improved to a certain extent,
reaching 85.56% and 99.32%. Mask R-CNN takes 250,000 iterations to achieve the accuracy
while BlendMask reaches the accuracy mentioned above after 170,000 iterations. Therefore,
the BlendMask model is more concise and efficient. By linking the two models, the average
time to identify the severity of a wheat plant was 0.09 s.

The objective of this study is to apply the constructed model to a car taking photos
in the field, so the model is biased towards proximal perceptual detection. Nowadays,
unmanned aerial vehicles (UAVs) are widely used for efficient detection of crop diseases
because they can sense a larger range and consume less manpower, but such detection
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generally relies on the expensive remote sensing equipment on the UAVs. In future studies,
we will try to improve the model and make it adapt to the high density of wheat images or
videos taken by UAVs. When the UAVs fly at a low altitude over the same kind of wheat in
the field, an ordinary camera with a relatively low cost can be used to take photos or video
and evaluate the severity of the wheat FHB disease. This is helpful to screen out the wheat
with better disease resistance.

6. Conclusions

This study proposed an integrated method for the evaluation of wheat for FHB severity
based on the automatic tandem dual BlendMask networks for simultaneous segmentations
of wheat spikes and diseased areas under complex field conditions. The BlendMask model
demonstrated outstanding performance in the detection of the wheat spikes occluded by
awns or cut at the image borders. The recognition accuracies of the model for wheat spikes
and diseased areas were 85.56% and 99.32%, respectively. The inference time was within
2 s on average, which would be helpful for real-time monitoring of high-throughput wheat
spikes in the field. By calculating the ratio of the lesion area to the overall area, the disease
degree of wheat FHB was divided into four grades (healthy, mild, moderate, and severe)
and the accuracy of disease level prediction reached 91.8%. This study demonstrates the
feasibility of dual BlendMask networks for severity evaluation of wheat FHB in the field.
This study will be of great help to the breeding of FHB resistant lines in breeding nurseries.

Author Contributions: Conceptualization, W.-H.S.; methodology, Y.G., H.W., M.L., and W.-H.S.;
software, Y.G. and H.W.; validation, Y.G., H.W., and M.L.; formal analysis, Y.G., H.W., and M.L.;
investigation, Y.G., H.W., and M.L.; resources, W.-H.S.; writing—original draft preparation, Y.G. and
H.W.; writing—review and editing, M.L. and W.-H.S.; supervision, W.-H.S.; project administration,
W.-H.S.; funding acquisition, W.-H.S. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data available on request due to privacy.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Shiferaw, B.; Smale, M.; Braun, H.-J.; Duveiller, E.; Reynolds, M.; Muricho, G. Crops that feed the world 10. Past successes and

future challenges to the role played by wheat in global food security. Food Secur. 2013, 5, 291–317. [CrossRef]
2. Figueroa, M.; Hammond-Kosack, K.E.; Solomon, P.S. A review of wheat diseases—A field perspective. Mol. Plant Pathol. 2018,

19, 1523–1536. [CrossRef]
3. O’Donnell, K.; Ward, T.J.; Geiser, D.M.; Kistler, H.; Aoki, T. Genealogical concordance between the mating type locus and seven

other nuclear genes supports formal recognition of nine phylogenetically distinct species within the Fusarium graminearum
clade. Fungal Genet. Biol. 2004, 41, 600–623. [CrossRef] [PubMed]

4. Femenias, A.; Gatius, F.; Ramos, A.J.; Sanchis, V.; Marín, S. Use of hyperspectral imaging as a tool for Fusarium and deoxynivalenol
risk management in cereals: A review. Food Control 2019, 108, 106819. [CrossRef]

5. Stack, R.W.; McMullen, M.P. A visual scale to estimate severity of Fusarium head blight in wheat. 1998. Available online:
https://library.ndsu.edu/ir/bitstream/handle/10365/9187/PP1095_1998.pdf?sequence=1 (accessed on 13 September 2022).

6. Barbedo, J.; Tibola, C.S.; Lima, M.I.P. Deoxynivalenol screening in wheat kernels using hyperspectral imaging. Biosyst. Eng. 2017,
155, 24–32. [CrossRef]

7. Su, W.-H.; Yang, C.; Dong, Y.; Johnson, R.; Page, R.; Szinyei, T.; Hirsch, C.D.; Steffenson, B.J. Hyperspectral imaging and improved
feature variable selection for automated determination of deoxynivalenol in various genetic lines of barley kernels for resistance
screening. Food Chem. 2020, 343, 128507. [CrossRef]

8. Su, W.-H.; Xue, H. Imaging Spectroscopy and Machine Learning for Intelligent Determination of Potato and Sweet Potato Quality.
Foods 2021, 10, 2146. [CrossRef]

9. Su, W.-H.; Sun, D.-W.; He, J.-G.; Zhang, L.-B. Variation analysis in spectral indices of volatile chlorpyrifos and non-volatile
imidacloprid in jujube (Ziziphus jujuba Mill.) using near-infrared hyperspectral imaging (NIR-HSI) and gas chromatograph-mass
spectrometry (GC–MS). Comput. Electron. Agric. 2017, 139, 41–55. [CrossRef]

10. Su, W.-H.; Sun, D.-W. Rapid determination of starch content of potato and sweet potato by using NIR hyperspectral imaging.
Hortscience 2019, 54, S38.

http://doi.org/10.1007/s12571-013-0263-y
http://doi.org/10.1111/mpp.12618
http://doi.org/10.1016/j.fgb.2004.03.003
http://www.ncbi.nlm.nih.gov/pubmed/15121083
http://doi.org/10.1016/j.foodcont.2019.106819
https://library.ndsu.edu/ir/bitstream/handle/10365/9187/PP1095_1998.pdf?sequence=1
http://doi.org/10.1016/j.biosystemseng.2016.12.004
http://doi.org/10.1016/j.foodchem.2020.128507
http://doi.org/10.3390/foods10092146
http://doi.org/10.1016/j.compag.2017.04.017


Agriculture 2022, 12, 1493 16 of 18

11. Su, W.-H.; Sun, D.-W. Advanced Analysis of Roots and Tubers by Hyperspectral Techniques. In Advances in Food and Nutrition
Research; Elsevier BV: Amsterdam, The Netherlands, 2019; Volume 87, pp. 255–303.

12. Su, W.-H.; Sun, D.-W. Potential of hyperspectral imaging for visual authentication of sliced organic potatoes from potato and
sweet potato tubers and rapid grading of the tubers according to moisture proportion. Comput. Electron. Agric. 2016, 125, 113–124.
[CrossRef]

13. Su, W.-H.; He, H.-J.; Sun, D.-W. Non-Destructive and rapid evaluation of staple foods quality by using spectroscopic techniques:
A review. Crit. Rev. Food Sci. Nutr. 2016, 57, 1039–1051. [CrossRef]

14. Su, W.-H.; Sun, D.-W. Fourier Transform Infrared and Raman and Hyperspectral Imaging Techniques for Quality Determinations
of Powdery Foods: A Review. Compr. Rev. Food Sci. Food Saf. 2017, 17, 104–122. [CrossRef] [PubMed]

15. Su, W.-H. Advanced Machine Learning in Point Spectroscopy, RGB-and hyperspectral-imaging for automatic discriminations of
crops and weeds: A review. Smart Cities 2020, 3, 39. [CrossRef]

16. Nagasubramanian, K.; Jones, S.; Singh, A.K.; Sarkar, S.; Singh, A.; Ganapathysubramanian, B. Plant disease identification using
explainable 3D deep learning on hyperspectral images. Plant Methods 2019, 15, 98. [CrossRef] [PubMed]

17. Raghavendra, A.; Guru, D.; Rao, M.K. Mango internal defect detection based on optimal wavelength selection method using NIR
spectroscopy. Artif. Intell. Agric. 2021, 5, 43–51. [CrossRef]

18. Peiris, K.H.S.; Pumphrey, M.O.; Dong, Y.; Maghirang, E.B.; Berzonsky, W.; Dowell, F.E. Near-Infrared Spectroscopic Method for
Identification of Fusarium Head Blight Damage and Prediction of Deoxynivalenol in Single Wheat Kernels. Cereal Chem. 2010,
87, 511–517. [CrossRef]

19. Femenias, A.; Gatius, F.; Ramos, A.J.; Teixido-Orries, I.; Marín, S. Hyperspectral imaging for the classification of individual cereal
kernels according to fungal and mycotoxins contamination: A review. Food Res. Int. 2022, 155, 111102. [CrossRef] [PubMed]

20. Lu, J.; Hu, J.; Zhao, G.; Mei, F.; Zhang, C. An in-field automatic wheat disease diagnosis system. Comput. Electron. Agric. 2017,
142, 369–379. [CrossRef]

21. Weng, S.; Tang, P.; Yuan, H.; Guo, B.; Yu, S.; Huang, L.; Xu, C. Hyperspectral imaging for accurate determination of rice variety
using a deep learning network with multi-feature fusion. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 234, 118237.
[CrossRef]

22. Ahmad, A.; Saraswat, D.; El Gamal, A. A survey on using deep learning techniques for plant disease diagnosis and recommenda-
tions for development of appropriate tools. Smart Agric. Technol. 2023, 3, 100083. [CrossRef]

23. Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998,
86, 2278–2324. [CrossRef]

24. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. NIPS 2012, 60, 84–90.
[CrossRef]

25. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

26. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv preprint 2014,
arXiv:1409.1556.

27. Dong, M.; Mu, S.; Shi, A.; Mu, W.; Sun, W. Novel method for identifying wheat leaf disease images based on differential
amplification convolutional neural network. Int. J. Agric. Biol. Eng. 2020, 13, 205–210. [CrossRef]

28. Wagle, S.A.; R, H. Comparison of Plant Leaf Classification Using Modified AlexNet and Support Vector Machine. Trait. Signal
2021, 38, 79–87. [CrossRef]

29. Hassan, S.M.; Jasinski, M.; Leonowicz, Z.; Jasinska, E.; Maji, A.K. Plant Disease Identification Using Shallow Convolutional
Neural Network. Agronomy 2021, 11, 2388. [CrossRef]

30. Hassan, S.M.; Maji, A.K. Plant Disease Identification Using a Novel Convolutional Neural Network. IEEE Access 2022,
10, 5390–5401. [CrossRef]

31. Fenu, G.; Malloci, F.M. Using Multioutput Learning to Diagnose Plant Disease and Stress Severity. Complexity 2021, 2021, 6663442.
[CrossRef]

32. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014;
pp. 580–587. [CrossRef]

33. Girshick, R. Fast r-cnn. In Proceedings of the IEEE international conference on computer vision, Santiago, Chile, 7–13 December
2015; pp. 1440–1448.

34. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE
Trans. Pattern Anal. Mach. Intell. 2016, 39, 1137–1149. [CrossRef]

35. Hasan, M.M.; Chopin, J.P.; Laga, H.; Miklavcic, S.J. Detection and analysis of wheat spikes using convolutional neural networks.
Plant Methods 2018, 14, 1–13. [CrossRef]

36. Zhang, D.; Wang, D.; Gu, C.; Jin, N.; Zhao, H.; Chen, G.; Liang, H.; Liang, D. Using Neural Network to Identify the Severity of
Wheat Fusarium Head Blight in the Field Environment. Remote Sens. 2019, 11, 2375. [CrossRef]

37. Kukreja, V.; Kumar, D. Automatic Classification of Wheat Rust Diseases Using Deep Convolutional Neural Networks. In
Proceedings of the 2021 9th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future
Directions) (ICRITO), Noida, India, 3–4 September 2021; pp. 1–6. [CrossRef]

http://doi.org/10.1016/j.compag.2016.04.034
http://doi.org/10.1080/10408398.2015.1082966
http://doi.org/10.1111/1541-4337.12314
http://www.ncbi.nlm.nih.gov/pubmed/33350060
http://doi.org/10.3390/smartcities3030039
http://doi.org/10.1186/s13007-019-0479-8
http://www.ncbi.nlm.nih.gov/pubmed/31452674
http://doi.org/10.1016/j.aiia.2021.01.005
http://doi.org/10.1094/CCHEM-01-10-0006
http://doi.org/10.1016/j.foodres.2022.111102
http://www.ncbi.nlm.nih.gov/pubmed/35400475
http://doi.org/10.1016/j.compag.2017.09.012
http://doi.org/10.1016/j.saa.2020.118237
http://doi.org/10.1016/j.atech.2022.100083
http://doi.org/10.1109/5.726791
http://doi.org/10.1145/3065386
http://doi.org/10.25165/j.ijabe.20201304.4826
http://doi.org/10.18280/ts.380108
http://doi.org/10.3390/agronomy11122388
http://doi.org/10.1109/ACCESS.2022.3141371
http://doi.org/10.1155/2021/6663442
http://doi.org/10.1109/CVPR.2014.81
http://doi.org/10.1109/TPAMI.2016.2577031
http://doi.org/10.1186/s13007-018-0366-8
http://doi.org/10.3390/rs11202375
http://doi.org/10.1109/icrito51393.2021.9596133


Agriculture 2022, 12, 1493 17 of 18

38. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask r-cnn. In Proceedings of the IEEE International Conference on Computer Vision,
Venice, Italy, 22–29 October 2017; pp. 2961–2969.

39. Kumar, D.; Kukreja, V. Quantifying the Severity of Loose Smut in Wheat Using MRCNN. In Proceedings of the 2022 International
Conference on Decision Aid Sciences and Applications (DASA), Chiangrai, Thailand, 23–25 March 2022; pp. 630–634.

40. Kumar, D.; Kukreja, V. An Instance Segmentation Approach for Wheat Yellow Rust Disease Recognition. In Proceedings of the
2021 International Conference on Decision Aid Sciences and Application (DASA), Online, 7–8 December 2021; pp. 926–931.

41. Yang, K.; Zhong, W.; Li, F. Leaf Segmentation and Classification with a Complicated Background Using Deep Learning. Agronomy
2020, 10, 1721. [CrossRef]

42. Su, W.-H.; Zhang, J.; Yang, C.; Page, R.; Szinyei, T.; Hirsch, C.; Steffenson, B. Automatic Evaluation of Wheat Resistance to
Fusarium Head Blight Using Dual Mask-RCNN Deep Learning Frameworks in Computer Vision. Remote Sens. 2020, 13, 26.
[CrossRef]

43. Chen, H.; Sun, K.; Tian, Z.; Shen, C.; Huang, Y.; Yan, Y. Blendmask: Top-down meets bottom-up for instance segmentation. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020;
pp. 8573–8581.

44. Xi, X.; Xia, K.; Yang, Y.; Du, X.; Feng, H. Evaluation of dimensionality reduction methods for individual tree crown delineation
using instance segmentation network and UAV multispectral imagery in urban forest. Comput. Electron. Agric. 2021, 191, 106506.
[CrossRef]

45. Esgario, J.G.; Krohling, R.A.; Ventura, J.A. Deep learning for classification and severity estimation of coffee leaf biotic stress.
Comput. Electron. Agric. 2020, 169, 105162. [CrossRef]

46. Pan, J.; Xia, L.; Wu, Q.; Guo, Y.; Chen, Y.; Tian, X. Automatic strawberry leaf scorch severity estimation via faster R-CNN and
few-shot learning. Ecol. Informatics 2022, 70, 101706. [CrossRef]

47. Joshi, R.C.; Kaushik, M.; Dutta, M.K.; Srivastava, A.; Choudhary, N. VirLeafNet: Automatic analysis and viral disease diagnosis
using deep-learning in Vigna mungo plant. Ecol. Informatics 2020, 61, 101197. [CrossRef]

48. Zhang, D.-Y.; Luo, H.-S.; Wang, D.-Y.; Zhou, X.-G.; Li, W.-F.; Gu, C.-Y.; Zhang, G.; He, F.-M. Assessment of the levels of damage
caused by Fusarium head blight in wheat using an improved YoloV5 method. Comput. Electron. Agric. 2022, 198, 107086.
[CrossRef]

49. Ji, M.; Wu, Z. Automatic detection and severity analysis of grape black measles disease based on deep learning and fuzzy logic.
Comput. Electron. Agric. 2022, 193, 106718. [CrossRef]

50. Wu, Q.; Ji, M.; Deng, Z. Automatic Detection and Severity Assessment of Pepper Bacterial Spot Disease via MultiModels Based
on Convolutional Neural Networks. Int. J. Agric. Environ. Inf. Syst. 2020, 11, 29–43. [CrossRef]

51. Liu, B.-Y.; Fan, K.-J.; Su, W.-H.; Peng, Y. Two-Stage Convolutional Neural Networks for Diagnosing the Severity of Alternaria
Leaf Blotch Disease of the Apple Tree. Remote Sens. 2022, 14, 2519. [CrossRef]

52. Thakur, P.S.; Khanna, P.; Sheorey, T.; Ojha, A. Trends in vision-based machine learning techniques for plant disease identification:
A systematic review. Expert Syst. Appl. 2022, 208, 118117. [CrossRef]

53. Hochreiter, S. The Vanishing Gradient Problem During Learning Recurrent Neural Nets and Problem Solutions. Int. J. Uncertain.
Fuzziness Knowl. Based Syst. 1998, 6, 107–116. [CrossRef]

54. Wu, Z.; Shen, C.; Van Den Hengel, A. Wider or deeper: Revisiting the resnet model for visual recognition. Pattern Recog. 2019,
90, 119–133. [CrossRef]

55. Lin, T.-Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125.

56. Powers, D.M. Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and correlation. arXiv preprint
2020, arXiv:2010.16061.

57. Zhang, X.; Graepel, T.; Herbrich, R. Bayesian online learning for multi-label and multi-variate performance measures. In
Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, Chia Laguna Resort, Sardinia,
Italy, 13–15 May 2010; pp. 956–963.

58. Garcia-Garcia, A.; Orts-Escolano, S.; Oprea, S.; Villena-Martinez, V.; Garcia-Rodriguez, J. A review on deep learning techniques
applied to semantic segmentation. arXiv preprint 2017, arXiv:1704.06857.

59. Li, Q.; Arnab, A.; Torr, P.H. Weakly-and semi-supervised panoptic segmentation. In Proceedings of the European Conference on
Computer Vision (ECCV), Online, 8–14 September 2018; pp. 102–118.

60. Fang, H.-S.; Sun, J.; Wang, R.; Gou, M.; Li, Y.-L.; Lu, C. Instaboost: Boosting instance segmentation via probability map guided
copy-pasting. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27 October–2
November 2019; pp. 682–691. [CrossRef]

61. Qiongyan, L.; Cai, J.; Berger, B.; Okamoto, M.; Miklavcic, S.J. Detecting spikes of wheat plants using neural networks with Laws
texture energy. Plant Methods 2017, 13, 83. [CrossRef]

62. Misra, T.; Arora, A.; Marwaha, S.; Chinnusamy, V.; Rao, A.R.; Jain, R.; Sahoo, R.N.; Ray, M.; Kumar, S.; Raju, D.; et al. SpikeSegNet-
a deep learning approach utilizing encoder-decoder network with hourglass for spike segmentation and counting in wheat plant
from visual imaging. Plant Methods 2020, 16, 40. [CrossRef]

http://doi.org/10.3390/agronomy10111721
http://doi.org/10.3390/rs13010026
http://doi.org/10.1016/j.compag.2021.106506
http://doi.org/10.1016/j.compag.2019.105162
http://doi.org/10.1016/j.ecoinf.2022.101706
http://doi.org/10.1016/j.ecoinf.2020.101197
http://doi.org/10.1016/j.compag.2022.107086
http://doi.org/10.1016/j.compag.2022.106718
http://doi.org/10.4018/IJAEIS.2020040103
http://doi.org/10.3390/rs14112519
http://doi.org/10.1016/j.eswa.2022.118117
http://doi.org/10.1142/S0218488598000094
http://doi.org/10.1016/j.patcog.2019.01.006
http://doi.org/10.1109/iccv.2019.00077
http://doi.org/10.1186/s13007-017-0231-1
http://doi.org/10.1186/s13007-020-00582-9


Agriculture 2022, 12, 1493 18 of 18

63. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;
Gelly, S. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint 2020, arXiv:2010.11929.

64. Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin transformer: Hierarchical vision transformer using
shifted windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Online, 11–17 October 2021;
pp. 9992–10002. [CrossRef]

http://doi.org/10.1109/iccv48922.2021.00986

	Introduction 
	Materials and Methods 
	Data Collection and Annotation 
	BlendMask 
	Evaluation Metrics 
	Equipment 

	Results 
	Model Training 
	Wheat Spike Identification 
	FHB Disease Evaluation 

	Classification of Wheat FHB Severity Grades 
	Discussion 
	Conclusions 
	References

