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Abstract: Salinization is a major soil degradation threat in irrigated lands worldwide. In Portugal,
it affects several pockets of irrigated agricultural areas, but the spatial distribution and intensity of
soil salinity are not well known. Unlike conventional approaches to appraise soil salinity, remote
sensing multispectral data have great potential for detecting, monitoring, and investigating soil
salinity problems in agricultural areas. This study explores the assessment of soil salinity in irrigated
rice cultivation fields using two types of multispectral-based indices calculated from Sentinel-2
satellite imagery: (i) vegetation indices (Normalized Difference Vegetation Index, Green Normalized
Difference Vegetation Index, Generalized Difference Vegetation Index and Soil Adjusted Vegetation
Index), to monitor the indirect effect of salinity on rice growth; and (ii) salinity indicators, namely
those based on visible and near-infrared bands (Normalized Difference Salinity Index) and on
shortwave infrared bands (Salinity Index ASTER). The data are for the Lower Mondego Valley
(Central Portugal) and the period 2017–2018. Results revealed that salinity indices can be used
for mapping soil salinity and constitute a valuable soil salinity assessment tool in rice cultivation
areas affected by salinity issues. As there is less reported inventorying of spatial extent of such
degradation in irrigated agricultural areas of Portugal, this innovative approach allowed by remote
sensing technology can add to understanding the spatial extent of such areas and undertaking more
such studies spatially and temporally.

Keywords: remote sensing; multispectral satellite data; agriculture; vegetation indices; salinity indices

1. Introduction

Soil salinity is considered one of the major factors affecting the interaction between
plants and soil, due to its significant negative impact on the availability of soil nutrients
and crop yields [1,2]. It is also one of the most hazardous soil degradation processes.

Many geological (e.g., pedogenesis), geomorphological (e.g., elevation gradients), me-
teorological (e.g., rainfall, air temperature), hydrological/hydrogeological (e.g., evapotran-
spiration, groundwater depth and quality) and management (e.g., irrigation and agronomic
practices) factors potentially affect the levels of soil salinity in irrigated lands—e.g., [3–6].
In particular, some agricultural practices contribute significantly to the salinization of
agricultural lands: a combination of poor land management and unsustainable irrigation
practices cause changes in soil and vegetation cover and, ultimately, loss of vegetation and
agricultural productivity [7–12].

Due to the negative impact of salinization on soil fertility and agricultural production,
much attention has been dedicated to finding ways to preserve soil quality and reclaim
saline soils. A first step is assessing the spatial extent and severity of soil and water salinity
in affected areas. For example, mapping of the spatial distribution of soil salinity in irrigated
croplands (e.g., rice fields) is important for irrigation and drainage management and for
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identifying water and environmental policies that safeguard the sustainability of farming
systems [13–15].

Although conventional methods, such as field surveys and laboratory analyses, are
able to provide accurate soil salinity mapping, such methods are time-consuming, costly
and labor intensive, especially for large-scale surveys. Recent advances in the application
of remote sensing technology in mapping and monitoring degraded lands, especially salt-
affected soils, have shown that these technologies are helpful for enhancing the speed
of execution, accuracy and cost effectiveness of those tasks. Remote sensing techniques
have several advantages over conventional field sampling and electromagnetic induction
methods for measuring soil salinity, such as their large areal coverage, frequent revisiting
times and low cost: several studies have shown, e.g., that (i) salinity at or near the soil
surface (≈top 0.05–0.1 m layer) can be identified over large regions using remote sensing
tools [16], and (ii) satellite data and remote sensing techniques have the potential to
monitor soil salinity more efficiently and more economically than other conventional
approaches [16–19].

In particular, Multispectral Instrument (MSI) imagery has already proven to be a
promising tool for assessing soil salinity and, ultimately, for producing electrical conductiv-
ity (EC) maps. The European Space Agency’s (ESA) Sentinel-2 is one of the examples of
this technology that provides 10 m to 60 m spatial resolution data collected over a wide
electromagnetic spectrum range, including visible (V), near-infrared (NIR), short wave
infrared (SWIR), and four red-edge (RE) bands; these data are available as free data to users
and cover a wide range of spatiotemporal imaging acquisitions. The Sentinel-2 satellite
provides high-resolution optical images (i.e., at 10 m spatial resolution) and global coverage
of the Earth’s land surface, every 5 days [20]. These attributes make Sentinel’s multispectral
imagery a potential tool for environmental monitoring and can be useful for monitoring
surface soil salinity and assessing soil management [21,22].

In recent years, several salinity indicators have been developed to detect soil salt-
affected areas from satellite imagery [16,23–25], which are mostly based on the spectral
signature of saline soils in different bands of the satellite sensors. Such salinity indices
(SI’s), which could be used as direct salinity indicators, highlight the spectral reflectance
of salt crusts on the soil surface. Multi-temporal remote sensing data covering a wide
range of the electromagnetic spectrum [2,26–28] have been used in several studies, espe-
cially to calculate soil salinity indicators based on V and NIR reflectance data [2,27,29–31].
More recently, SWIR reflectance data have likewise been used for this purpose [32,33].
However, vegetation indices (VI´s) can also be applied to indirectly assess saline soils
via the adverse effects of soil salinity on crop growth and plant stress. Among others,
Bannari et al. (2008) [34] have assessed the negative impact of the salts existing in the soil
on vegetation by applying the widely used Normalized Difference Vegetation Index.

Salinity has been a threat to the fresh water and coastal lowlands of rice production
areas in Portugal (e.g., in the Lezíria Grande island, in the Tagus River, and in the Mondego,
Sado and Lis Valleys’ lowlands), where about 180 million kilograms of rice are produced
yearly [35]. These areas have a Mediterranean climate influenced by the proximity of the
Atlantic Ocean. The relatively flat terrain enhances the vulnerability of the rice fields to
seawater intrusion. Hence, the potential of Sentinel-2-based tools for assessing salinity
problems deserves investigation to improve water and soil resources management and
conservation, as well as the sustainability of agriculture production, at the local and regional
scales. Portugal is the fourth rice producer of the European Union (EU), accounting for
about 6% of the EU rice production [36].

The aim of this study is to contribute to better understanding the potential of remote
sensing satellite data to characterize soil salinity in agricultural fields. The study focuses on
soil salinity-prone rice cultivation areas located in coastal regions, in central Portugal, and
it uses two types of multispectral-based indices calculated from Sentinel-2 satellite imagery:
(i) vegetation indices and (ii) salinity indices, namely those based on V and NIR bands and
on SWIR bands. Results revealed that salinity indices can be used for mapping soil salinity
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and constitute a valuable soil salinity assessment tool in rice cultivation areas affected by
salinity issues. Data on soil salinity in the study areas, in the Mondego river catchment, are
very scarce: the better understanding of salinity in those areas is key to adequately and
sustainably manage rice fields and irrigation and drainage water.

2. Materials and Methods
2.1. Study Areas

This study focuses on two rice cultivation lowland areas located in the River Mondego
catchment: “Quinta do Canal” and “Pranto”, near the Atlantic Ocean, in the center of
Portugal (Figure 1), and dedicates particular attention to two rice field plots, one from
each of these areas. In these rice cultivation areas, the rice produced has a long grain, of
the variety Ariete, subspecies Oryza sativa L. spp. japonica; commercially, it is known as
“Carolino” rice. Direct wet seeding is applied, and the irrigation of the rice fields is by
continuous flooding.
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Figure 1. Location map of the selected rice field plots inserted in the Lower Mondego Irrigation
District (LMID; blue area), in Portugal: (a) Quinta do Canal and (b) Pranto (adapted from Google
Earth 2021).

Quinta do Canal: Quinta do Canal is a farm predominantly dedicated to rice culti-
vation, composed of 71 rice fields (coordinates: 40◦ 6′ 53.3” N, 8◦ 48′ 7.95” W). The area,
which constitutes one irrigation unit (Bloco 1) of LMID (Figure 1), is located on the left bank
of the Mondego River, in the downstream part of the Lower Mondego Valley. Quinta do
Canal is bounded to the north by the Mondego River, to the south by the Pranto River and
to the west by the Mondego river estuary. The area is protected by dikes against high river
discharges and tides. The farm covers a rice cultivation area of ≈332 ha, where the average
rice field plots’ area is about 4.7 ha. The selected rice plot (Figure 1a) has an area of ≈1.6 ha.
At the study site, irrigation water is supplied by a main irrigation canal that uptakes water
from the Mondego River near the city of Coimbra, about 32 km upstream of this irrigation
unit. In Quinta do Canal, the rice fields’ drainage water collected by the surface drainage
system that consists of widely spaced open ditches is discharged by gravity to River Pranto,
which is controlled by tidal gates.
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Pranto: Pranto River is the most downstream left-bank tributary of the Mondego
River. The plot field selected in this rice cultivation area (coordinates: 40◦5′48.60′′ N,
8◦47′12.27′′ W), of ≈1.6 ha (Figure 1b), is included in an irrigation unit (1200 ha) of the
LMID. On average, the size of the rice fields in the Pranto irrigation unit is smaller than in
Quinta do Canal, because the Pranto irrigation unit has not experienced yet any type of
land reparcelling, which was carried out at other irrigation unit of LMID. The study area is
skirted at its northern boundary by the Pranto River and at its western boundary by the
Mondego River estuary. In these downstream lowlands, the Pranto River is affected by tidal
water level variations. Excess rainfall from the study area is discharged by gravity during
the low tides, which often leads to drainage constraints during excessive precipitation
events. Thus, the area is prone to waterlogging and soil salinization risk caused by shallow
saline groundwater that arise from the proximity to the Atlantic Ocean and the estuarine
tides. The water available for irrigation is pumped directly from the Pranto River by the
local farmers and conveyed by a collective irrigation system that consists of open ditches,
which are also used for drainage. The water circulation (and re-use) negatively impacts on
the quality of the water that is used to irrigate the fields. Thus, expectedly, the quality of
the irrigation water applied in this Pranto cultivation area is worse than the quality of the
water that is used for irrigating Quinta do Canal.

In general, in the Quinta do Canal and Pranto agricultural area, soils have Holocene al-
luvial origin and high agricultural value. In the Lower Mondego region, one finds silt-loam
soils, upstream, and silt-clay-loam soils, downstream, although there are also sandy soils—
e.g., [37]. Near the coast, in the lower lands, heavy soils are dominant, which, combined
with shallow groundwater levels, leads to drainage problems and increased soil salinization
risk. This risk is enhanced by low rainfall and high evaporation/evapotranspiration in
summer—e.g., [38–40].

According to the Köppen–Geiger climate classification, the climate in the study area
(Quinta do Canal and Pranto) is temperate with dry and mild summers (Csb). For the
periods 1971–2000, 2017 and 2018, air temperature and precipitation data from the nearest
weather station (meteorological station of Monte Real (Leiria); coordinates: 39◦49′52′′ N,
8◦53′14′′ W) are presented in Table 1 and Figure 2.
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Figure 2. Average daily temperature and monthly precipitation in the meteorological station of
Monte Real (Leiria, Portugal) for the periods 1971–2000, 2017 and 2018 [41,42].

During the period from January to April (roughly, second half of winter and beginning
of spring), which precedes the rice cultivation season that typically starts in early May,
precipitation was below the 1971–2000 climate normal in 2017, whereas in 2018 precipitation
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exceeded that climate normal by approximately 87% (Table 1). In the same 4-month period,
precipitation was higher by 120% in 2018 than in 2017 and air temperature was higher in
2017 than in 2018. Thus, the period January–April was drier and warmer in 2017 than in
2018. For the Quinta do Canal plot sowing dates were 8 May in 2017 and 12 May in 2018,
and for the Pranto plot they were 12 May in 2017 and 23 May in 2018.

Table 1. Temperature and precipitation data for the study region and the periods 1971–2000 [41], 2017
and 2018 [42]. The data are from the meteorological station of Monte Real (Leiria, Portugal).

Period
Monthly Precipitation (mm) Average Daily Temperature (◦C) Total Precipitation (Jan.–Apr.)

Min Max Min Max (mm)

1971–2000 8.5 (Jul) 118.1 (Dec) 9.6 (Jan) 20.1 (Aug) 253.8
2017 4.1 (Aug) 104.9 (Dec) 8.4 (Jan) 19.6 (Aug) 215.3
2018 0.5 (Sep) 248.9 (Mar) 10 (Jan) 20.8 (Aug) 474.5

2.2. Remote Sensing Data
2.2.1. Sentinel-2 Data Processing

The Sentinel-2 MSI mission is composed of two twin satellites, Sentinel-2A and
Sentinel-2B, launched in June 2015 and March 2017, respectively. The constellation of-
fers a revisiting time of 5 days under the same viewing angle, with a swath of 290 km.
Five spectral bands were used in this study (Table 2). The spatial resolution of the data
is 10 m for the V and NIR bands and 20 m for the SWIR bands. Sentinel-2 satellite im-
agery for the periods from 4 April to 25 October 2017 (13 images) and from 5 May to
27 October 2018 (19 images) were downloaded from the Copernicus Open Access Hub
European Space Agencies (ESA SciHub) [20]; the cloud cover of these images was less
than 15%, but they were always cloud-free for the two study plots. Sentinel-2 satellite data
processing and cartographic materials’ creation were carried out in QGIS 3.6.0 Geographic
Information System.

Table 2. Sentinel-2 satellite data spectral bands selected, and imagery spatial resolution.

Band ID Spectral Region Center Wavelength (nm) Band Width (nm) Spatial Resolution (m)

B3 Green (G) 560 35 10
B4 Red (R) 665 30 10
B8 Near Infrared (NIR) 842 115 10

B11 Short Wave Infrared (SWIR1) 1610 90 20
B12 Short Wave Infrared (SWIR2) 2190 180 20

2.2.2. Satellites’ Data Based Calculations: Vegetation and Salinity Indices

The use of VI’s for studying soil salinity, and not only SI’s, is explained by the fact that
stressed vegetation could be a surrogate for the presence of salts in soils, since salt-affected
soils usually give way to poorly vegetated areas. Thus, reflectance from vegetation has
been used as an indirect indicator for soil salinity detection and mapping [43–46]. Four
selected remote sensing-based VI’s (Normalized Difference Vegetation Index (NDVI), Green
Normalized Difference Vegetation Index (GNDVI), Generalized Difference Vegetation
Index (GDVI) and Soil Adjusted Vegetation Index (SAVI)) were used to monitor vegetation
conditions in areas of high salinization risk. All four indices are based on data from
reflectance of the V and NIR bands (Tables 2 and 3).

Alongside this, dedicated soil salinity indices, namely the Normalized Difference
Salinity Index (NDSI) and the Salinity Index ASTER (ASTER_SI), have also been derived
from Sentinel-2 satellite data. The NDSI calculation is based on data from V and NIR bands,
whereas the ASTER_SI uses data from SWIR bands (Tables 2 and 3). For ASTER_SI, pre-
processed Sentinel-2 images were downloaded and then resampled at a spatial resolution
of 10 m.
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Table 3. Vegetation and salinity indices derived from Sentinel-2 satellite imagery. The R, G, NIR and
SWIR bands are described in Table 2 and L is an empirical parameter.

Indices Equation Index Range References

Normalized Difference
Vegetation Index NDVI = (NIR−R)

(NIR+R)
[−1,+1] [47]

Green Normalized
Difference Vegetation Index GNDVI = (NIR−G)

(NIR+G)
[−1,+1] [48–50]

Generalized Difference
Vegetation Index GDVI = (NIR2−R2)

(NIR2+R2)
[−1,+1] [51]

Soil Adjusted
Vegetation Index SAVI = (NIR−R)

(NIR+R+L) (1 + L) [−1.5,+1.5], for L = 0.5 [52]

Normalized Difference
Salinity Index NDSI = (R−NIR)

(R+NIR)
[−1,+1] [53]

Salinity Index ASTER ASTER__SI = (SWIR1−SWIR2)
(SWIR1+SWIR2)

[−1,+1] [34]

The selected indices are briefly described below. They all present advantages and
limitations, depending on their application purpose:

NDVI: The Normalized Difference Vegetation Index values can vary with soil use,
plant phenologic stage, hydrologic soil condition and typical weather in a given area. These
properties make NDVI a valuable tool for evaluating vegetation covers, including rice crop,
as well as for classifying and investigating vegetation dynamics and phenology [54,55]. As
the plants’ photosynthetic process is carried out mainly by plant leaves, and solar radiation
in the visible region (0.40 µm to 0.72 µm) is mostly absorbed by photosynthetic pigments,
high NDVI values (i.e., values approaching +1) indicate vigorous vegetation, with high
photosynthetic activity, and dense vegetation cover. In contrast, lower values of NDVI
values indicate weak/sparse vegetation cover. In general, values of NDVI in the vicinity of
zero indicate barren areas (e.g., rock, sand) [56].

GNDVI: The Green Normalized Difference Vegetation Index is similar to NDVI except
that instead of the red spectrum it assesses the green spectrum in the range 0.54–0.57 µm.
This index is thus derived from the Green and NIR spectral bands and it has been found
to be more sensitive to chlorophyll content than NDVI. It allows us to estimate the pho-
tosynthetic activity of the vegetation cover [57,58], to determine moisture content and
nitrogen concentration in plant leaves and canopy, and to assess less vigorous and aged
vegetation [59–61]. GNDVI values between −1 and 0 are associated with the presence of
water or bare soil.

GDVI: The Generalized Difference Vegetation Index has been used to complement
the information in other vegetation indices, mainly for research in dry areas [27]. Due
to its higher sensitivity and amplified dynamic range manifested in sparsely vegetated
areas, GDVI is more sensitive to dryland biomes such as rangeland and woodland than
other VI’s [22,27,62,63]. In contrast, when applied to densely vegetated areas, it shows low
sensitivity and saturation. This index has also great potential to assess soil salinity [27].

SAVI: The Soil Adjusted Vegetation Index (SAVI) was developed by Huete (1988) [52]
to eliminate soil-induced variation in the vegetation spectral signal. This is particularly
important for observed areas exhibiting sparse canopy covers, for which analysis is likely
biased by the presence of different soil backgrounds. SAVI uses the Red and NIR bands,
together with an empirical parameter L (Table 3). Huete (1988) [52] has shown that, in the
calculation of SAVI (Table 3), the empirical parameter L = 0.5 permits the best adjustment,
i.e., to minimize the secondary backscattering effect of canopy-transmitted soil background
reflected radiation; this study adopted L = 0.5. Although SAVI is not a direct salinity index,
it is expected that SAVI negative values indicate high soil salinity [46]. Similar to other
studies that take SAVI as a salinity index—e.g., [43,64], in this study SAVI is grouped with
the (other) SI’s studied.

NDSI: The Normalized Difference Salinity Index is an indicator of soil salinity. Values
of NDSI approaching +1 are associated with high soil salinity [46,65]. Studies reveal that
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the Red and NIR bands (Table 3), which are used to calculate NDSI, are the most sensitive
to the soil’s ions that cause salinity—e.g., [66].

ASTER_SI: The Salinity Index ASTER, proposed by Bannari et al. (2008) [34], is based
on SWIR bands and was applied in different studies using data from Aster, Landsat-ETM+
and Sentinel-2 satellites. It can be used for distinguishing between different soil salinity
contents—e.g., [65,67]. Values of ASTER_SI approaching +1 indicate low soil salinity.
Bannari et al. (2008, 2016) [34,68] demonstrated that the SWIR bands are more sensitive
than other bandwidths to categorize soil salinity, particularly slight and moderate salinity
in irrigated agricultural lands.

2.3. Rationale and Analysis Approach

Although rice tolerance to salt depends on genotype and management practices, soil
and water salinity is one of the major constraints affecting rice production worldwide—
e.g., [69–71]. In coastal areas, such as the study areas, salinity can be associated with high
sea levels as they bring saline water further inland and expose more rice growing areas to
salty condition. However, arid and semi-arid zones, characterized by low precipitation and
high evaporation, are usually the most affected due to the limited lixiviation of salts from
the soil profile, which results in increased salt accumulation—e.g., [72].

Several studies show that the advance of seawater into the downstream sections of
the Lower Mondego drainage network (Section 2.1), caused by sea level rise, will increase
salinity of local rivers and groundwater near the coast, enhancing already existing soil
salinization problems—e.g., [73,74] in a region where sea water intrusion has already been
an issue for a long time because of the topography of the area.

The use of Sentinel-2 satellite imagery for soil salinity assessment has been studied in
recent years [21,75]. Multispectral remote sensing data have been applied in soil salinity
studies because of their large coverage area, easy access, and relatively good spatial and
spectral resolution of the images [76,77]. In agricultural irrigation areas, the application
of vegetation and salinity indices is increasing, and constitutes an effective method of soil
salinity evaluation [33,78], including in rice cultivated areas [22,79,80].

To explore salinity conditions in the study areas and their eventual impact on rice
crop, vegetation indices NDVI, GNDVI and GDVI were used to create VI’s time series for
each study plot area, for 2017 and 2018. Only the rice cultivation period, which occurs
between May and October, was considered. Typically, in this period, the fields are flooded
at the time of sowing (usually, early May) and the flooding is interrupted 2–3 weeks before
harvest (usually, early October). During the rice crop season, the rice vegetation cover
grows and reaches a maximum (at the rice age of approximately three months) and then
gradually decreases until harvest time.

The field plots’ vegetation indices’ temporal profiles reflect the variation in the different
average spatial conditions at the plot scale, over time, including the conditions of the rice
plant during its growth and development—e.g., [55]. The growth and development of
the rice plant can be divided into two phases, vegetative and reproductive, which can be
subdivided themselves in different stages—e.g., [81]. The vegetative phase embraces the
period from germination to the beginning of panicle development inside the main stem,
whereas the reproductive phase concerns the growth and development of the plant from
the end of the vegetative phase to the beginning of the maturity phase that starts when
rice grains first become firm. These phases complement each other to produce a rice plant
that can absorb sunlight and convert that energy into rice grain. In more detail, the growth
stages found in the vegetative phase are emergence, seedling development, tillering and
internode elongation, in the reproductive phase are prebooting, booting, heading and grain
filling, and finally grain maturity. The duration of each one of these stages depends on rice
variety, environmental conditions and agronomic management practices. In general, the
rice growth stages for Portuguese rice agriculture have the following typical durations,
starting from sowing: vegetative phase: 0–60 days; reproductive phase: 60–85 days; and
maturity phase: 85–130/140 days—e.g., [82].
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Several studies explored the potential of two prominent dedicated salinity indices
(NDSI and ASTER_SI) and the most commonly used indirect salinity index (SAVI) for soil
salinity assessment in paddy fields [46,83,84]. In this study, these indices were selected to
specifically identify (i) salt-affected agricultural soils and (ii) expected differences in salinity
levels before and after the rice crop season, for 2017 and 2018 and for both selected rice
fields. The analysis focused on the surface soil salinity and the spatial distribution and
average values of the SI’s were explored. Usually, in the study areas, the rice crop season
runs from May to October, when harvest takes place, with rice reaching its maximum
growth in July–August. To guarantee that the analysis of the soil surface would not be
biased by the presence of vegetation cover, only conditions of bare soil were investigated;
the corresponding selected dates are presented in Table 4.

Table 4. Soil salinity appraisal calendar at the Quinta do Canal and Pranto rice fields: date and
calendar day (day of the year: DOY) corresponding to the acquisition of Sentinel-2 (S2) satellite data
for 2017 and 2018, before and after the rice cultivation period, for the condition of bare soil.

Year Sentinel-2 Mission Date DOY

2017
S2-A 28 April 118
S2-A 25 October 298

2018
S2-B 25 April 115
S2-A 27 October 300

In addition, potential impacts of soil salinity (identified from SI’s) on rice development
(assessed using VI’s) and yield were explored. Salinity can reduce yield production in rice
crops—e.g., [85]. The establishment of simple cause-effect relations using remote sensing
indicators—e.g., [86] could contribute to enable the assessment of the impact of salinity on
rice production in areas where this problem needs attention. However, the effect of salinity
on rice is many fold, leading to delay in seed setting, inhibition of germination, difficulties
in crop establishment and leaf area development, decrease in dry matter production, and
even sterility [72].

Presently, different approaches are being used to predict rice yields from remotely
sensed data. The correlation between the spectral reflectance of rice crop and crop yield
is widely accepted and used for rice yield predictions—e.g., [87]. The following relation
between the value of the NDVI during the rice reproductive stages of booting and heading
(about 60–70 days after sowing), which is considered the peak of the rice-growing season,
and rice yield was proposed by Siyal et al. (2015) [88] as a predictive model of rice yield
and will be used in this study as a reference for differences in yield, since no field data
are available:

Crop Yield (tons ha−1) = 23.641×NDVI− 10.343 (1)

3. Results and Discussion
3.1. Temporal Variation in Vegetation Indices

For the 2017 and 2018 rice growing seasons (Section 2.1), Figure 3 shows the temporal
variation of the NDVI, GNDVI and GDVI plot average values estimated from Sentinel-2
satellite data (Section 2.2.1) for the selected rice fields in Quinta do Canal (Figure 3a) and
Pranto (Figure 3b). Results revealed that the number of satellite images that were available
during the rice-growing period allows us to perceive well the rice crop life cycle.
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Figure 3. Temporal variation of NDVI, GNDVI and GDVI average values in 2017 and 2018 calculated
for the selected irrigated rice field plots at (a) Quinta do Canal (Figure 1a), sowing dates: 128 (2017)
and 132 (2018); and (b) Pranto valley (Figure 1b), sowing dates: 132 (2017) and 143 (2018), using
available Sentinel-2 satellite imagery.

The field plots’ vegetation indices’ profiles in Figure 3 reveal the different rice growing
conditions and the different rice crop phases (vegetative phase, reproduction phase and
maturity phase). In this figure, the lowest VI’s values, around zero, are observed in the
initial phase of the rice crop cultivation; these values are expected to be related to the
flooding of the fields close to the crop (wet) sowing. The highest VI’s are reached in
August and reflect the greenness peak of rice, which is attained during the heading stage.
Towards the end of the cultivation period, the VI’s values decrease until the plant reaches
full maturation and is harvested, which usually occurs in the beginning of October, in the
Lower Mondego region. In irrigated rice fields, especially in early periods of the cultivation
period, irrigation water over the fields (due to flooding irrigation) is expected to play an
important role in the spectral (mixed) signal obtained for rice fields.

Comparison of the 2017 and 2018 weather conditions prior and during the rice growing
period showed that, as expected, they likely had an important role in plant establishment
and growth, for all field plots. The year 2017 registered high air temperatures (roughly until
June/July) and low precipitation (i.e., below normal), whereas in 2018 high precipitation
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was observed (i.e., above normal), in particular during March and May (Figure 2). For
the Quinta do Canal field plot, the VI’s values attained in 2017 and 2018 at the plot scale
were similar, which can be explained by the controlled irrigation conditions and agronomic
management found at this site (Figure 3a). On the other hand, for the Pranto cultivation area
conditions are overall more variable and less favorable with regard, e.g., to the availability of
good quality irrigation water, which is expected to affect rice development and production.
These factors likely explain the important differences in VI’s values found for the Pranto
rice field plot between 2017 and 2018 (Figure 3b), which indicate the vulnerability of the
Pranto River rice cultivation area to environmental variability.

The plots’ VI’s maximum values attained for the selected rice fields of Quinta do Canal
and Pranto during the whole rice cultivation season are presented in Table 5. For Quinta do
Canal, where irrigation and drainage management is superior and more effective [89], the
VI’s maximum values differed little between these two years (Figure 3a) in comparison to
the results obtained for the Pranto plot. The difference goes up to −15% for the Pranto plot
and the GNDVI. GDVI is the only index that does not capture differences in the maximum
development of the rice plant between the two years, which is a manifestation of its low
sensitivity and saturation when applied to densely vegetated areas. However, saturation is
also found for NDVI. All VI’s profiles calculated for both study plots (Figure 3) reveal that
the growing stages were delayed in 2018 in relation to 2017.

Table 5. Vegetation Indices’ maximum values attained during the 2017 and 2018 rice cultivation
seasons at the plot scale, for the Quinta do Canal and Pranto rice fields, and respective percent-
age variation.

Index
Quinta do Canal Pranto

2017 2018 % Variation 2017 2018 % Variation

NDVImax 0.91 0.89 −2.2% 0.91 0.81 −11.0%
GNDVImax 0.76 0.77 1.3% 0.80 0.68 −15.0%
GDVImax 0.99 0.99 0% 0.99 0.97 −2.0%

3.2. Soil Salinity Assessed from Sentinel-2 Satellite Data

Salinity indices maps of the topsoil were also generated by analyzing Sentinel-2
satellite imagery for the two years studied, 2017 and 2018 (Figures 4–6). These maps
portray a better knowledge of the spatial distribution of the soil conditions in the study
areas, before and after the 2017 and 2018 rice crop seasons, and of the soil salinity dynamics.

The NDSI maps (Figure 4) show that the rice fields’ NDSI pixel values are between
−0.1 and −0.5. At a glance, these maps reveal a decrease in this salinity index, across the
2017 and 2018 rice cultivation season, at both fields’ plots. Thus, it indicates an overall
reduction of the topsoil salinity in the rice fields at the end of the crop season, in relation
to the beginning of the season (Table 6), which suggests an active role of the rice crop
cultivation/irrigation in the salt leaching of the topsoil.

However, for 2018, the Pranto rice field (Figure 4b (iii) and (iv)) shows only a small
reduction in the value of NDSI. This could be partly explained by the weather conditions
observed in the beginning of 2018 (above normal precipitation), in concurrence with the
fact that both the downstream section of the Pranto River and the Pranto agricultural area
are affected by tidal water level variations, due to the proximity to the Atlantic Ocean,
which strongly control water inflows and outflows in this area.

Overall, high discharges in the drainage network and high groundwater levels could
likely explain a less effective salt leaching than would otherwise be expected from the rice
continuous flooding irrigation. However, the fact that the Pranto river scarcely provides
water for rice irrigation forces water circulation in the existing open ditches that serve both
irrigation and drainage purposes, aiming at the re-use of water, which deteriorates the
quality of the water available for irrigation and thereby intensifies the risk of increasing
salt concentration in this area. However, data on irrigation water quality are not available,
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which does not allow us to interpret the results in a more refined way regarding the impact
of the poor water quality on the condition of the soil regarding the presence of salts.
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Figure 4. Spatial distribution of NDSI in the selected field plots: (a) Quinta do Canal and (b) Pranto.
The samples are from Spring and Autumn of 2017 (top panels) and 2018 (bottom panels), before and
after the rice crop cultivation period (left and right panels, respectively).

The ASTER_SI maps in Figure 5, for the Quinta do Canal and Pranto study plots,
reveal spatial variability in soil salinity conditions at the plot scale, which is the largest at
the Quinta do Canal plot in 28 April 2017 (Table 6) and with ASTER_SI pixel values varying
between 0 and +0.25, considering all the maps. In agreement with the NDSI results, the
ASTER_SI reveals an increasing trend, in both years, which indicates also a decrease in
topsoil salinity in the study areas, between the time before and after the rice cultivation
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period. However, the Pranto rice field shows a different behavior in 2018, a deviation that
has also been signaled by the NDSI.
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Figure 5. Spatial distribution of ASTER_SI in the selected field plots: (a) Quinta do Canal and (b)
Pranto. The samples are from the Spring and Autumn of 2017 (top panels) and 2018 (bottom panels),
before and after the rice crop cultivation period.

In Figure 5b (iii) and (iv), analysis of the ASTER_SI shows even an increase in the
topsoil salinity in the Pranto field that is expectedly related to previous flood events
triggered by high precipitation during March and April, which was discussed earlier.
High runoff that usually inundates the agricultural fields and poor field drainage could
be partly held responsible for the presence of a persistently shallow salty water table
and could therefore explain the slow start and development of the rice crop in this area,
in 2018 (Figure 3b). This different behaviour revealed by the ASTER_SI in relation to
NDSI and SAVI (discussed below) could be explained by the higher sensitivity to soil
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salinity variations of the SWIR bands that are applied in calculating ASTER_SI, as shown
in previous studies—e.g., [68]. The NDSI, ASTER_SI and SAVI results also show that the
soil salinity condition of the Quinta do Canal were aggravated during the 2017/2018 rainy
season. For the Pranto field, NDSI and SAVI reveal also a slight salinity increase, whereas
ASTER_SI suggests a decrease in the topsoil salinity level during the wet season. There are
no data available on water management practices in these plots outside the rice cultivation
season that could assist in interpreting results.
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Figure 6. Spatial distribution of SAVI in the selected field plots: (a) Quinta do Canal and (b) Pranto.
The samples are from the Spring and Autumn of 2017 (top panels) and 2018 (bottom panels), before
and after the rice crop cultivation period.

Figure 6 shows the spatial distribution of the SAVI pixel values for the Quinta do
Canal and Pranto areas, which are between 0 and +0.7, among the four images. Although
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SAVI is not a direct salinity index, it uses the Red and NIR bands, which are the most
sensitive to the soil’s ions that cause salinity—e.g., [66]. Thus, since this index is calculated
here for bare topsoil, it is expected that an increase in this index traduces also a reduction of
soil salinity, similarly to NDSI. Once more, and in agreement with the previous results, this
index signals that at both sites the salinity of the soil surface was higher at the beginning
of the 2018 rice cultivation season than in 2017. Similar to NDSI, SAVI indicates that the
salinity conditions were about the same at the end of the 2018 season as in the beginning of
that season. ASTER_SI was the only index that suggested that the salinity conditions could
have even been aggravated during the 2018 season, which was already discussed.

Figure 7 shows, at the plot scale, the average values of the salinity indices obtained
for both rice crop fields, for 2017 and 2018, before and after the rice crop season. The
corresponding selected dates are presented in Table 4. For Quinta do Canal, results suggest
a decreasing trend in the topsoil salinity as a result of the rice cultivation and (flooding)
irrigation period. However, a more modest decrease is found for the Pranto rice field,
before and after the cultivation season, and there is also a smaller season-reduction in the
topsoil salinity in comparison to the Quinta do Canal rice field. For 2018, comparison of the
ASTER_SI values obtained for the Pranto plot before and after the rice cultivation season
even suggests that there could have been an increase in soil surface salinity during that
period (Figure 7b).
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Figure 7. Appraisal of soil salinity in Quinta do Canal and Pranto using (a) NDSI, (b) ASTER_SI and
(c) SAVI, before and after the rice crop cultivation season 2017 and 2018.

The mean and the coefficient of variation (CV, in %) of the pixels’ salinity indices
are presented in Table 6, for the selected dates (Table 4). Lower CV values of the salinity
indices could indicate smaller micro relief and topography effects at the plot scale, and
vice versa. However, whereas the values of the CV’s obtained for NDSI and SAVI are very
similar, which could be founded on the fact that both indices use the Red and NIR bands,
for ASTER_SI (calculated from SWIR bands) the CV values are much smaller. Nevertheless,
the trend pattern is consistent between all indices. The only strong deviation is for the
Quinta do Canal plot at the beginning of the 2017 season, with ASTER_SI displaying a
much larger CV than for the other calculations involving the same index. In addition,
overall, the CV’s are higher for the field plot of Quinta do Canal than for the Pranto field
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plot, which indicates stronger spatial variability (see Figures 4–6). Moreover, results show
that, for all cases, the spatial variation in soil surface salinity revealed by the SI’s diminishes
after the rice growing seasons.

Thus, in general, the results obtained for the satellite-based salinity indices NDSI,
ASTER_SI and SAVI revealed that they have the potential to respond to variations in
soil conditions, allowing us to discriminate between different soil salinity conditions in
rice cultivated areas, even in areas without severe soil salinity problems. This behavior
was particularly revealed by ASTER_SI, the only index that uses SWIR bands, among the
indices investigated. This attribute justifies that this index reveals a sharper response to
soil surface salinity, in relation to the other indices, as demonstrated by Bannari et al. (2008,
2016) [34,68] for other land and agricultural conditions.

Table 6. NDSI, ASTER_SI and SAVI for the selected rice field plots of Quinta do Canal and Pranto:
mean and coefficient of variation (CV) for specific dates in Spring and Autumn that illustrate the
conditions before and after the rice cultivation period in 2017 and 2018.

Field Plots Date
NDSI ASTER_SI SAVI

Mean CV (%) Mean CV (%) Mean CV (%)

Quinta do Canal

28 April 2017 −0.14 26.4 0.05 18.0 0.22 25.5
25 October 2017 −0.23 22.6 0.15 4.7 0.35 22.0

25 April 2018 −0.19 33.7 0.12 4.2 0.29 33.1
27 October 2018 −0.25 16.8 0.14 3.6 0.37 17.0

Pranto

28 April 2017 −0.15 16.0 0.09 7.8 0.23 15.7
25 October 2017 −0.22 8.6 0.14 1.4 0.33 8.2

25 April 2018 −0.20 27.0 0.23 6.1 0.31 26.5
27 October 2018 −0.22 16.8 0.13 3.1 0.33 16.7

3.3. Soil Salinity and Rice Cultivation Outcomes

In this study, and due to lack of data on rice yields, the predictive rice production
model in Equation (1) was adopted for exploring the effect of soil salinity in reducing
rice yields at the study sites. For this purpose, the relevant NDVI values were estimated
from the available Sentinel-2 imagery and are presented in Table 7. According to the
model, in 2017 the estimated rice yield (Table 7) was higher for the Pranto field plot than
for the Quinta do Canal field plot (≈8% higher), whereas the opposite was predicted for
2018 (≈23% lower). Between 2017 and 2018, the estimated rice yield decrease was ≈4%
for the Quinta do Canal field plot and ≈31% for the Pranto field plot, according to the
model. Differences in yield could be expected from the different maximum values of NDVI
attained in each of these years and plots (Table 5), but because this index tends to saturate,
the NDVImax is not a good yield indicator. On the other hand, possible circumstantial
multispectral signal variations on a specific date could mask reflectance by the rice plants
and introduce an unquantifiable bias in the yield estimation when using the model in
Equation (1). It is thus important to investigate these effects further and to use this type of
model cautiously.

However, the main goal of applying a rice yield predictive model in this study was to
highlight the impact that salinity can have on rice yield. With that in mind, and revisiting
the calculated SI values, ASTER_SI indicated that the worse salinity condition of the soil
surface was for the Pranto plot in 2018, which suggests that salinity might have negatively
affected the rice growth and development in that plot (see the VI’s profiles in Figure 3),
and therefore very likely also the yield, as predicted by the model (Table 7). Records
show that due to Pranto river high discharges in the 2018 Spring, caused by excess rainfall,
and the deficient drainage, the study area was affected by persistent inundation of the
fields. The poor quality of the water and the season typical high temperature might have
contributed to the higher soil surface salinity in the Pranto plot, in the beginning of the
2018 cultivation period.
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According to the SI’s, the soil surface salinity found for the Quinta do Canal plot is
also higher in the beginning of the cultivation season in 2018 than in 2017, and again the
estimated relevant NDVI and yield is lower in 2018. However, the difference in salinity,
and its level, is much less pronounced for Quinta do Canal than for the Pranto plot.

Table 7. Quinta do Canal and Pranto rice field plots’ NDVI values ≈ 65 days after sowing (NDVI65)
estimated from Sentinel-2 satellite imagery and rice yield estimated using the predictive model
proposed by Siyal et al. (2015) [89]. The data are for 2017 and 2018.

Year Field Plots NDVI65 Estimated Rice Yield (ton ha−1)

2017
Quinta do Canal 0.81 8.7

Pranto 0.84 9.4

2018
Quinta do Canal 0.79 8.4

Pranto 0.71 6.4

This application of a predictive rice production model is exploratory but further shows
the potential usefulness of the Sentinel-2 data for agriculture. Local data would allow us
to develop a VI remote sensing-based predictive production model validated for the local
conditions, which could nevertheless involve NDVI or another (more suitable) VI. Further
steps are being taken towards this goal, which also involves ground truth measurements.

3.4. Research Limitations and Development Perspectives

Recent advances in remote sensing introduced by the use of new satellites, such
as Sentinel-2, have opened the way to applying new techniques for characterizing and
monitoring soils and the vegetation cover. In particular, these new techniques can be
applied to study soil salinity and its impact on crop production, with soil salinity being
an important environmental risk hazard that can occur by natural or human-induced
processes, namely in agricultural areas. In general, there is a lack of data on soil salinity,
which strongly hampers identifying problem areas and defining suitable soil and agronomic
management practices. Such data have been so far obtained relying on conventional
monitoring approaches, which are time-consuming and costly, so resources are seldom
allocated to this end.

This study shows that innovative multispectral-based products obtained from Sentinel-
2 satellite imagery offer a cost effective and reliable way to obtain space-time data on soil
salinity at an unprecedented high spatial and temporal resolution, and over large areas.
By providing nearly real-time information, remote sensing Sentinel-2 products are time-
efficient and easily accessible tools that can help local farmers or farm managers and
environmental agencies to assess and monitor soil salinity across large spatial scales and
time frames and better understand its dynamics, for example, in rice crop cultivation areas,
which was the focus in this study.

These innovative observational tools have a broader applicability in agriculture. How-
ever, definitions of monitoring protocols and best practices are still missing, which need
to be developed and adapted to the different environments and types of vegetation cover.
Future work will be dedicated to characterizing soil surface salinity based on proximal
observations and ground sampling, which will allow us to clarify the relationships between
the satellite data and multispectral-based indicators from data on the ground truth.

4. Conclusions

Main results of this study on soil salinity assessment in irrigated rice fields show that:

(i) The satellite-based salinity indices explored (NDSI, ASTER_SI and SAVI) are sensitive
to variations in soil conditions, allowing us to discriminate between different soil
salinity conditions in rice cultivated areas, even in areas without severe soil salinity
problems. This behavior was particularly revealed by ASTER_SI, the only index that
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uses SWIR bands, among the indices investigated. This index seems to have a sharper
response to soil surface salinity, in relation to those other indices;

(ii) The increased capability of the Sentinel-2 satellite imagery in giving detailed informa-
tion at the plot scale about the salinity status of soils and status of the vegetation cover
is a valuable asset in environmental monitoring and agriculture, and for mapping soil
salinity in rice cultivation areas affected by salinity issues;

(iii) The ability of Sentinel-2 satellite imagery-based indices to capture rice crop and soil
conditions at relevant spatial scales, and the frequent satellite’s revisit times, allows
us to appraise rice crop growth at the plot scale and estimate crop yields in salinity
affected areas;

(iv) The suitability of VI’s and SI’s need to be determined on a case-to-case basis, in order
to reduce the uncertainty in studying the impact of salinity on rice plant canopies, rice
crop evolution during the cultivation period and rice yields;

(v) The remote sensing approach explored in this study on soil salinity assessment offers
a valuable tool for undertaking more such studies spatially and temporally and,
thus, intensifying the inventorying of spatial extent of such degradation in irrigated
agricultural areas of Portugal and other regions where this problem is a potential
environmental risk hazard and less reported.
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