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Abstract: Neural networks are widely used in fruit sorting and have achieved some success. However,
due to the limitations of storage space and power consumption, the storage and computing of a neural
network model on embedded devices remain a massive challenge. Aiming at realizing a lightweight
mango sorting model, the feature-extraction characteristics of the shallow and deep networks of the
SqueezeNet model were analyzed by a visualization method, and then eight lightweight models were
constructed by removing redundant layers or modifying the convolution kernel. It was found that the
model designated Model 4 performed well after training and testing. The class activation mapping
method was used to explain the basis of the classification decision, and the model was compared
with ten classical classification models. The results showed that the calculation performance of the
model was significantly improved without reducing accuracy. The parameter storage requirement is
0.87 MB, and the calculation amount is 181 MFLOPS, while the average classification accuracy can
still be maintained at 95.64%. This model has a high-cost performance and can be widely used in
embedded devices.

Keywords: deep learning; lightweight convolutional neural network; visualization; mango sorting

1. Introduction

The mango (Mangifera indica Linn), known as the “king of fruits,” is the most important
fruit in tropical and subtropical regions, especially in Asia [1]. The sorting of mangoes is
an important step in post-harvest processing and can impact a favorable price. However,
manual sorting is time-consuming, subjective, and expensive [2]. Therefore, in the last
several years, machine-vision and machine-learning technology [3,4] have been widely
used in mango sorting since both can be used to sort fruit rapidly and non-destructively.
Nguyen et al. [5] combined the external characteristics and weight of mangoes and used
LDA (Linear discriminant analysis), SVM (support vector machines), KNN (K-nearest
neighbors), and RF (Random Forest) machine learning models to automatically classify
mangoes. Nandi et al. [6] proposed an ML technique for sorting mangoes in terms of
maturity. The captured images were converted to binary images and then the sizes of the
mangoes were estimated. These features were used to grade mangoes into four groups
based on the Support Vector Machine (SVM) method. Pise et al. [7] considered the size and
shape of mangoes, and divided mango maturity into four categories by using Naive Bayes
and support vector regression machine learning methods. These methods require hand-
extracted image features such as shape and color to identify a mango’s appearance quality.

Deep learning (DL), as a part of machine learning [8], has broad prospects in fruit
sorting [9–13] and can aid in the determination of the category of fruits without extracting
their characteristics in advance. Shih-Lun Wu [14] approached the grading task with
various convolutional neural networks (CNN) and provided additional insights into the
VGG16’s operation with saliency maps and PCA. Ayesha Hakim et al. [15] presented
a method based on deep learning that was used to automatically classify eight mango
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varieties according to their quality characteristics such as color, size, shape, and texture.
Tripathi et al. [16] optimized the mango grading deep learning model using the hybrid lion
plus firefly algorithm. In recent years, a new CNN model, SqueezeNet, has been proposed
and has begun to be used in sorting [17–20]. Bin Zheng [21] designed a mango grading
system using SqueezeNet by adjusting the super-parameters, batch size, and period of
the convolutional neural network. This CNN model can achieve a high recognition rate
while processing small batch data sets. Although CNNs have achieved good performance
in mango classification, these nets lack the flexibility to balance the trade-off between
efficiency and accuracy, which will cause higher computing costs and violate the original
intention of using a CNN [22]. Therefore, the current research mainly focuses on the
miniaturization and practicality of the model [23].

In this study, which aims to obtain a lightweight mango sorting model, the visual-
ization of a convolution process was used to help modify the structure of the squeeze
model. Eight models were constructed, trained, and tested on our dataset, and the best
were selected and compared with the classic model with respect to performance. The model
was also explained with class activation mapping (CAM), which not only helps understand
the decision-making process but also fosters user trust [24–26].

2. Materials and Methods
2.1. Experimental Materials

The dataset used in this study consists of 381 mango (Mangifera indica Linn, Tainong
No.1) images taken by Huawei Honor Play3 mobile phone with a 12 megapixel sensor.
According to industry standards, pictures were divided into five categories: Figure 1a–e.
The judgement basis—shown in Figure 1. Figure 1a,d,e—involves mangoes of different
maturities, while Figure 1b,c have different defects.
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Figure 1. Different levels of mango samples. Level A has almost no defects and its greenness is less
than 20%; Level B’s defects are less than 10%; Level C’s defects are more than 10%; Level D has almost
no defects and its greenness is more than 70%; Level E has almost no defects and its greenness is
between 20~70%. (a) Level A; (b) Level B; (c) Level C; (d) Level D; (e) Level E.

A data-augmentation method was employed to expand the number of images and
improve the robustness of the deep-learning model [27,28]. As shown in Table 1, the
original images were rotated by 90◦, 180◦, and 270◦, and were cropped to 224 × 224 pixels;
a total of 1524 images were obtained, which were divided into 1226 training samples and
298 test samples.

Table 1. Sample assignment of training and test datasets.

Level Training Set Test Set

A 254 63
B 279 70
C 251 61
D 216 53
E 226 51

Total 1226 298
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2.2. Experimental Platform

The experimental platform consists of cloud-computing and local development plat-
forms [29–31]. As shown in Figure 2, after professional data annotation, the images were
uploaded to the cloud-computing platform; then, the model was obtained after training
and testing, and finally downloaded to the local application. The cloud computer was
configured with an Intel Core i7-8750h CPU and NVDIA P100 GPU with 16 GB of memory.
The local development platform was the Pytorch deep-learning framework running on the
Windows 10 operating system; the programming language used was Python.
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Figure 2. Deep-learning process.

2.3. Model Evaluation Methods

Accuracy, precision, recall, and F1 value [32] were used to evaluate the effectiveness
of the model. Since the experiment is a five-category experiment, each category is regarded
as a positive category in turn, and the other categories are regarded as negative categories.
The calculation formula of each index is as follows:

AP(Average precision) =
1
k ∑ k

i=1
TPi

TPi + FPi
× 100%. (1)

AR(Average recall) =
1
k ∑ k

i=1
TPi

TPi + FNi
× 100%. (2)

F1 = 2× AP× AR
AP + AR

× 100% (3)

Accuracy =
TP + TN

TP + TN + FP + FN
× 100% (4)

where TP represents the number of positive samples correctly identified as positive samples,
TN the number of negative samples correctly identified as negative samples, FP the number
of negative samples incorrectly identified as positive samples, FN the number of positive
samples incorrectly identified as negative samples, k the number of levels, and i the
level itself.

2.4. Model Visualization
2.4.1. Convolution-Layer Visualization

It is necessary to understand the internal working mechanism of a model to improve
its structure [33]. In our research, the feature maps of all channels were visualized, which
allowed us to easily judge the performance of each filter, and each layer of the network
contains multiple filters. The method is shown in Figure 3. The input image f (x, y) passes
through the filters and then outputs feature maps. Each feature map corresponds to an
independent feature, which is determined by the corresponding filter. The formula is

xl
j = f

(
∑

i∈M
xl−1

i × kij + bl
j

)
(5)
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where xl−1
i is the ith input feature map at the (l− 1)th layer, xl

j is the jth output feature map

at the lth layer, and M is the set of feature maps at the (l − 1)th layer. kl
ij is the convolution

kernel between the lth input map at the layer (l − 1)th and the jth output map at layer l. bl
j

is the bias of the jth output map at the lth layer.
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2.4.2. Feature Visualization

The CAM [34] method is a weighted linear sum of visual patterns at different spatial
locations that can help us clearly determine which areas of an image the network pays
more attention to. By matching the CAM with the input image, the area most relevant to a
specific level can be identified. In the present work, the weight of the gap to the output layer
was fully connected to the target category. Figure 4 is a CAM for a C-level mango. Since
the gap feature vector comes directly from the feature map, this weight can be regarded as
the contribution of the feature map to the target category score. The higher the score, the
higher the contribution of the corresponding region of the original image to the network.
The CAM can be obtained by the following formula:

Mc(x, y) = ∑
k

wc
k fk(x, y) (6)

where fk(x, y) is the value of the position (x, y) of the last layer feature map and wC
k the

full connection weight of category C.
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3. Model Construction and Training
3.1. Classic SqueezeNet

SqueezeNet is a lightweight and efficient convolutional-neural-network CNN model
proposed by Han et al. [35]. In distributed training, SqueezeNet has fewer parameters
and less communication with the server, which makes it more suitable for deployment on
devices with limited memory, such as field-programmable gate arrays.

As shown in Figure 5, there is a convolution layer at the beginning and end of
SqueezeNet, with eight fire modules and three max-pooling layers in the middle. When
passing through a pooling layer, the image size is compressed to half of the original to
reduce the amount of calculation. The last convolutional layer is 1 × 1 with 512 input chan-
nels and 1000 output channels, and the output image size is 14 × 14 pixels. The output of a
convolution layer is pooled by the global average, and the probability of 1000 classifications
is calculated by softmax.
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3.2. Network-Structure Modification

Figure 6 shows the visualization results of the convolution-layer features. The first fire
module consisted of the collection of various edge detectors, and most of the information
in the original image was retained at this time. The second fire module began to extract
texture details, and feature maps became increasingly more abstract with the deepening
of the layers and the increasing number of channels. The third and fourth fire modules
paid more attention to local information, such as defects and shapes. However, the sparsity
of activation increased with the layer from the sixth fire module, and increasingly more
feature maps were blank [36]. This means that the patterns encoded by these filters cannot
be found in the input image, and these inactivated feature maps cannot provide effective
information. Therefore, the layers containing more blank information can be removed to
compress the model.

Since only five categories of mangoes must be identified, the number of output chan-
nels of the convolution layer was modified to five, which was recorded as Model 1. Consid-
ering the simple characteristics of a mango, too much overall information was unnecessary.
According to the visualization results, the last three fire modules showed great similarity,
and the number of activated feature maps gradually decreased, which indicated that these
feature maps are redundant and can be removed. As shown in Figure 7, fire Modules 6–8
were removed from the original model and denoted Models 2–4, respectively.

3.3. Fire-Module Modification

As shown in Figure 8, the core of SqueezeNet is the fire module, which is composed
of two parts: the squeeze and expand layers. The squeeze layer is a 1 × 1 convolution
kernel, which changes the input channel from M to N; N is usually less than M. The squeeze
layer is mainly used to compress the input channel to reduce the amount of calculation of
the network.
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The expansion layer contains two types of convolution kernels, i.e., 1 × 1 and 3 × 3.
These two convolution kernels expand the input channel from N to E1 and E2, respectively.
The obtained feature map is spliced to obtain the characteristic map with an output channel
(E1 + E2).

Since the 3 × 3 convolution kernel of a fire module has nine parameters in total,
nine floating-point multiplications and one floating-point addition are required for one
convolution. However, the 1 × 1 convolution kernel has only one parameter, and only
one floating-point multiplication is required for one convolution operation. Therefore, the
convolution operations and parameter amounts of 1 × 1 are approximately one-ninth of
that of the 3 × 3 convolution.

Based on this principle, the partial 3 × 3 convolution kernel was replaced by the 1 × 1
convolution kernel, which can not only reduce the number of parameters but also greatly
reduce the degree of calculation. As shown in Figure 9, the convolution kernels of the fire
modules in Models 1–4 were redistributed with a ratio of 3:1 to obtain Models 5–8.
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3.4. Model Training

Transfer learning was used to accelerate the model convergence [37] and the Adam
optimizer was used [38]. The improved models were pre-trained on the Imagenet dataset,
and the pre-training weights were taken as the initial value of the initial kernel. The ReLu
function was used as an activation function. The cross-entropy loss function was selected
to deal with the class-imbalanced dataset. The loss caused by the category with a small
sample number was given a large weight, while the loss caused by the category with a
large sample number was given a small one. This can reduce the loss value and improve
the robustness of the mode. The learning rate was 0.0001, the batch size was 128, and the
number of iterations was 100. Figure 10 shows the training results.
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As shown in Figure 10, the accuracy curves of Models 1–4 began to converge in the
tenth round, and the final accuracy rate stabilized at more than 90%, while the accuracy
curves of Models 5–8 began to converge in the 30th round, and the final accuracy was stable
at more than 85%. Overall, although the convergence speed of each model was different,
the loss value could be stable at a lower value after 50 iterations.

4. Results and Discussion
4.1. Model Test and Evaluation

Figure 11 is the confusion matrix [39] of Models 1–8 on the test set and was used
to explore the performance of each model. Regarding appearance quality, there was no
misjudgment between Levels A and C, but a small amount of Level B was misjudged.
Among the eight models, the lowest misjudgment rate of Level B was 2.86%, and the
highest was 38.57%. Regarding maturity, there was no misjudgment between mature and
immature mangoes, but partially mature mangoes might have been misjudged; the lowest
misjudgment rate was 3.92%, and the highest was 27.45%. The above phenomena were
similar to those observed in manual sorting.
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Level A represents a first-class mango, B a second-class mango, C a third-class mango,
D an immature mango, and E a partially mature mango.

Table 2 shows the parameters and performance of all models. It can be seen that
Model 1 had the highest F1 score, but its parameter memory requirements and the amount
of computation required by the model were the largest among all models, reaching 2.78 MB
and 265.48 MFLOPS, respectively. It can be seen from the trend that the two indicators from
Models 1 to 4 decrease in turn, but the F1 score does not change significantly, which shows
that the deep network has little positive impact on mango sorting. Upon comparison with
Models 1–4, the parameter memory requirements and amount of computation required for
Models 5–8 were greatly improved, but the test accuracy was not satisfactory. This shows
that adjusting the number of 1 × 1 and 3 × 3 convolution cores in the expansion layer can
effectively improve the parameter memory and computation requirements, but it comes
at the expense of performance. Therefore, Model 4 has the best performance among all
models, with an average accuracy of 95.64%, and its parameter memory and computation
requirements are 0.87 MB and 181.34 MFLOPS, respectively.

Table 2. Modified model parameters and performance.

Model Test
Accuracy (%)

Average
Precision (%)

Average
Recall (%) F1 Score

Parameter
Memory

(MB)

Computation
(MFLOPs)

Model 1 96.64 96.50 96.69 0.9659 2.78 265.48
Model 2 95.63 95.60 95.72 0.9566 2.36 246.72
Model 3 96.31 96.28 96.16 0.9622 1.60 213.39
Model 4 95.64 95.81 95.93 0.9587 0.87 181.34
Model 5 83.89 84.39 85.74 0.8506 1.85 179.78
Model 6 87.25 87.70 89.49 0.8859 1.56 169.67
Model 7 85.23 85.38 86.77 0.8607 1.05 147.42
Model 8 83.22 84.13 86.30 0.8520 0.58 126.44

To verify the practicability of Model 4, the test set was divided into two groups: one
for maturity and the other for appearance quality (the results are shown in Table 3). The
test accuracy on the two datasets reached more than 95%, and the accuracy of maturity was
2.37% higher than that of appearance quality. It can be seen that the model shows a good
generalizability and strong robustness.
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Table 3. Maturity and appearance quality test results.

Test Sets Classification Precision (%) Recall (%) Accuracy (%)

Appearance quality
A 100.00 94.02

95.83B 91.42 94.12
C 93.44 100.00

Maturity
A 100.00 96.92

98.20D 98.11 100.00
E 96.08 98.00

4.2. Comparison with Classical Models

Model 4 was compared with the classic deep networks AlexNet [40], VGG [41],
ResNet [42], GoogleNet [43], DenseNet [44], MobileNet [45], Vision Transformers (ViT) [46],
and EfficientNet [47] to facilitate a more objective and comprehensive evaluation; the
results are shown in Table 4. Although the accuracy of ViT-B/16 is 97.17%, its parameter
memory requirements and amount of computation required are much higher than that
of Model 4. It also can be seen that the proposed Model 4 has a better cost performance
and competitive advantages. Even the classical model MobileNet, which has the smallest
parameter storage, has almost 10 times the parameter memory and 10 times as many
computation requirements as Model 4. Model 4, however, saves a significant number of
computational resources, and its accuracy can still be maintained at 95.64%.

Table 4. Performance comparisons of proposed Model 4 with classical models.

Model Accuracy (%) Parameter Memory (MB) Computation (MFLOPs)

AlexNet 92.28 27.90 660.90
VGG16 96.64 105.65 15,483.86
VGG11 96.30 84.7 7616.57

ResNet18 94.35 43.22 1818.69
ResNet34 96.01 81.84 3670.88

GoogleNet 95.01 22.07 1503.86
DenseNet 96.67 29.62 2865.30
MobileNet 93.35 8.74 312.86
ViT-B/16 97.17 327.37 34,529.28

EfficientNet 89.34 15.63 27.02
Model 4 95.64 0.87 181.34

4.3. Visual Output Analysis of Model

Figure 12 displays the CAM of the different mango levels. The value of each pixel
on the image can be understood as the contribution to the predicted result. It can be seen
that Levels A and D focus on the whole mango, and the result is not disturbed by the
background. The judgment of Levels B and C focuses on defects, and the distribution of
heat depends on the defects’ location and range. For Level E, the attention of the model
is mainly attracted by the color change. These results are completely consistent with
the judgment standard for mangoes of various levels, which shows that the model has
good practicability.



Agriculture 2022, 12, 1467 11 of 13

Agriculture 2022, 12, x FOR PEER REVIEW 11 of 14 
 

 

MobileNet 93.35 8.74 312.86 

ViT-B/16 97.17 327.37 34529.28 

EfficientNet 89.34 15.63 27.02 

Model 4 95.64 0.87 181.34 

4.3. Visual Output Analysis of Model 

Figure 12 displays the CAM of the different mango levels. The value of each pixel on 

the image can be understood as the contribution to the predicted result. It can be seen that 

Levels A and D focus on the whole mango, and the result is not disturbed by the back-

ground. The judgment of Levels B and C focuses on defects, and the distribution of heat 

depends on the defects’ location and range. For Level E, the attention of the model is 

mainly attracted by the color change. These results are completely consistent with the 

judgment standard for mangoes of various levels, which shows that the model has good 

practicability. 

 

Figure 12. CAM of different levels of mango. 

5. Conclusions 

In this study, the feature-extraction characteristics of the shallow and deep networks 

of the SqueezeNet model were analyzed by a visualization method, and eight extrusion 

network models were constructed based on the results. After the training and evaluation, 

it was found that Model 4 exhibited the best performance among the other models, with 

an accuracy of 95.64% and an F1 score of 0.9587. The parameter memory requirements 

and computation required by the model were only 0.87 MB and 181.34 MFLOPS, respec-

tively. The model performed well with respect to the mangoes’ appearance and maturity 

classification experiments. Compared with the classical AlexNet, VGG16, VGG11, Res-

Net18, ResNet34, GoogleNet, DenseNet, and MobileNet models, the proposed Model 4 

significantly lowered the computing power required without reducing its accuracy. 

Through a CAM analysis, it was found that for mangoes in Levels B and C, the model 

paid more attention to surface defects, while for Level E, color change was the primary 

factor. For other mango levels, the entire surface had almost the same effect on the 

Figure 12. CAM of different levels of mango.

5. Conclusions

In this study, the feature-extraction characteristics of the shallow and deep networks
of the SqueezeNet model were analyzed by a visualization method, and eight extrusion
network models were constructed based on the results. After the training and evaluation,
it was found that Model 4 exhibited the best performance among the other models, with an
accuracy of 95.64% and an F1 score of 0.9587. The parameter memory requirements and
computation required by the model were only 0.87 MB and 181.34 MFLOPS, respectively.
The model performed well with respect to the mangoes’ appearance and maturity classi-
fication experiments. Compared with the classical AlexNet, VGG16, VGG11, ResNet18,
ResNet34, GoogleNet, DenseNet, and MobileNet models, the proposed Model 4 signifi-
cantly lowered the computing power required without reducing its accuracy. Through
a CAM analysis, it was found that for mangoes in Levels B and C, the model paid more
attention to surface defects, while for Level E, color change was the primary factor. For
other mango levels, the entire surface had almost the same effect on the discrimination
results, which was consistent with the judgment standards of all the kinds of mango. There-
fore, the proposed model was more suitable for embedded-resource-constrained devices
such as mobile terminals and it showed a higher cost performance in comparison with
existing models.
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