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Abstract: Metals, including copper (Cu), iron (Fe), and zinc (Zn), are associated with nitrous oxide
(N2O) production processes, such as nitrification and denitrification. This study aimed to elucidate
the effects of Cu, Fe, and Zn on N2O emissions and to determine cumulative N2O emission and crop
yields from upland soils. Metals were applied at a rate of 20 kg ha−1 in upland soil supporting maize
(Zea mays L.) growth in 2018 and 2019. While the mean value of cumulative N2O emissions across
both years was 5.19 kg N2O ha−1 yr−1 for the control soil, those of soil treated with Cu, Fe, and Zn
were 3.37, 2.48, and 4.82 kg N2O ha−1 yr−1, respectively. Ammonium (NH4

+) concentration in soil
was highest after Fe application, and nitrate (NO3

−) concentration was lowest. The copy number of
the amoA gene related to NH4

+ oxidation was lowest after Fe enhancement, implying that nitrification
was inhibited. Furthermore, N2O emission decreased with Cu addition because the copy number of
the nosZ gene associated with N2O reduction to N2 was the highest. Because Cu and Fe decreased
yield-scaled N2O emission, the application of either metal could reduce N2O emission per unit area
of maize production, suggesting that both metals are beneficial soil amendments for reducing N2O
emissions while maintaining maize yield.

Keywords: denitrification; greenhouse gas; micronutrient; nitrification; water-filled pore space

1. Introduction

Nitrous oxide (N2O) is a major source of stratospheric NOx and contributes to ozone
layer depletion. Thus, N2O release contributes to global warming. Global annual N2O
emission is 6.7 Tg N2O year−1, 60% of which is attributable to agricultural soil [1]. Major
efforts to mitigate greenhouse gas (GHG) generation in agricultural soil have focused on
N2O due to this contribution. The global warming potential of N2O is 298 times greater
than that of carbon dioxide (CO2) for a 100-year time horizon [1]. In general, non-flooded
upland soils are sinks for methane (CH4) rather than sources [2].

Microbial nitrification and denitrification, including these processes in soil, produce
more than two-thirds of N2O [3,4]. Microbial enzymes involved in N2O production and
consumption often require metal cofactors, such as copper (Cu), iron (Fe), and zinc (Zn).
These metals are trace elements in soils and are essential micronutrients for crop growth
and reproduction. Micronutrient supply is needed when micronutrients limit crop growth,
yield, and quality [5].

Notably, autotrophic ammonia-oxidizing bacteria (AOB) induce aerobic N2O produc-
tion. Ammonia (NH3) is first oxidized to hydroxylamine (NH2OH) in a reaction catalyzed
by ammonia monooxygenase (AMO), which requires Cu and possibly additional Zn and
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Fe [6]. Subsequently, NH2OH is oxidized to nitrite (NO2
−), a reaction catalyzed by hydroxy-

lamine oxidoreductase (HAO) containing 24 Fe atoms in c-type cytochromes [7]. Orthologs
of Cu-containing NirK enzymes are typically used for reducing NO2

− to NO [8–10]. Nitric
oxide (NO), a toxic intermediate, is then reduced to N2O by an unknown enzyme, likely
either NorBC [11,12], the tetraheme cytochrome c554 [13], or NorS [14].

Under anaerobic conditions, nitrate (NO3
−) is reduced to nitrogen (N2). Nitrous oxide

is an intermediate gas in the denitrification sequence: NO3
−→NO2

−→NO→N2O→N2.
Nitrate reductase, which contains Fe as a cofactor, catalyzes NO3

− conversion to NO2
−. Ni-

trous oxide reductase, which is a Cu-rich enzyme that binds 12 atoms of Cu per homodimer,
then reduces N2O to N2 [15,16]. In recent years, metal-driven N2O production processes,
including nitrification and denitrification, have attracted increased attention [17–22]. Zhu
et al. reported that N2O generation from municipal wastewater was reduced by Cu2+ addi-
tion due to the increased activities of nitrite and N2O reductases [17]. However, Sharma
et al. reported that Cu availability governed N2O accumulation in wetland soils and stream
sediments [18]. They observed that natural aquatic systems containing Cu at concentrations
less than or equal to crustal abundances displayed incomplete N2O reduction to N2, which
would cause N2O accumulation and release into the atmosphere. According to Arezoo
et al., the addition of FeS and FeS2 decreased nitrate reduction and N2O accumulation
rates in agricultural peat soil [19]. Deng et al. observed that zerovalent iron played a role
as an electron donor in the denitrification process and was efficient in catalyzing further
N2O reduction to N2 in the lab-scale experiment [20]. Montoya et al. reported that total
abundances of the nosZ denitrification gene, which is involved in N2O reduction to N2,
were reduced by 75% on average in plots that received Zn fertilizers, thereby leading to
elevated N2O emissions [21]. In other field work, Feng et al. observed that zinc oxide
nanoparticles increase N2O emissions by increasing nitrification (AOB amoA) and deni-
trification (nirS) [22]. Although these studies assessed the effects of soil Cu, Fe, and Zn
on N2O production, these effects remain unclear. Notably, recent studies characterized
N2O production associated with microbial enzymes in nitrification and denitrification, but
comparisons of Cu, Fe, and Zn as micronutrients on N2O emission from upland soil on
a field scale remain scarce. Therefore, an improved understanding of how these metals
modulate microbial enzyme activities associated with nitrification and denitrification is
still needed. Because reducing environmental pollution without compromising food se-
curity is critical [23,24], future sustainable agriculture should explore ways to lower N2O
emissions while maintaining high crop productivity. Agricultural practices are related
to N2O emission based on crop yield, referred to as yield-scaled N2O emission (YSNE).
As mentioned above, metals, including Cu, Fe, and Zn, are involved in N2O production
processes and mitigate or elevate N2O emission [17–22]. These metals are also essential
for crop growth and reproduction. For these reasons, we hypothesize that the application
of metals, including Cu, Fe, and Zn, affects both N2O production and crop yield from
arable soil. In this study, we use YSNE and gene analysis associated with N2O production
processes to address cumulative N2O emission and crop yield after supplementing upland
soil with Cu, Fe, and Zn in a maize field for two years.

2. Materials and Methods
2.1. Site Description

The field experiment was conducted on upland soil at the experimental farm of Pusan
National University, Miryang, Korea (35◦30′08.3′ ′ N 128◦43′15.3′ ′ E). Soil was classified as
Bongsan series Typic Hapludults (fine loamy, mixed, mesic) and was well drained with a
2–3% slope. The soil pH was 6.72 and total nitrogen concentration was 1.09 g kg−1. Table 1
lists the soil’s specific physical and chemical properties. Precipitation and temperature data
were obtained from a weather station in Miryang (Korea Meteorological Administration),
located 1 km from the study site. The average values of temperature and precipitation at
the study site throughout the whole year were 14.4 ◦C and 1216 mm, and during the maize
growing season, they were 23.4 ◦C and 395 mm, respectively.
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Table 1. Selected chemical and physical properties of the study soil (n = 3).

Parameter Mean ± Standard Deviation

pH (1:5, H2O) 6.72 ± 0.38
Organic matter (g kg−1) 26.6 ± 1.33
Total nitrogen (g kg−1) 1.09 ± 0.02

Inorganic nitrogen
NH4

+ (mg kg−1) 3.38 ± 0.23
NO3

− (mg kg−1) 1.07 ± 0.29
Available P2O5 (mg kg−1) 113 ± 2.33

Exchangeable cation (cmolc kg−1)
K 0.73 ± 0.05
Ca 4.20 ± 0.30
Mg 1.17 ± 0.07

Bulk density (g cm−3) 1.27 ± 0.12
Particle size distribution (%)

Sand 43.4 ± 2.27
Silt 44.5 ± 3.15

Clay 12.1 ± 1.01
Soil texture Sandy clay loam

2.2. Experimental Design and Field Management

Experimental plots were arranged in a randomized complete block design with three
replications. Each plot was 5× 5 m. To exclude the effect of count anions on N2O production
and crop yield, zerovalent forms of metals, including Cu, Fe, and Zn, were applied at the
rates of 0 and 20 kg ha−1. The metals were incorporated into soil with moldboard plows
on 16 and 5 May in 2018 and 2019.

Crops may show toxicity and decreased yield when metals are absorbed in excessive
amounts. In particular, safe concentrations in crops for Cu, Fe, and Zn are 2–50, 20–600,
and 10–25 mg kg−1, respectively [25]. Guo et al. observed that the critical concentrations of
Cu added to soils that decreased maize grain yield by 10% were 711 mg kg−1 for calcareous
soil with a pH of 8.9 and 23 mg kg−1 for acidic soil with a pH of 5.3 [26]. Depending on
the site and the cultivars of rice used, reported critical concentrations of Fe in soil can
range from 20 to 2500 mg kg−1 [27]. Takkar and Mann reported that maize grown for
60 days in soil treated with 50 mg kg−1 of Zn showed toxicity [28]. To date, South Korea
has not established recommended application rates for Cu, Fe, and Zn. Crops did not show
signs of toxicity after the application of up to 20 mg kg−1 of Cu, Fe, and Zn in previous
studies [26–28]. An application rate of 20 mg kg−1 is allocated with 38.1 kg ha−1 (bulk
density of the studied soil = 1.27 g cm−3 and soil depth = 15 cm). Therefore, 20 kg ha−1

was selected as the application rate in the present study.
In 2018 (Year 1), maize (Zea mays L.) seed was sown on May 22. The seed spacing

within and between rows was 25 and 60 cm, respectively. Inorganic fertilizers, including
urea, fused phosphate, and potassium sulfate, were applied to all plot surfaces at a rate of
186–35–74 kg ha−1 (N–P2O5–K2O) on the same day soon after seeding. Precipitation was
insufficient for seed germination from 22 May to 20 June (Figure 1C). The total precipitation
for this period was 62 mm. The germination rate on 20 June was <10% due to severe
drought. Therefore, 1-month-old maize seedlings were transplanted onto all plots on
25 July. Additional inorganic fertilizer was applied at a rate of 93–17.5–37 kg ha−1 (N–
P2O5–K2O). In 2019 (Year 2), maize seedlings were again transplanted into all plots on
11 May. Nitrogen fertilizer was applied as a split application at two development stages:
50% as basal fertilization at transplanting (11 March 2019) and 50% at the 7/8 leaf stage
(5 July 2019). Plots were irrigated after fertilizer application when rainfall was insufficient
in both years. Maize was harvested on 4 October and 23 July in 2018 and 2019, respectively.
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Figure 1. Daily N2O emission (A), water-filled pore space (WFPS) (B), air temperature, and precipi-
tation (C) during the growing seasons in Years 1 and 2. 
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Figure 1. Daily N2O emission (A), water-filled pore space (WFPS) (B), air temperature, and precipita-
tion (C) during the growing seasons in Years 1 and 2.

2.3. Measurement of N2O Emission

Soil-to-atmosphere N2O fluxes were measured once every week during the growing
season (May through October) and once every 2 weeks during the fallow season (November
through May). Nitrous oxide flux from soils amended with metals was monitored for two
years, including the growing and fallow seasons. However, N2O fluxes only during the
growing season from May to October in Years 1 and 2 are shown in Figure 1A. Gas sampling
frequency increased 2–3 times per week in the following weeks after nitrogen fertilization
and rainfall events. A static closed chamber method was used to measure N2O flux [29].
The chamber collar comprised a polyvinyl chloride (PVC) tube (diameter = 18 cm and
height = 23 cm) spiked into the plot center. Collars remained in place during both the
growing and fallowing seasons and were left uncovered. All plants that grew in the
collar were removed during the experiments. Collars were closed before gas sampling
using a PVC lid (diameter = 20.2 cm and height = 17 cm) with a built-in vent tube and
rubber stopper. Gas samples were collected using a 30 mL syringe from the headspace
(1500 cm3) in the chamber at 0, 20, and 40 min after lid placement between 10:00 and 12:00 h
throughout the year. Samples were transferred to 12 mL evacuated glass vials (Exetainer®

12 mL vial-evacuated 838 W, Labco, Wales, UK) sealed with butyl rubber septa. Gas samples
were analyzed using a gas chromatograph–mass spectrometer (GC-MS QP2020, Shimadzu,
Japan) equipped with packed columns of Porapak Q. The carrier gas was helium with a
flow rate of 4.25 mL min−1 through the column. The GC-MS was calibrated by the certified
standard gases of N2O and then the concentrations of N2O in the samples were determined
based on the calibration curve.

Gas fluxes were calculated as follows:

F = ρ×
(

V
A

)
×
(

∆C
∆T

)
×
(

273
T + 273

)
× k× a



Agriculture 2022, 12, 1458 5 of 16

where F = N2O flux (g ha−1 day−1); ρ= density of N2O (g m−3); V = volume of the chamber
(m3); A = base area of the chamber (m2); ∆C/∆T = the change in gas concentration inside
the chamber as a function of time (g m−3 min−1); T = temperature in the chamber (◦C); and
273 = a correction factor between Celsius and Kelvin. In addition, k (min day−1) is the time
conversion coefficient, and a (10,000 m2 ha−1) is the area conversion coefficient. The air
temperature in the chamber was measured at every gas sampling. Cumulative N2O fluxes
were calculated by multiplying the mean value of N2O fluxes (g ha−1 day−1) (Ri) by the
length of the period (Di) and integrating the results over the monitoring period:

Cumulative N2O emission
(

kg ha−1 yr−1
)
= ∑n

i (Ri × Di)

Yield-scaled N2O emission was calculated as follows:

YSNE
(

kg Mg−1
)
=

cumulative N2O emission (kg N2O ha− 1 yr− 1)
dried maize grain yield (Mg ha− 1 yr− 1)

The harvested maize yield was based on the dry weight of the ear.

2.4. Physical and Chemical Analyses

Water-filled pore space (WFPS, %) was calculated every day for two years using the
following equation:

WFPS (%) =

volumetric water content

1−
(

bulk density
2.65

)
× 100

Volumetric water content was measured at a 5 cm soil depth with a 5TE moisture
sensor (Decagon, USA) every 3 h. The means of all values were used as the daily volumetric
moisture content (m3 m−3). Bulk density of soil samples collected at 0–15 cm in each plot
was measured every month. The values were used in the above equation. Samples were
collected using a fixed-volume core (94.64 cm3) and dried at 105 ◦C. The particle density
was assumed to be 2.65 g cm−3.

Soil samples were collected at 0–15 cm in each plot at harvest time to analyze ammo-
nium (NH4

+) and nitrate (NO3
−); 5 g of air-dried soil was extracted with 30 mL of 2 M

KCl solution. After shaking for 30 min, the mixture was filtered through Whatman No. 2
filters NH4

+ and NO3
− concentrations in the extracts were analyzed using the indophenol

blue [30] and brucine methods [31], respectively.

2.5. Total DNA Extraction and Real-Time PCR

Soil samples for DNA analysis were collected in a 2 mL tube and stored at −75 ◦C at
harvest time (23 July 2019) in Year 2. Total DNA was extracted from ca. 250 mg of frozen
soil using a DNeasy® PowerSoil® DNA isolation kit (Qiagen) following the manufacturer’s
instructions. DNA was stored in a deep freezer until use. Soil DNA concentration and
purity were measured using NanoDrop (ALLSHENG, China), and the size was checked by
electrophoresis on 1.2% agarose.

Total bacterial abundance was assessed using the 16S rRNA gene [32] with real-time
PCR. Nitrifying communities were assessed using the expression of the amoA gene from
AOB and the hao gene from NH2OH-oxidizing bacteria [33,34]. Denitrifying communities
were quantified by the expression of narG, nirS, norB, and nosZ [35–38].

Real-time PCR assays were performed on a CFX96 Touch System (Bio-Rad Laborato-
ries, Inc., CA, USA). Primer sequence information for nitrifying and denitrifying microbes
was collected from previous studies (Table 2). qPCR reactions were conducted in triplicate
using real-time PCR reaction plates sealed with clear film. Each 20 µL reaction contained
10 µL 2x AMPIGENE qPCR Green Mix Lo-ROX (Enzo Life Sciences, NY, USA), 1 µL for-
ward and reverse primers (10 µM), 1.0 µL of genomic DNA, and 7.0 µL PCR-grade water.
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The reaction process followed the manufacturer’s instructions as initiation for one cycle
at 95 ◦C for 2 min; 40 cycles of denaturation at 95 ◦C for 5 s, annealing at 60 ◦C for 25 s,
and elongation at 72 ◦C for 30 s; and final elongation at 72 ◦C for 5 min. Standard curves
were obtained using serial dilutions ranging from 109 to 101 copies µL−1 of plasmids
containing target gene sequences. The abundance of targeted genes was expressed per
nanogram of DNA instead of per gram of soil to minimize bias related to soil DNA extrac-
tion efficiency [39]. All qPCR reactions were conducted at least in triplicate. Microbes were
quantified by comparison with the standard curve.

Table 2. Primer sets for qPCR.

Primer Sequence (5′→3′) Size (bp) Reference

16s rRNA-1097F CGGCAACGAGCGCAACCC
146 [32]16s rRNA-1242R CCATTGTAGCACGTGTGTAGCC

amoA-1F GGGGTTTCTACTGGTGGT
491 [33]amoA-2R CCCCTCKGSAAAGCCTTCTTC

hao-1F TGCGTGGAAGTGCTCAC
992 [34]hao-3R AGAGTAAGGAGTCTCGGGCAAA

narG-2F TA(CT) GT(GC) GGG CAG GA(AG) AAA CTG
110 [35]narG-2R CGTAGAAGAAGCTGGTGCTGTT

nirS-1F CCTAYTGGCCGCCRCART
890 [36]nirS-6R CGTTGAACTTRCCGGT

cnorB-2F GACAAGNNNTACTGGTGGT
389 [37]cnorB-6R GAANCCCCANACNCCNGC

nosZ-1F WCSYTGTTCMTCGACAGCCAG
700 [38]nosZ-2R CAKRTGCAKSGCRTGGCAGAA

2.6. Statistical Analysis

All statistical analyses used R Studio (version 3.4.4, R Core Team, 2018, Vienna, Austria)
with the “Agricolae” package. The mean values of cumulative N2O emission, inorganic
N, YSNE, maize ear yields, and the copy numbers of the targeted genes were assessed by
pair-wise comparisons. An analysis of variance was used to evaluate differences between
parameters. A least significant difference test was performed to separate mean effects only
when the F-test result was significant at p < 0.05.

3. Results and Discussion
3.1. N2O Flux

The first and second N2O peaks appeared soon after urea application in both years
(Figure 1A). Urea was applied on 22 May and 25 July in Year 1 and 11 May and 5 July
in Year 2. The peaks of N2O flux occurred 2–3 days after application. Daily N2O flux is
related to soil WFPS, whose change is an important factor affecting N2O emissions from
arable soil [3,40,41]. Notably, N2O can be emitted by nitrification with a soil WFPS of
35–60% that requires NH4

+ as an inorganic N substrate for aerobic respiration, whereas a
soil WFPS above 60% (O2 is limited) induces a switch from aerobic to anaerobic respiration.
Therefore, NO3

- is an alternative electron acceptor used by microorganisms associated
with denitrification that produces N2O [40,42–44]. Soil WFPS increased by irrigation after
fertilization but did not increase by rainfall events in both years [Figure 1B,C]. The daily
WFPS values at the first and second N2O peaks were 47.8% and 49.8% in Year 1 and
43.3% and 37.7% in Year 2, respectively [Figure 1B]. All N2O peaks in both years appeared
when daily WFPS was <60%, implying that nitrification was the predominant process for
N2O production.

3.2. Cumulative N2O Emission

Metals significantly affected cumulative N2O emissions (Table 3). Cumulative N2O
emissions among metals differed significantly in both Years 1 and 2 (Table 4). The order
of cumulative N2O emission values was Fe < Cu < Zn < control in both years. The
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mean value of cumulative N2O emissions across Years 1 and 2 did not differ significantly
between Cu and Fe applications. However, cumulative N2O emission after Fe treatment
was significantly lower than that with Cu in both years. Zinc was ineffective in reducing
cumulative N2O emissions because its supplementation had no significant effect compared
to the control.

Table 3. ANOVA and p-value of cumulative N2O emissions, ammonium (NH4
+), and nitrate (NO3

−)
concentration at harvest, copy numbers of 16S rRNA, amoA, hao, narG, nirS, cnorB, and nosZ genes,
maize grain yield, and yield-scaled N2O emissions.

Parameter
Source of Variation

Metal (M) Year (Y) M × Y

df 3 1 3
Cumulative N2O emissions <0.001 <0.01 <0.001

NH4
+ <0.001 NS NS

NO3
− <0.001 NS NS

16S rRNA <0.001 - -
amoA <0.01 - -

hao NS § - -
narG NS - -
nirS NS - -

cnorB NS - -
nosZ <0.001 - -

Maize grain yield NS NS NS
Yield-scaled N2O emission <0.01 <0.05 <0.01

§ NS, not significant.

Table 4. Cumulative N2O emission, maize grain yield, and yield-scaled N2O emission from soils
amended with different metals in Years 1 and 2.

Metal
Cumulative N2O Emission (kg ha−1 yr−1)

Year 1 Year 2 Year Mean §§

Control 6.13 a 4.25 a 5.19 a

Cu 3.93 b 2.81 b 3.37 b

Fe 2.97 c 1.99 c 2.48 b

Zn 5.69 a 3.96 a 4.82 a

Metal mean § 4.68 A 3.25 B

Metal
Maize Grain Yield (Mg ha−1)

Year 1 Year 2 Year Mean §§

Control 5.77 a 5.83 a 5.80 a

Cu 5.85 a 5.85 a 5.85 a

Fe 5.06 a 5.06 a 5.06 a

Zn 5.87 a 5.87 a 5.87 a

Metal mean § 5.64 A 5.65 A

Metal
Yield-Scaled N2O Emission (kg Mg−1)

Year 1 Year 2 Year Mean §§

Control 1.22 a 1.03 a 1.12 a

Cu 0.68 c 0.41 b 0.55 b

Fe 0.57 c 0.31 b 0.44 b

Zn 0.95 b 0.61 b 0.78 ab

Metal mean § 0.86 A 0.59 B

§ Metal mean: mean value across control, Cu, Fe, and Zn. §§ Year mean: mean value across Years 1 and 2. Different
lower- and upper-case letters denote significance at p < 0.05 in comparison within column and row, respectively.

Metal application significantly affected NH4
+ and NO3

− concentrations in soil at
harvest (Table 3). Mean values of cumulative N2O emission across years from lowest



Agriculture 2022, 12, 1458 8 of 16

to highest were opposite to the order of NH4
+ soil concentrations but were consistent

with NO3
− levels [Figure 2A,B]. Mean NH4

+ levels varied as control < Zn < Cu < Fe.
Conversely, NO3

− concentrations were Fe < Cu < Zn < control. Differences in N2O
emissions were reflected in changes in soil NH4

+ and NO3
− concentrations at harvest.

While cumulative N2O emissions were negatively correlated with NH4
+ concentrations

and positively correlated with NO3
− concentrations in both years [Figure 3A,B], N2O

production was highest in the control soils, where the least NH4
+ and the most NO3

− were
observed. Nitrification processes were active after N fertilizers were added to control plots.
In contrast, NH4

+ concentrations at harvest were highest, and NO3
− concentrations were

lowest in plots treated with Fe in both years.
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We hypothesized that Fe impeded NH4
+ conversion to NO3

−, causing decreased
N2O production. The total abundance of bacteria was assessed using the 16S rRNA
gene copy number to test this hypothesis. Nitrifying bacteria (measured by the relative
abundance of bacterial amoA and hao genes) and denitrifying bacteria (measured by the
relative abundance of the narG, nirS, norB, and nosZ genes) were quantified (Figure 4).
While significant differences were observed in the copy numbers of amoA and nosZ in
bacteria after metal supplementation, significant increases were not observed for hao, narG,
nirS, and norB. Average gene copy numbers after metal treatments were approximately
40% higher than in the control plots. Metal application to soil promoted microbial activity.
Interestingly, the copy number of the amoA gene that catalyzes NH3 oxidation to NH2OH
in the first step of nitrification significantly decreased after Fe application, but that of hao
significantly increased. However, the narG, nirS, and norB copy numbers showed no such
increase. Fe negatively affected amoA abundance resulting in decreased N2O production
by inhibiting NH3 oxidation to NH2OH. The abundance of AOB that requires NH3 as a
substrate for oxidation could decrease when NH3 is limited. Zerovalent iron is oxidized
and converted into ferrous ion (Fe3+) [45] as follows:

Fe→ Fe3+ + 3e−
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One mole of Fe3+ produces three moles of H+ in the following reaction [43]:

Fe3+ + 3H2O→ Fe(OH)3 + 3H+
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Zerovalent copper and zinc are oxidized, and one mole of each metal produces two
moles of H+ [45] as follows:

Cu→ Cu2+ + 2e−, then Cu2+ + 2H2O→ Cu(OH)2 + 2H+

Zn→ Zn2+ + 2e−, then Zn2+ + 2H2O→ Zn(OH)2 + 2H+

An inverse reaction is predominantly promoted by H+ concentration:
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For nitrification to occur, optimum conditions in terms of population of nitrifying

organisms, pH, temperature, oxygen, moisture, and substrate concentration and availability
are most important. At the ecosystem level, several physical, environmental, and chemical
factors interact in a complex manner to influence the nitrification process [47]. Soil pH
is the major factor regulating the nitrification process in soils. Nitrification occurs in soil
at pH ranging between 5.5 and about 10.0, with the optimum around 8.5 [47]. The pH of
the studied soil was 6.75, lower than the optimum pH value for nitrification (Table 1). As
mentioned above, Fe oxidation produced more H+ and decreased the soil pH compared to
those of other metals. Nitrification has long been known to generally follow a bell-shaped
temperature response curve with an optimum at 30–35 ◦C. In this study, the mean daily
temperature maintained the optimum temperature (30–35 ◦C) in August of both Years
1 and 2 (Figure 1). Soil moisture and aeration or soil oxygen levels are inversely related
to nitrification. Oxygen content in the soil is reduced at higher soil moisture, as most
pore spaces are occupied by water, and higher soil moisture also restricts diffusion of
atmospheric air into the soil. Thus, optimum conditions for both moisture and aeration
are critical for nitrification to occur in the soil. Nitrification is the predominant source of
N2O when WFPS is <60% [48–50]. Daily WFPS was below 60% most of the time during
the growing season of maize in both years, except October in Year 2 (Figure 1). Because
the experiment was not conducted under controlled conditions, determining the influence
of individual environmental factors on nitrification among treatments in this field study
was challenging. The decrease in cumulative N2O emission after Cu supplementation
might hypothetically be due to Cu promotion of N2O reduction to N2 and then decreased
N2O emission through denitrification. The amoA gene copy number significantly increased
with Cu addition (Figure 4). Because AMO requires Cu for NH4

+ oxidation to NH2OH,
Cu application increased amoA abundance [6]. Furthermore, the hao gene copy number
significantly increased, but that of the norB gene that catalyzes NO reduction to N2O
remained unchanged. Decreased N2O production through nitrification with Cu is difficult
to explain. This decrease is easier to attribute to denitrification. The nosZ gene copy
numbers significantly increased with Cu supplementation and were the highest among
soil treatments (Figure 4). Thus, N2O emissions decreased because N2O reduction to N2
became more active. Similar results were observed by Zhu et al., who reported that N2O
generation from municipal wastewater was reduced by Cu2+ addition due to increased
activities of nitrite and N2O reductases [17].

In another study, Montoya et al. reported that total abundances of the nosZ denitrifica-
tion gene, which is involved in N2O reduction to N2, were reduced by 75% on average in
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the plots that received Zn fertilizers, inducing elevated N2O emissions [21]. In the current
study, Zn did not increase cumulative N2O emission (Table 4), and the gene copy number
of nosZ did not decrease compared to the control (Figure 4). Conflicting results might
be due to different sources of Zn between both studies. Montoya et al. used soluble Zn
sources such as ZnSO4 and Zn applied with a mixture of chelating compounds (DTPA,
HEDTA, and EDTA) in their study, but an insoluble Zn source, zerovalent Zn, was used in
this study. Different Zn sources might differently affect total abundances of the nosZ gene
and cumulative N2O emission.

3.3. Yield-Scaled N2O Emission

Metals did not affect maize grain yields (Table 3). The mean values of grain yield
across both years did not differ significantly among the treatments (Table 4). The maize
grain yield ranged from 5.06 to 5.87 Mg ha−1. These values were similar to the values of
maize grain yield (4.1–7.9 Mg ha−1) reported by several researchers who used different
cultivation techniques, N fertilization rates, and cropping systems in upland soils [51–53].

Metals significantly affected YSNE (Table 3). The YSNE values after Cu and Fe
supplementation were significantly lower than those of the controls in both Years 1 and
2 (Table 4). The YSNE value was lowest for Fe addition, although it was not significantly
different from Cu in Year 1 and from Cu and Zn in Year 2. The order of YSNE values was
Fe < Cu < Zn < control in both years. This order is similar to the order of cumulative N2O
emissions (Table 4) because maize ear yield did not differ significantly among treatments
(Table 4).

The YSNE value ranged from 0.31 to 1.22 kg Mg−1, slightly lower than the value
(1.36–2.95 kg Mg−1) reported by Halvorson et al. [54]. These authors measured N2O
emissions and crop yield from irrigated maize fields in the United States. The higher YSNE
values reported by these authors were likely due to greater N2O emissions with irrigation,
despite the similar rate of N fertilizer application (246 and 202 kg N ha−1 for Years 1 and
2, respectively) compared with the present study (279 and 186 kg N ha−1 for Years 1 and
2, respectively). Irrigation maintained a relatively higher WFPS in the former study. The
WFPS value ranged from 40% to 76%, higher than the WFPS range (25–72%) in the present
study. WFPS can be an indicator of aerobic and anaerobic microorganism activity [55]. The
higher the WFPS, the more air in the pores is replaced by water, thereby removing O2. More
N2O is produced through denitrification when O2 is limited.

Expressing N2O emissions on a yield-scaled basis provides information for evaluating
overall greenhouse gas impacts. YSNE reflects kg cumulative N2O per Mg of maize grain
produced. The lower YSNE value after Cu and Fe treatment compared to the control
indicates that metals might reduce N2O emission per unit of grain production. For example,
based on the current findings, if the same amounts of grain were produced from the control
and treated plots, the control plots would emit 53% and 62% more N2O compared to the
Cu- and Fe-treated plots, respectively, assuming the same fertilizer regime.

Furthermore, 1 M NH4OAc extractable Cu, Fe, and Zn concentrations in soil were
measured to evaluate the plant availability of those metals by application for two con-
secutive years (Figure 5). Plant-available Cu, Fe, and Zn concentrations in soil increased
significantly compared to the control. This implies that long-term application of these
metals may increase metal uptake in grains and plant tissues and decrease crop yield and
quality. Shahid et al. observed that plant-available Cu, Fe, and Zn concentrations in soil
and those metal concentration in rice plants increased with the long-term application of
animal manure for 41 years in paddy soil [56]. However, total concentrations of Cu, Fe,
and Zn in soil did not significantly increase with metal application compared to the control
at harvest time in Year 2 and did not exceed safe levels of Cu and Zn established by the
Korean Soil Environmental Conservation Act. (Figure 5). The current study was conducted
for a relatively short-term experiment period (2 years). In the future, further research on
evaluating Cu, Fe, and Zn accumulation in soil and plant tissue with long-term application
of these metals should be conducted.
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In addition, only 20 kg ha−1 of metal application rate was applied in this study.
The effects of lower and higher application rates than 20 kg ha−1 on N2O emission and
maize yield need to be determined. Lower application rates of metals, such as Cu and Fe,
might not be effective in reducing cumulative N2O emission from arable soil. In contrast,
higher application rates of metals might be more effective to decrease N2O emission, but
long-term application of higher rates of metals might result in metal accumulation in soil
and plants, as mentioned above. Subsequently, crop yield and quality decrease. Zhu
et al. observed that N2O production decreased with increasing addition rates of Cu2+ in
municipal wastewater, and Cu2+ addition (10–100 µg L−1) reduced N2O generation by
54.5–73.2% [17]. Determining the effect of different application rates of metals on N2O
emission and crop yield remains challenging, which requires further study.

The redox state of soil related to water content is one of the important factors in-
fluencing N2O emission. Nitrous oxide production is associated with soil WFPS values.
Nitrification is the predominant process for N2O emission from soils with <60% WFPS,
whereas denitrification is the predominant process of N2O emission from soil with >60%
WFPS [48–50]. When the soil WFPS value is approximately 60%, N2O production increases
considerably due to simultaneous nitrification and denitrification [57]. When the soil WFPS
value increases by >70%, soil environmental conditions favor denitrification, and N2 is
emitted instead of N2O [58]. The current study was conducted in upland soil with WFPS
ranging from 25.4% to 70.9% (Figure 1). Zerovalent Cu and Fe were well oxidized and
converted to ionic forms under oxidation conditions, such as upland soil, and both metals
in ionic forms were involved in N2O production processes. However, the oxidation reaction
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of zerovalent metals is poor in water-logged soil, such as paddy soil or wet soil, in high
rainfall areas. Both metals contribute less to the mitigation of N2O emission in those soils.
Other factors, such as application timing of metals, application rate of nitrogen fertilizer,
and temperature, also influence the effect of metals on N2O emission. Further research on
different climate, soil water content, application rate and timing of metals, and application
rate of nitrogen fertilizer should be conducted.

4. Conclusions

Our maize field study revealed that Fe and Cu as micronutrients are effective in
decreasing YSNE, implying that their application could reduce N2O emission per unit
of maize grain production. Both metals could be used as soil amendments to reduce
N2O emission while maintaining yield from upland soils. However, further research on
application rates and timing in different soil environments should be conducted.
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