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Abstract: The carbon trading system affects all aspects of the economy and society profoundly.
Agriculture, as a high-carbon-emitting industry, has been hard-hit. China’s agricultural activities will
emit about 820 million tons of carbon dioxide equivalents, accounting for 7% of the country’s total
carbon emissions. In order to develop a green and low-carbon economy and control greenhouse gas
emissions, China officially launched the pilot carbon emissions trading policy in 2013. The effects
and mechanism of this on agricultural carbon emissions are still unclear. Herein, this paper uses
China’s provincial panel data from 2000 to 2019 to measure agricultural green total factor productivity
regarding the implementation of China’s carbon emissions trading pilot policy in 2013 as a quasi-
natural experiment, and uses PSM-DID robustness analysis to evaluate the effect of China’s carbon
emission rights trading pilot policy on agricultural green total factor productivity in pilot areas. The
propensity score method is a type of statistical method that uses nonexperimental or observational
data for intervention-effect analysis, which reduces the effects of bias and allows for more reasonable
comparisons between treatment and control groups. “Difference in difference” is an approach to
policy-effect evaluation based on a counterfactual framework to assess the change in the observed
factors in both cases of policy occurrence and nonoccurrence. PSM-DID is a combination of PSM
and DID using the PSM method to match each treatment group sample to a specific control group
sample, which can solve the problem of self-selection bias in the DID method and assess the policy
implementation effect more accurately. This study found that China’s carbon emissions trading pilot
policy has significantly improved China’s agricultural green total factor productivity. Further impact
mechanism tests show that China’s carbon emissions trading pilot policy will improve agricultural
green total factor productivity through environmental protection policies and technological innova-
tion. Finally, this paper puts forward corresponding countermeasures and suggestions based on the
research results.

Keywords: carbon emission trading pilot; agricultural green total factor productivity (AGTFP);
PSM-DID model

1. Introduction

Since the country’s reform and opening up, China’s agriculture has been developing
continually and rapidly. With production methods pursuing only quantity results with
inefficient use of water and soil resources, excessive input of chemical fertilizers and pes-
ticides, and massive discharge of livestock and poultry manure [1–3], multiple negative
impacts have caused severe damage to the ecosystem and rural environment, restricting
the sustainable development of agriculture. Currently, the global climate problem is seri-
ous and urgent. Climate warming threatens global food safety by affecting agricultural
production. Climate change, as a common challenge faced by people all over the world,
has changed from a future to a current crisis. At the same time, the frequent occurrence of
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extreme weather has aggravated the fluctuation in agricultural production and sometimes
even turned into serious agricultural disasters, causing farmers to work in vain. The search
for strategies to mitigate climate change has become an integral part of ensuring food safety
and the bottom line of farmer income. The United Nations Framework Convention on
Climate Change in 1992, the Kyoto Protocol in 1997, and the Paris Agreement in 2016 all
showed that reduction in CO2 has always been a key topic of global concern. In reality,
carbon emissions in developing countries are gradually becoming the main source of global
carbon emissions [4]. Among them, China has become the world’s largest carbon emitter,
with carbon emissions reaching 9.899 billion tons in 2020, accounting for 30.7% of global
carbon emissions. Agriculture, as a contributor to climate change, is one of the largest
anthropogenic sources of greenhouse gas emissions [5]. According to statistics from the
FAO’s official website, the greenhouse gas released from agricultural land exceeds 30% of
the total global anthropogenic greenhouse gas emissions. Equivalent to 15 billion tons of
CO2 will be generated every year. Therefore, the development of agriculture must also
join the action to deal with the global climate crisis. In response to this situation, it is an
inevitable trend for agriculture to change from traditional production methods to green
production methods [6,7]. Sustainable agriculture, total factor productivity (TFP), and
ecological resilience have high synergistic potential [8]. A vital factor for sustainable and
healthy development is green total factor productivity (GTFP) [9–13]. Therefore, the Chi-
nese government has shifted its focus from simply pursuing GDP growth to GTFP growth
when pursuing development goals [14]. GTFP is a new definition under environmental and
energy constraints [15], referring to adding environmental factors when measuring TFP.

Similarly, as a large agricultural country, improving agriculture total factor productiv-
ity (AGTFP) is imperative to solving the dilemma of crude production methods dominating
Chinese agriculture [13]. AGTFP is an objective indicator reflecting the sustainable de-
velopment of agriculture. It refers to maximizing agricultural output productivity while
minimizing agricultural pollution emissions on the premise of determining the factors of
agricultural input [16]. AGTFP can reveal a sustainable growth component beyond input
factors under environmental stress and has been applied in many studies [17,18]. The
research on AGTFP focuses on the following three parts. First is to study the input and
output factors of AGTFP [19]. With the increasing emphasis on ecology, agricultural carbon
emissions as well as nonpoint source pollution are included in the framework of calculating
AGTFP. Scholars such as Liu et al. (2021) [20] and Wang et al. (2021) [21] measured and
analyzed agricultural carbon emissions, and included them in the measurement of AGTFP,
and found that China’s AGTFP has a fluctuating growth trend in general. Chen et al.
(2021) [22] and Yang et al. (2022) [23] added agricultural nonpoint source pollution in
addition to carbon emission factors to the AGTFP measure, and the results of the study
found that AGTFP has been constrained by the external environment, although there is
an increasing trend. However, agriculture as a complete cycle system contains not only
carbon emissions but also carbon sinks, but few studies have addressed this point, so we
took carbon sinks into account when calculating agricultural carbon emissions. Second is to
study the measurement method of AGTFP, which is based on the GTFP calculation method,
and based on input–output data using stochastic frontier analysis (SFA), data-envelopment
analysis (DEA) and other methods. For example, Coelli (2005) [24] used DEA to derive the
Malmquist productivity index to study agricultural productivity levels in 93 developed
and developing countries. Yang et al. (2022) [23] constructed a Malmquist productivity
index based on a nonradial and nonangular SBM directional distance function to calculate
China’s AGTFP. Third is to study the factors affecting AGTFP. Some scholars have found
that agricultural FDI has a significant positive effect on AGTFP [25]. There is a significant
double-threshold effect between rural human capital and AGTFP [26]. Increased agricul-
tural insurance or reduced air pollution could increase AGTFP [27]. Technological progress
is the main force influencing green total factor productivity changes in Chinese agriculture
innovation [28]. Environmental regulation has a significant positive effect on AGTFP [29],
but some studies have shown that the direct effect of environmental regulation on AGTFP
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has a significant U shape [30]. Despite the carbon emission rights trading pilot being a
significant tool of environmental regulation, there has been no study addressing the effect
on AGTFP.

As a core means of environmental regulation, China has implemented carbon trading
and it has had a significant impact on industries [31], which provides a reference for
studying the impact of carbon trading on the agricultural sector. According to current
statistics, there are about 32 carbon trading systems operating or about to operate in
the world, and carbon trading has become one of the core policy means to reduce carbon
emissions. China officially launched carbon emission rights trading pilots in seven regions—
Beijing, Tianjin, Shanghai, Chongqing, Guangdong, Hubei, and Shenzhen—in 2013. Carbon
trading has been implemented as a key means of environmental regulation in China.
However, there are few studies on the effect and mechanism of the carbon emissions
trading system and AGTFP. The reason is that the carbon emissions trading system mainly
involves power generation, petrochemical, chemical, building materials, steel, nonferrous
metals, and other industries, research on carbon emissions trading systems has focused
on cities and industries [32,33]. Agriculture, as the primary industry, is closely related
to the above industries. From the feedback effect between industries, other industries
have a significant impact on the agricultural economy [34]. For example, there are strong
volatility spillovers between crude oil and agricultural markets [35], and spillovers between
metals, energy, and agriculture [36]. In addition, agriculture is closely related to climate
change, and as a carbon emission source of greenhouse gas, the emission is huge. Therefore,
it is meaningful to study the impact of the operation of China’s carbon trading system
on the AGTFP from the perspective of the carbon emissions rights trading pilot policy,
which is significant for the sustainable development of agriculture in the direction of
green efficiency.

The existing research on AGTFP and carbon emissions trading pilot policies provides
the research basis for this paper, but research about carbon trading and AGTFP are still
lacking, and the influence effect and influence mechanisms between the carbon emissions
rights trading pilot policy and AGTFP are still unclear. The marginal contributions of
this paper are as follows. First, agricultural ecosystems are important atmospheric carbon
sources and carbon sinks, agricultural soils have great carbon sequestration potential, and
carbon sinks have a large impact on mitigating climate change. However, few scholars
have taken carbon sinks into account when studying agricultural production. We included
agricultural carbon sinks in the calculation framework of AGTFP, which enriches the factors
of AGTFP measurement. Second, although agriculture is currently not a major industry in
China’s carbon trading market, agriculture is closely related to petrochemical, metal and
other industries and has spillover effects, and as a carbon emission source of greenhouse
gas, the emission is huge. Therefore, we built a theoretical framework for the impact of
carbon emissions rights trading pilot policy on China’s AGTFP and studied the effect and
mechanism of the carbon emissions trading pilot policy on AGTFP. To a certain extent, this
paper is a supplement to the current research that focuses on chemical, petrochemical, and
other industrial fields. We fill a gap in the impact of carbon trading policies on agriculture.
Third, this paper provides more ideas to study the impact of carbon emissions trading
system on economy and society. Are the pilot areas of carbon emissions trading significantly
affected by the policy? How will the implementation of the pilot carbon trading policy
affect the green and sustainable development of agriculture?

2. Analysis of Policy Evolution and Influence Mechanism
2.1. Evolutionary Logic of China’s Carbon Emission Policy

In response to the climate crisis, China has formulated a series of policies related to
emission reduction, which has made great contributions to controlling greenhouse gas
emissions. As early as 1992, China signed the United Nations Framework Convention
on Climate Change. Subsequently, China established a special “National Climate Change
Response Coordination Agency” by introducing a series of policies and measures to deal
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with the continuous warming of the global climate. In 2007, 14 departments, including the
National Development and Reform Commission, jointly issued “China’s Special Action on
Climate Change Science and Technology.” In 2011, China officially approved carbon emis-
sions trading to be piloted in seven regions. On 1 February 2021, the implementation of the
Measures for the Administration of Carbon Emissions Trading (for Trial Implementation)
indicated that China’s unified carbon market was launched. Table 1 shows the policies that
related to China’s carbon emission from 1992 to 2021.

Table 1. China’s carbon emission related policies from 1992 to 2021.

Policy Background Objectives Measures

Signed the United Nations
Framework Convention on

Climate Change
(1992)

Became one of the first parties
to sign the Convention

Dealt with the continuous
warming of the global climate.

Established a special
“National Climate Change

Countermeasure
Coordination Agency”

China’s Special Action on
Climate Change Science and

Technology (2007)

The issue of climate change
was becoming more and more

prominent. Properly
addressed the issue of climate

change was related to the
realization of economic and
social development goals.

By 2020, the independent
innovation capability in the
field of climate change was
greatly improved; a batch of

key technologies for
controlling greenhouse gas
emissions and mitigating

climate change with
independent intellectual

property rights made
breakthroughs etc.

Increased investment in
science and technology

through multiple channels.
Increased financial support for

climate change scientific
research.

Strengthen international
scientific and technological

cooperation.
Promoted international

technology transfer

Carbon Emission Rights
Trading Pilot Work (2011)

(From June 2013 to June 2014,
the 7 provinces and cities in
the pilot program formally

established carbon markets)

Implemented the
requirements of the “Twelfth
Five-Year Plan” for gradually.
Established a domestic carbon

emissions trading market

Promoted the use of market
mechanisms to achieve the

goal of controlling greenhouse
gas emissions in 2020 at a

lower cost.
Accelerated the

transformation of economic
development patterns and the

upgrading of industrial
structures

Identified Beijing, Tianjin,
Shanghai, Chongqing, Hubei,
Guangdong and Shenzhen as

pilot areas for carbon
emissions trading.

Established a carbon emission
rights trading supervision

system and registration
system in the region

Measures for the
Administration of Carbon

Emissions Trading (for Trial
Implementation)

(2021)

Given full play to market
mechanisms in addressing

climate change and promoting
green and low-carbon

development,

Promoted greenhouse gas
emission reduction.

Regulated national carbon
emissions trading and related

activities

Formulated policies
applicable to national carbon
emissions trading and related

activities, including carbon
emission allowance allocation

and settlement; carbon
emission registration; trading,

settlement, etc.

(1) United Nations Framework Convention on Climate Change (UNFCCC) established
basic principles for international cooperation in addressing climate change. After signing
the treaty, China established a “National Climate Change Response Coordination Agency”
in accordance with the requirements of the national sustainable development strategy, and
a series of policies and measures related to addressing climate change have been adopted,
all of which have made an active contribution to climate change mitigation and adaptation.

(2) China’s Special Action on Climate Change Science and Technology put forward
China’s goals, tasks, and specific safeguard measures in addressing climate change by 2020.
For example, by 2020, China will make breakthroughs in key technologies for mitigating
climate change and enhance the public’s scientific understanding of climate change.

(3) Carbon Emission Rights Trading Pilot Work, compared with other carbon emission
policies that only have macro-goals, is the first time that China has proposed a specific
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policy that has been implemented in pilot provinces, and has established a carbon emissions
trading platform. This pilot work shows that the carbon emission mechanism is officially
established in China, so this policy is very valuable for research. Therefore, we chose this
policy to study the effect of its implementation.

(4) Determination of Measures for the Administration of Carbon Emissions Trading
establishes a unified national carbon trading market. From regional pilot carbon emissions
trading to national unified carbon emissions trading, the local carbon trading market should
gradually transition to the national carbon trading market.

2.2. Influence Mechanism and Policy Effects

In essence, carbon trading is the market trade of greenhouse gas emission rights. This
type of asset, part of public goods, can be traded and allocated through the market, thereby
eliminating externalities and improving social welfare. Agricultural carbon emissions are
huge. In the context of green agriculture development, it is the general trend to include
agriculture in the carbon trading market. As of 2016, the National Development and
Reform Commission has approved 5074 Clean Development Mechanism Project (CDM)
projects. Hubei Province also piloted agricultural carbon trading in 2019, developed the
province’s rural resource emission reduction project, and implemented greenhouse gas
emission control from rural biogas delivery. Under the influence of the carbon emissions
trading rights policy, a large amount of funds will flow into the construction of green and
low-carbon agricultural development. At the same time, greenhouse gas emissions in
agricultural production have also been controlled, which will improve China’s AGTFP and
promotes green agriculture development.

The implementation of the carbon emissions trading pilot policy is to allocate a
fixed share of emissions to enterprises, which will take a series of measures to reduce
production costs, such as reducing carbon emissions, introducing green technologies and
thus increasing AGTFP. At the same time, the carbon emissions trading rights pilot policy,
as an environmental regulation policy, will also exert its environmental regulation impact
effect. Specifically, the carbon trading pilot policy will have an impact on AGTFP through
two mechanisms: environmental regulation and technological innovation (Figure 1).
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Figure 1. Schematic diagram of the impact of carbon emissions trading rights pilot policy on AGTFP. 
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Figure 1. Schematic diagram of the impact of carbon emissions trading rights pilot policy on AGTFP.

(1) Environmental regulation has always been an effective means to improve green
production [37]. First, the implementation of the carbon emissions trading rights pilot policy
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will stimulate the government’s awareness of energy conservation and emission reduction,
so as to formulate relevant environmental regulation policies. After the implementation
of the carbon emissions rights trading pilot policy, environmental protection policies in
the agricultural sector have increased significantly. In 2012, the Ministry of Agriculture
and the Ministry of Environmental Protection issued the “Twelfth Five-Year Plan for the
Prevention and Control of Pollution from Livestock and Poultry Breeding.” In 2015, the
Ministry of Agriculture of China successively issued the “Action Plan for Zero Growth of
Chemical Fertilizer Application by 2020” and the “Action Plan for Zero Growth of Pesticide
Use by 2020,” and made detailed arrangements for the reduction of chemical fertilizers
and pesticides. In 2017, the General Office of the CPC Central Committee and the General
Office of the State Council issued the “Opinions on Innovating Systems and Mechanisms to
Promote the Green Development of Agriculture.” First of all, the environmental protection
policies have forced restrictions on the wanton emissions of agricultural pollutants, which
can improve the original heavy pollution, inefficient production technology, and production
methods. Second, the carbon emissions rights trading pilot policy is an environmental
regulation policy is a nonmarket intervention to address the externality of pollution, and
the “emission reduction” effect of the policy is conducive to the “economic growth” effect. It
can optimize the ecological environment and comprehensively improve the environmental
protection awareness of the public and agricultural producers, then encourage agricultural
producers to take the initiative to reduce environmental pollution [38,39], which can
promote green production in the whole society and make China’s AGTFP improve.

(2) According to the Porter hypothesis, the implementation of environmental policies,
such as the carbon emissions right trading pilot policy, will prompt firms to innovate in
science and technology and strengthen technological progress [40]. Specifically, the carbon
trading pilot policy gives emission allowances to petrochemical and power industries,
then companies and industries will take the following two options to reduce their own
emissions and reduce high-carbon factors. First, low-carbon technology innovation is
a major driver of green production efficiency [41]. Companies can choose to conduct
their own R&D and introduce green technologies and advanced equipment to promote a
higher level of innovation in low-carbon technologies [42]. After the introduction of carbon
trading, the promotion of green production efficiency in agriculture is more evident from
the mandatory reforms brought about by the rising costs of agricultural production [13].
Second, optimizing factor allocation is also an important factor affecting the efficiency of
green production. Companies and industries can choose to reduce resource investment in
production processes accompanied by high carbon emission products and instead invest in
the development of cleaner energy sources [43], such as solar energy, wind energy, water
energy, and other clean energy, to achieve clean energy supply in agricultural production
and ecological environment management and enhance China’s AGTFP.

3. Materials and Methods
3.1. Transcend Logarithmic Production Function

The parametric method and the nonparametric method are the two main methods for
measuring AGTFP, but the nonparametric method does not have a specific functional form,
so cannot reflect the interaction between input factors. Therefore, we chose the parametric
method to calculate AGTFP, specifically, referring to the methods of Ramanathan (2005) [44]
and Song et al. (2020) [45] to deal with environmental factors, incorporate environmental
factors into the production function together with production factors, such as labor and
land. This method expands the calculation structure of production efficiency from the
input side while adding the net agricultural carbon dioxide emissions and agricultural
nonpoint source pollution to calculate AGTFP. In order to investigate the interactions
between material materials and environmental factor, this paper determined the specific
form of the production function as the translog production function. Transcend logarithmic
production function, as one of production functions, has good inclusiveness. It also can
study interactions between input factors. In addition, the time-varying factor enhancement
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factor is added to the model to calculate AGTFP. The specific setting form of the function is
as follows:

lnYit = β0 + βtt +
1
2

βttt2 + ∑6
k=1(βk + βtK)lnXit +

1
2 ∑6

k=1 ∑6
j=1 lnXkitlnXjit + vit (1)

where Yit represents the output of the i-th decision endmember in the t-thperiod. Xit
represents the input of the i-th decision endmember in the t-th period, includes land input,
labor input, machinery input, fertilizer conversion, net carbon emissions, agricultural
nonpoint source pollution. And t = 2000, 2001, . . . , 2019. The β represents the parameter
vector to be estimated; vit represents a random error term, and vit ∼ N

(
0, σ2

v
)
. Taking the

derivation of the time trend term on both sides of formula (1), the expression of the rate of
scientific and technological progress is as follows.

TP =
∂lnYit

∂t
= βt + βtt + ∑6

k=1 βtklnXit (2)

Transcend logarithmic production function contains interaction terms of input ele-
ments, so it is inevitable that there will be serious collinearity problems. Only discarding
variables that cause multicollinearity is not advisable in this study. Conventional regression
methods will cause overfitting. This paper chose penalized regression to estimate formula
(1). It can not only solve multicollinearity but also estimates more realistic parameters.

3.2. Penalized Regression

Penalized regression is divided into ridge regression, lasso regression, and elastic
net-based regression. The elastic net estimator, proposed by Zou and Hastie (2005) [46], has
the advantages of both ridge regression and lasso. And it will not arbitrarily filter highly
correlated variables and has the shrinking function. the loss function of elastic net includes
both 1-norm and 2-norm penalty terms.

min
β (y− Xβ) ′(y− Xβ) + λ1‖β‖1 + λ2‖β‖2

2 (3)

where λ1 ≥ 0, λ2 ≥ 0 represents the adjustment parameter. Since the value ranges of λ1 and
λ2 are infinite, it is inconvenient to use the cross-validation method to select the optimal
value. Therefore, after defining λ ≡ λ1 + λ2, α ≡ λ1⁄λ, formula (3) can be equivalently
transformed into the following formula.

min
β (y− Xβ) ′(y− Xβ) + λ

[
α‖β‖1 + (1− α)‖β‖2

2

]
(4)

where λ ≥ 0 and 0 ≤ α ≤ 1 represent the adjustment parameter. The value interval of
the adjustment parameter α is [0, 1], which can facilitate the selection of its optimal value
through cross-validation. Ridge regression and lasso are both special cases based on elastic
net regression. If α = 0, the elastic net degenerates to ridge regression; if α = 1, the elastic net
degenerates to lasso; if 0 < α < 1, the elastic net is a compromise between ridge regression
and lasso.

In general, penalized regression weighs the impact of bias and variance on the esti-
mated results by adding penalty terms, and will get a smaller mean square error (MSE) than
the general regression method. It has a stronger ability to adapt to the multidimensional
data environment and accurately fit the model data, and the regression coefficients are
more shrunk toward the origin, which is a more realistic and reliable regression method.

3.3. PSM-DID

DID is an effective method to test the effect of a policy implementation. It is based on
a counterfactual framework to assess the change in the observed factors in both cases of
policy occurrence and nonoccurrence. The sample subjected to an exogenous policy impact
is divided into two groups: the treatment group and the control group. The treatment
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group is subjected to policy intervention and the control group not subjected to policy
intervention. By comparing the change in observations in the treatment group (D1) and
the change in observations in the control group (D2), we can obtain the actual effect of
the policy impact (D = D1−D2). The advantage is that the established model can not only
avoid the trouble of endogeneity problems to a large extent but can also isolate the “policy
disposition effect,” and the net effect of the assessed policy can be accurately derived. In
reality, the development level, population size, resource endowment, etc. of each province
in China are different, so there is a large heterogeneity between regions. It is very important
to ensure that there are no systematic differences between the treatment group and the
control group. Sample matching can solve the problem of sample selection bias [47]. This
paper uses the propensity score matching (PSM) method to generate matching samples
and combines the double-difference model to estimate the impact of the carbon emissions
trading pilot policy on AGTFP to ensure the accuracy of the estimation results.

This paper set up the PSM-DID model based on the implementation time and the
provinces of China’s carbon emissions rights trading pilot policy. The treatment group and
the control group were distinguished from the two aspects of region and time, so as to
study the effect of the implementation of carbon emissions rights trading pilot policy on
China’s AGTFP.

First, matching samples are generated using the PSM method. It selects a sample with
a similar distribution of observable variables to the treatment group from a large number
of potential control groups. Specifically, the samples are divided into two groups: one
group is the treatment group, representing the pilot areas of carbon emissions trading; the
other group is the control group, representing the areas that are not pilot areas during the
investigation period. Logit regression was used to estimate the conditional probability
of a province becoming a pilot area based on a series of observable variables. Suppose
the probability of a province becoming a pilot area is P = Pr{treatedit = 1} = Φ{Xit},
where P represents the probability of the i-th province becoming a pilot area for carbon
emission rights trading, and Φ{·} represents the normal cumulative distribution function.
Xit represents the matching variable. Then this method uses the propensity score to
construct a distance function for matching, so the matched treatment group and control
group have the same distribution on the observable variables. DID was used method to
estimate policy effects based on matching samples, and introduce two dummy variables.
One of the dummy variable is PROVINCEit, which represents the province where the
carbon emissions trading pilot is set up, and the other is PERIODit, that represents the
period when the carbon emissions trading pilot policy was implemented. The model is
as follows.

AGTFPit = α0 + α1PERIODit × PROVINCEit + ∑4
i=1 αjControlit + ui + ut + ξit (5)

where AGTFPit represents the AGTFP of the i-th province in the t-th period. PERIODit is
a dummy variable of year, and the treatment group implemented the carbon emissions
trading pilot policy in 2013, so PERIODit = 0 from 2008 to 2015 and PERIODit = 1 from 2014
to 2019; PROVINCEit is the dummy variable of the treatment group, if province I belongs to
the policy area, PROVINCEit = 1, otherwise PROVINCEit = 0. PERIODit× PROVINCEit
is the interaction item: Controlit represents the control variable; ui represents the individual
effect; ut represents the time effect; ξit represents the random interference item.

In order to further clarify the impact mechanism of carbon emission rights trading pilot
policy on China’s AGTFP, this paper studies whether the pilot policy of carbon emissions
rights trading has an impact on China’s AGTFP through environmental protection policies
and technological innovation. The mediation effect test adopts the stepwise regression
method. Since the impact of the pilot carbon emissions trading policy on the regional
AGTFP has been tested, the following will mainly focus on the second and third steps of
the mediation effect test. The mediation effect test equation is as follows:

Mit = α0 + α1PERIODit × PROVINCEit + ∑4
i=1 αjControlit + λi + εit (6)
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AGTFPit = β0 + β1PERIODit× PROVINCEit + β2Mit + β j ∑4
i=1 Controlit + σi + γit (7)

where, Mit represents the mediating variable: technological innovation and environmental
protection policies; PERIODit × PROVINCEit is still an interaction item; Controlit is a
control variable, λi and σi both represent individual effects; εit and γit represent random
interference items.

3.4. Variable Selection and Data Source

(1) The data used in the calculation of AGTFP in this paper are the provincial agricul-
tural output and input data of 30 provinces in mainland China (except Tibet) from 2000 to
2019.

Input indicators include land, labor, agricultural machinery, fertilizers, and environ-
mental variables. 1© Land is represented by the total sown area of crops. The data come
from “China Agricultural Statistics” and “China Rural Statistical Yearbook.” 2© The labor
is represented by employees in the primary industry. Since the statistical caliber of labor
indicators has changed during 2000–2019, the data for 2000–2010 were sourced from the
“China Statistical Yearbook,” the data for 2011–2019 sourced from the statistical yearbooks
of various provinces, and data with inconsistent statistical calibers have been adjusted.
3© The agricultural machinery is represented by the total power of agricultural machin-

ery, and the data come from “China Agricultural Statistics” and “China Rural Statistical
Yearbook.” 4© The amount of chemical fertilizer applied is represented by the amount of
chemical fertilizer actually used in agricultural production calculated by the pure method,
and the data come from “China Agricultural Statistics” and “China Rural Statistical Year-
book.” 5© The environmental variable has two parts: agricultural net carbon emissions
and agricultural nonpoint source pollution (NP). Net carbon emissions (NCE) specifically
refer to the value that uses agricultural carbon emissions minus agricultural carbon sinks.
Agricultural carbon emissions are represented by greenhouse gases such as CO2, N2O,
CH4, etc. emitted into the atmosphere by agriculture product process; agricultural carbon
sinks refer to the processes or activities that reduce greenhouse gases in the atmosphere
in agricultural systems. Then, convert the greenhouse gases contained in the two into
standard carbon (C) equivalents in a unified measurement unit. NP is manifested in the
pollution of chemical oxygen demand (CODCr), total nitrogen (TN), and total phosphorus
(TP) caused by pollutants entering the water body through surface runoff and farmland
drainage. Then, convert the three types of agricultural NP discharges into agricultural
nonpoint source pollution and other pollution loads according to the Class III standard of
the surface water environment quality standard (GB3838-2002), which is convenient for
subsequent analysis in this paper.

The agricultural output (GVAO) indicator is represented by the total output value of
agriculture, forestry, animal husbandry and fishery at constant prices in 2000. The data
come from “China Agricultural Statistics” and “China Rural Statistical Yearbook.”

(2) The influencing mechanisms are environmental protection policy (EP) and tech-
nological innovation (TI), where, the EP is represented by the environmental protection
policies promulgated by the provinces [48], and the data come from the “China Environ-
mental Yearbook.” TI is represented by the patent index [49], which is the total number
of patents granted for invention, utility model and design at the end of the year, and the
logarithm is used to measure. The data come from the “China Science and Technology
Statistical Yearbook.”

(3) PERIODit × PROVINCEit is an interaction term in the PSM-DID model, which
reflects the net effect of the implementation of the carbon emissions rights trading pilot
policy. The data come from Carbon Emission Rights Trading Pilot Work (2011).

(4) Based on the influence mechanism of AGTFP and the policy effects of carbon
emission rights trading pilots, this paper selects agricultural industrial structure adjustment
(AISA) [50], intensity of environmental regulation (IOER) [51], effective irrigation rate (EIR),
disaster incidence (DI) [52] as control variables, where AISA is calculated from the total
output value of planting industry/total agricultural output value, and the data come from
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“China Agricultural Statistics” and “China Rural Statistical Yearbook.” IOER is calculated
from total agricultural output value/carbon dioxide emissions, and the data come from
“China Agricultural Statistics.” EIR is calculated from the effective irrigated area/total
sown area of crops. The data come from “China Agricultural Statistics” and “China Rural
Statistical Yearbook.” DI is represented by the area of agricultural disaster areas/total sown
area of crops, and the data come from “China Agricultural Statistics” and “China Rural
Statistical Yearbook.”

Table 2 summarizes the output, four input variables, four control variables, and two
mediator variables in the agricultural sector in 30 provinces in China from 2000 to 2019,
Annual growth rates used the country-level data from 2000 to 2019. GVAO is growing at a
rate of 3.92% per year (at 2000 constant prices). The total sown area between regions is quite
different, the maximum value is 166.939 million hectares, which is 116 times the minimum
value, and the average annual growth rate is 0.3%. In China’s labor market, the number of
employees in the primary industry decreases by 0.60% per year. The annual growth rate of
fertilizer use is 1.33%. The annual growth rate of total agricultural machinery volume is
relatively high, reaching 17.41%. The NCE showed a downward trend, declining at a rate
of 0.09% per year, and NP still increased at a rate of 0.46, but the growth rate was declining
year by year. The AISA is negative growth, the proportion of planting in agriculture,
forestry, animal husbandry and fishery has declined, and the IOER has increased at an
annual rate of 3.38%. The average annual growth rate of EPR is 3.83%, and the number of
granted patents has increased significantly, reaching 18.29%. The annual growth rate of the
EIR was 0.01%; the DI showed a negative growth, with an annual growth rate of −0.05%.

Table 2. Summary statistics.

Category Variables Unit Mean S.D. Min Max Annual Growth
Rate (%)

Output GVAO 108 CNY 2615.86 7292.78 56.98 53,831.0 3.92

Input

Land 104 hectares 1030.36 2756.70 8.86 16,693.9 0.30

Labor 104 People 3522.81 9905.53 37.09 50,784.2 −0.60

Fertilizer 104 Tons 339.11 915.94 6.2 6022.6 1.33

Machinery 104 Kilowatts 5449.80 15,105.65 94 111,728.1 17.41

NCE 104 Tons 1255.12 3382.17 16.04 22,735.0 −0.09

NP 104 Tons 254.65 706.97 3.74 4375.12 0.46

interactive
term

PERIODit ×
PROVINCEit

- 0.07 0.26 0 1 -

Control
Variable

AISA - 0.56 0.09 0.381 0.76 −0.14

IOER - 1.46 0.99 0.175 13.269 3.38

EIR - 0.42 0.38 0.03 2.46 0.01

DI - 0.23 0.16 0 0.94 −0.05

Mediating
Variable

EP Unit 1.063 1.791 0 18 3.83

TI Unit 8.917 1.731 4.248 13.176 18.29

4. Results and Analysis
4.1. China’s AGTFP

This paper uses penalized regression to regress formula (1), and the agricultural
technology progress rate (TP) is calculated by the formula (2). Then, the AGTFP is calculated
by TP and the average agricultural output value growth rate within 5 years to overcome
the interference of short-term random factors on the AGTFP calculation.

Figure 2 presents the changes in China’s AGTFP and TP from 2000 to 2019. 1© China’s
AGTFP showed an overall upward trend during the inspection period, from 0.214 in 2000
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to 0.548 in 2019, a cumulative increase of 0.334, and the average annual AGTFP growth
rate was 4.81%. China’s TP has also shown a steady upward trend, from 1.665% in 2000 to
3.219% in 2019, a cumulative increase of 1.554 percentage points, and the average annual
agricultural technology progress rate is about 14.1%. From 2000 to 2012, AGTFP rose slowly.
After the implementation of the carbon emissions rights trading pilot policy in 2013, AGTFP
rose sharply from 2014 to 2015, from 0.374 in 2014 to 0.548 in 2019, with an average annual
growth rate of 7.96%.
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Figure 2. China’s agricultural green total factor productivity and technology progress rate in 2000–
2019.

4.2. Empirical Results and Analysis of PSM-DID

Table 3 lists the estimation results of the DID and PSM-DID models, and studies
the impact of China’s carbon emission right trading pilot policy on China’s AGTFP. The
PERIODit × PROVINCEit coefficient is the most critical result of the regression process.
Model 1 uses the DID model to calculate formula (6) without adding control variables and
without controlling individual fixed effects and year fixed effects, and the coefficient of
PERIODit × PROVINCEit is significantly positive at the 1% significance level. Model 2
uses the DID model to calculate formula (6) without adding control variables and with-
out controlling the year fixed effect, but controlling the individual fixed effects, and the
coefficient of PERIODit × PROVINCEit is significantly positive at the 1% significant level.
Model 3 uses the DID model to calculate formula (6) with the addition of control variables
and controlling the individual fixed effects, but without controlling the year fixed effect,
and the coefficient of PERIODit × PROVINCEit is significantly positive at the 5% signifi-
cance level. Model 4 uses the PSM-DID model to calculate formula (6) by adding control
variables and controlling individual fixed effects and year fixed effects, and the coefficient
of PERIODit× PROVINCEit is significantly positive at the 1% significant level. The results
of the four models show that the pilot policies of carbon emission rights trading have a
positive impact on AGTFP, this is consistent with the results of existing studies [13,32]. The
goodness of fit R2 of Model 4 is the highest among the four models, indicating that the
PSM-DID model is reasonably set and has strong explanatory power.
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Table 3. DID and PSM-DID regression results.

Variables Model 1 Model 2 Model 3 Model 4

PERIODit ×
PROVINCEit

0.117 ***
(0.0253)

0.116 ***
(0.0126)

0.0541 ***
(0.0161)

0.029 ***
(0.0061)

AISA - - 0.130
(0.132)

0.005
(0.8045)

IOER - - 0.0239
(0.0155)

0.006
(0.9362)

EIR - - 0.0173
(0.0553)

0.036 *
(0.0562)

DI - - −0.274 ***
(0.0295)

−0.01
(0.7001)

Constant 0.254 ***
(0.0103)

0.254 ***
(0.00381)

0.186 **
(0.0868)

1.199 ***
(0.0490)

Individual fixed effects N Y Y Y

Year fixed effects N N N Y

Observations 600 600 600 600

R2 0.77 0.34 0.51 0.79

Robust standard errors in parentheses *** p < 0.01, ** p < 0.05, * p < 0.1. N/Y represents for No and Yes

4.3. Empirical Results and Analysis of Influence Mechanism

In order to further explore the impact mechanism of the carbon emission rights
trading pilot policy on China’s AGTFP, formulas (6) and (7) are gradually returned to study
whether the carbon emission rights trading pilot policy affects China’s AGTFP through
the two paths of environmental protection policy and technological innovation. Table 4
lists the impact mechanism of China’s carbon emissions rights trading policy on AGTFP.
Model 5 uses EP as an intermediary variable to study its impact on the interaction term
PERIODit× PROVINCEit in the carbon emission rights trading pilot policy, which reflects
the indirect impact of EP on AGTFP. Model 6 reflects the effect of environmental protection
policy on AGTFP direct effect. Model 5 uses TI as an intermediary variable to study its
impact on the interaction term PERIODit × PROVINCEit in the carbon emission rights
trading pilot policy, which reflects the indirect impact of EP on AGTFP. Model 6 reflects the
effect of TI on AGTFP direct effect.
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Table 4. The impact mechanism of China’s carbon emissions rights trading policy on AGTFP.

Variables
Model 5 Model 6 Model 7 Model 8

Regulation AGTFP Innovate AGTFP

PERIODit ×
PROVINCEit

1.484 ***
(0.497)

0.0287 *
(0.0162)

0.608 ***
(0.207)

0.0185 *
(0.0112)

Regulation - 0.00714 ***
(0.00190)) - -

Innovate - - - 0.0604 ***
(0.00367)

Control Y Y Y Y

Regional effect Y Y Y Y

Constant 2.379 **
(1.113)

0.192 **
(0.0795)

4.359 ***
(0.567)

−0.0971 *
(0.0536)

Observations 600 600 600 600

R2 0.22 0.52 0.85 0.69

Robust standard errors in parentheses *** p < 0.01, ** p < 0.05, * p < 0.1%.Y represents for Yes

The coefficient of PERIODit × PROVINCEit in Model 5 is significant at the 1% level,
indicating that the implementation of China’s carbon emission rights trading pilot policy
has a significant positive effect on regional environmental protection policies. In Model
6,PERIODit × PROVINCEit coefficient is significant at the 1% significant level, indicating
that the implementation of China’s carbon emission rights trading pilot policy has a
significant positive effect on the improvement of the level of scientific and technological
innovation, and both effect mechanisms have significant indirect effects on AGTFP. The
coefficients of EP and PERIODit× PROVINCEit in Model 7 are significant at the significant
levels of 1% and 10%, indicating that the combined effect of the environmental protection
policy and the carbon emission rights trading pilot policy has a positive impact on the
regional AGTFP. In Model 8, the coefficients of TI and PERIODit × PROVINCEit are
significant at the 1% and 5% significance levels, indicating that the combined effect of
technological innovation and carbon emissions rights trading pilot policies has a positive
impact on regional AGTFP.

In order to further verify the robustness of the conclusion of the mediation effect
test, the bootstrap test was used to conduct random sampling 1000 times to test whether
the mediation effect of formulas (6) and (7) existed. Table 5 shows the results of the
bootstrap test of the mediation effect. The confidence intervals in the indirect effect do
not contain 0, indicating that the indirect effect of environmental protection policy and
technological innovation on AGTFP is significant. Although 0 is included in the direct effect,
the coefficients of the interaction terms in Model 6 and Model 8 of Table 4 are significant,
and the coefficients of PERIODit × PROVINCEit in Model 5 and Model 7 are the same
as those in Model 6 and Model 8, showing positive signs for the coefficients of EP and TI,
indicating that there is a partial intermediary effect. The direct effect contains 0, indicating
that there were other intermediate mechanisms in the impact of the implementation of the
carbon emission rights trading rights policy on China’s AGTFP.
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Table 5. Bootstrap test results.

Mediating
Variable

Inspection
Bias Corrected

95% Confidence Interval Percentile 95% Confidence Interval

Lower Limit Upper Limit Lower Limit Upper Limit

Regulations Indirect Effect 0.0011 0.0246 0.0006 0.0217

Direct Effect −0.0011 0.0451 −0.0138 0.0423

Innovate
Indirect Effect 0.0859 0.1131 0.0850 0.1122

Direct Effect −0.0012 0.0563 −0.0020 0.0541

4.4. Statistical Tests

The PSM-DID model largely eliminates the possibility of bias caused by unobservable
heterogeneity and omitted variables [53,54]. To further test the soundness of the data and
model settings, we used the variance inflation factor (VIF), White and Hausman methods
to test for multicollinearity, heteroskedasticity, and endogeneity, respectively.

Table 6 shows that the VIF of each variable is less than 5, indicating that there is no
multicollinearity. Table 7 shows that the p-value in the White test results is greater than
0.1, indicating that there is no heteroscedasticity, and the p-value in the same Hausman test
results is greater than 0.1, indicating that there is no endogeneity problem.

Table 6. VIF test results.

Variables VIF Variables VIF

PERIODit × PROVINCEit 1.36 AISA 1.26
IOER 1.96 DI 1.47
EIR 1.26 Regulation 1.10

Innovate 2.20 - -

Table 7. White and Hausman test results.

χ2 p Value

Heteroscedasticity 41.44 0.1779
Endogeneity 5.12 0.401

4.5. Robustness Tests

In the calculation of AGTPF, we chose penalized regression to deal with Equation (1).
In order to test the accuracy of the model calculation results, we first used the superefficient
SEM model to estimate the Malmquist index to calculate China’s AGTFP and observe its
trend change. Then, we used the Malmquist index to verify whether there is a significant
effect of carbon emissions trading pilot policies on AGTFP. Finally, we used the Malmquist
index to test whether the carbon emissions trading pilot policies affect AGTFP through two
mechanisms: regulation and innovation.

Figure 3 is similar to the calculation results in Section 4.1. China’s AGTFP shows
a fluctuating upward trend in general, increasing from 1.1020 in 2001 to 1.1215, with a
cumulative increase of 0.0195. And after the implementation of the carbon emission right
trading pilot policy in 2013, the AGTFP has increased significantly, from 0.9938 in 2013 to
1.1215 in 2019.
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We used the PSM-DID model to examine the impact of the carbon trading pilot policy
on AGTFP. The settings of models 9 and 10 are the same as those of models 1 and 4. The
results in Table 8 show that the carbon emission rights trading pilot policy has a positive
impact on AGTFP. This is consistent with the calculation results in 4.2, where the carbon
trading pilot policy having a significant positive effect on AGTFP is verified.

Table 8. DID and PSM-DID regression results based on Malmquist index.

Variables Model 9 Model 10 Model 1 Model 2

PERIODit ×
PROVINCEit

0.0255 ***
(0.00973)

0.0294 *
(0.0172)

0.0295 *
(0.0167)

0.0315 *
(0.0168)

AISA - - 0.0431 *
(0.0245)

0.236 **
(0.112)

IOER - - 0.0139
(0.0171)

0.0297
(0.0192)

EIR - - 0.0541
(0.157)

0.169
(0.118)

DI - - 0.0179 ***
(0.00658)

0.411
(0.309)

Constant 1.018 ***
(0.00264)

0.988 ***
(0.00727)

0.950 ***
(0.0205)

0.738 ***
(0.115)

Individual
fixed effects N Y Y Y

Year fixed effects N N N Y

Observations 600 600 600 600

R2 0.36 0.24 0.31 0.52
Robust standard errors in parentheses *** p < 0.01, ** p < 0.05, * p < 0.1%. N/Y represents for No and Yes.

Then, we ran a stepwise regression of Equations (6) and (7) based on the Malmquist
index, and the settings of models 13–16 are consistent with those of models 5–8. The results
in Table 9 show that the implementation of China’s carbon emissions rights trading pilot
policy has a significant positive effect on the regional environmental protection policy and
innovation level improvement; the joint effect of carbon trading pilot policy with regulation
and innovation on AGTFP is positive. This verifies the conclusion in 4.3 that regulation
and innovation as carbon emissions trading pilot policy are two ways to promote the
improvement of AGTFP. The results also support the robustness of our study.
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Table 9. Channels of the effect of Chinese carbon trading rights policy on AGTFP based on the
Malmquist index.

Variables
Model 3 Model 4 Model 5 Model 6

Regulation AGTFP Innovate AGTFP

PERIODit × PROVINCEit
1.473 ***
(0.497)

0.0313 *
(0.0168)

0.930 ***
(0.131)

0.0304 *
(0.0164)

Regulation - 0.237 **
(0.111) - -

Innovate - - - 0.245 **
(0.113)

Control Y Y Y Y

Regional effect Y Y Y Y

Constant 3.307 ***
(0.616)

0.783 ***
(0.107)

4.359 ***
(0.567)

0.866 ***
(0.109)

Observations 600 600 600 600

R2 0.23 0.31 0.84 0.32

Robust standard errors in parentheses *** p < 0.01, ** p < 0.05, * p < 0.1. Y represents for Yes

4.6. Discussion

Although there were intrastage fluctuations in China’s AGTFP, the overall trend
showed an upward trend from 2000 to 2019, which is similar to that of Chen et al. (2021) [22]
and Hua et al. (2022) [55] and Yu et al. (2022) [13] and other scholars using DEA to measure
the growth trend. However, the specific magnitude of fluctuations differs from these
studies because we put agricultural carbon sinks in the measurement framework of AGTFP,
which is slightly different from the measurement results without considering carbon sinks.
The change of AGTFP was flat from 2000 to 2014t, with an annual growth rate of only
2.62%, but since 2014 AGTFP has achieved substantial growth. Since the formulation
of the pilot carbon emission rights trading policy in 2011, the green development of
China’s agriculture has entered an accelerated stage, and the action plan for zero growth of
pesticides and fertilizers has been steadily promoted. The Ministry of Agriculture of China
has successively issued the “Implementation Opinions on Fighting the Battle of Agricultural
Nonpoint Source Pollution,” “Action Plan for Zero Growth of Fertilizer Application by
2020,” and “Action Plan for Zero Growth of Pesticide Use by 2020,” which made detailed
arrangements for the reduction of chemical fertilizers and pesticides. A series of long-term
reductions in material inputs and various comprehensive management measures have
gradually taken effect, and the green transformation of China’s agricultural development
has also achieved initial results. By 2017, the General Office of the CPC Central Committee
and the General Office of the State Council issued the “Opinions on Innovative Systems
and Mechanisms to Promote the Green Development of Agriculture.” In the same year,
the Ministry of Agriculture launched the “Five Actions for Agricultural Development”
(the action of resource utilization of livestock and poultry manure; the action of replacing
chemical fertilizers with organic fertilizers for fruit, tea and vegetables; the action of straw
disposal in northeast China; the action of recycling agricultural film; and the action of
protecting aquatic organisms with emphasis on the Yangtze River, etc.), so China’s AGTFP
increased steadily from 2017 to 2019, which is consistent with the findings of Yang et al.
(2022) [23].

The implementation of the carbon emission rights trading pilot policy has already
been verified to enhance the GTFP of industries and cities [52,56,57]. However, few studies
have dealt with the impact effect and impact mechanism between carbon emissions trading
system and AGTFP. The reason is that the carbon emissions trading system mainly involves
power generation, petrochemical and other industries; however, agriculture, as the primary
industry, has a feedback effect with other industries, and other industries have a significant
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impact on the agricultural economy. As a carbon emission source of greenhouse gas, the
emission is huge. Therefore, through the PSM-DID model, this paper verifies that the
implementation of China’s carbon emissions trading rights pilot policy has a positive effect
on the significant improvement of China’s AGTFP, Yu et al., (2022) [13] and Hua et al.
(2022) [55] had similar findings, while Yu et al. (2022) [13] find that the implementation of
a carbon trading pilot policy has a significant contribution to AGTFP, and the policy has
an increasingly stronger contribution to AGTFP under the constraint of reduced carbon
allowances. Hua et al. (2022) [55] concluded that carbon trading rights significantly
increased the TFP of agricultural enterprises. At the same time, this paper also found that
environmental regulation and technological innovation are the two influencing mechanisms
for the policy effect to be exerted, and both of them have a significant positive effect
on AGTFP, which is consistent with the findings of Fan et al. (2022) [29] and Wang
et al. (2021) [58], where Fan et al. (2022) [29] found that environmental regulation and
technological innovation have a significant contribution to productivity, and Wang et al.
(2021) [58] found that green technological innovation has a significant positive effect on
productivity. However, whether it is the PSM-DID or the mediation effect test, the coefficient
value of PERIODit × PROVINCEit is relatively small. Yu et al. (2022) [13] and Hua et al.
(2022) [55] also reached the same conclusion. The main reason is that the carbon emissions
trading system was in the pilot stage from 2011 to 2021, and there are still imperfections,
which are manifested in the poor liquidity of the carbon emissions trading market [59];
the certain defects exist in the system design.; the pricing mechanism is distorted; and the
transaction system lacks legal guarantees.

(1) The liquidity of the carbon emissions trading market is poor. China’s pollution
emissions and greenhouse gas emissions trading cases are scattered in various cities, and
the transparency of trading information is not enough. At the regional level, the seven
pilots are independent and closed to each other. However, China is already in the process
of establishing a unified national carbon trading market, though during the inspection
period, it was a closed market and lack liquidity.

(2) There are certain flaws in the institutional design related to the carbon emissions
trading policy. From an industry point of view, only large enterprises that produce and
discharge pollutants can trade in the carbon emission exchange, and many competitive
“small farmers” do not really participate in it. From the characteristics of China’s “big
country and small farmers,” such settings are unreasonable. In terms of carbon sources
and carbon sinks, it only includes carbon sources and basically does not involve carbon
sinks. Agricultural carbon emission reduction and carbon sequestration are not included in
the carbon trading market, resulting in the inability to effectively allocate the element of
carbon sinks.

(3) The pricing mechanism of the emissions trading system is distorted. On one hand,
the lag in the construction of China’s carbon trading market has lost its pricing power
and initiative in the global carbon trading market. It has not formed a reasonable pricing
mechanism, and the price of carbon emissions trading rights fails to reflect the true value
of carbon emission rights. On the other hand, as a public resource, emission rights are
easily influenced by the management department, which interferes with the price of carbon
emissions trading, causing the trading price to deviate from the real price.

(4) The carbon emissions trading system lacks legal protection. A legal system is an
institutional guarantee for the effective implementation of the carbon emissions trading
rights policy. Currently, China still lacks laws and regulations on carbon emissions trading,
resulting in unclear legal responsibilities and lack of legal supervision mechanism for
carbon emission reduction during the implementation of the system, which affects the
policy implementation effect of the carbon emissions trading system.
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5. Conclusions and Recommendations
5.1. Conclusions

Improvements and developments in carbon trading systems gradually increase the
impact on AGTFP [13]. Although agriculture is not dominant in the carbon trading market,
it is closely related to petrochemical, metal and other industries and has spillover effects.
Besides, agriculture, as an important carbon emission source of greenhouse gases, emits
huge amounts of energy. It is crucial to study the impact of carbon emissions right trading
pilot policy on agriculture. Therefore, we deeply explored the effect and mechanism
of carbon emissions rights trading pilot policies on AGTFP. First, we incorporated the
agricultural carbon sink into the calculation framework of AGTFP, and build a translog
production function including environmental factors, used the provincial panel data of
30 provinces in China from 2000 to 2019 and the elastic network-based ridge regression
to calculate China’s AGTFP. Second, we used the construction of PSM-DID to study the
impact of the implementation of China’s carbon emissions right trading pilot policy on
China’s AGTFP, chose environmental protection policies and technological innovation as
the intermediary mechanism for carbon emissions rights trading policy to affect AGTFP.
The research results are as follows.

(1) China’s agricultural total factor productivity changed slowly from 2000 to 2013,
with an annual growth rate of only 2.62%. After the implementation of the pilot carbon
emissions trading policy in 2013, AGTFP achieved substantial growth.

(2) The impact of China’s carbon emissions trading pilot policy on China’s AGTFP is
significantly positive, and the implementation of the policy has improved AGTFP.

(3) Further impact mechanism testing shows that China’s carbon emission rights
trading pilot policy will enhance AGTFP through environmental protection policies and
technological innovation.

5.2. Recommendations

According to the empirical results of this paper, the implementation of carbon emission
rights trading pilot policy in China can significantly increase AGTFP, and it will affect
AGTFP through two paths: technological innovation and environmental regulation. There-
fore, the government should further transform China’s agricultural production methods,
develop and improve the carbon trading system, enhance the level of scientific and techno-
logical innovation of enterprises and farmers as well as improve the strength and rationality
of environmental regulation, so that the AGTFP can be effectively improved, which will
break through the dilemma that China’s agricultural development relying on the rough
production methods and promote green and sustainable agricultural development.

(1) China’s previous high pollution and emission production methods are unsustain-
able. Agricultural production should be driven by traditional factors to technological
innovation. The government should increase the support for agricultural technology re-
search and development, and realize the organic connection between industry, university
and research, and improve the conversion rate of agricultural science and technology
achievements, gradually improve the green and low-carbon agricultural production tech-
nology and factor inputs. The government should consider reducing the factor inputs
of pesticides and chemical fertilizers to achieve a reasonable allocation of agricultural
production factors and to tap the production potential of each production factor. At the
same time, the government can transform the agricultural production mode, realize the
moderate-scale operation of agriculture, improve the agricultural AGTFP, break through
the dilemma that Chinese agriculture relies on the rough production mode, and promote
the green and sustainable development of Chinese agriculture.

(2) The empirical results of this paper showed that the carbon emission rights trading
pilot policy has significantly increased AGTFP. With the improvement and development
of the carbon trading system, the impact on AGTFP will gradually increase [13]. There-
fore, consideration should be given to gradually increase the number of pilot provinces
for carbon trading nationwide, expand the influence of the carbon trading policy, and
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narrow the development gap between the pilot provinces and nonpilot provinces in the
development of the carbon trading market. The government should improve the legal
construction and supervision system of carbon emissions trading market. Using carbon
markets effectively to improve AGTFP. Enterprises and farmers should actively cooperate
with the implementation of the pilot policy to avoid the “unethical behavior” of stealing
and releasing emissions, and make joint efforts to contribute to global climate governance.

(3) The carbon emissions rights trading pilot policy will affect China’s AGTFP through
two paths: environmental regulation and scientific and technological innovation. Therefore,
the government should strengthen green innovation compensation, encourage enterprises
and farmers to introduce green technologies and advanced equipment, improve their
capacity for independent research and cooperative innovation, and effectively increase
AGTFP. On the other hand, based on the different resource endowments of each province,
the government should steadily improve the strength and rationality of environmental
regulations, improve the constraint and incentive mechanism for energy conservation
and emission reduction, to make the policy effect of environmental regulation effectively
exercised and further enhance AGTFP, and promote the green and sustainable development
of China’s agriculture.
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