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Abstract: Continuous oil palm distribution maps are essential for effective agricultural planning and
management. Due to the significant cloud cover issue in tropical regions, the identification of oil palm
from other crops using only optical satellites is difficult. Based on the Google Earth Engine (GEE),
this study aims to evaluate the best combination of open-source optical and microwave satellite data
in oil palm mapping by utilizing the C-band Sentinel-1, L-band PALSAR-2, Landsat 8, Sentinel-2,
and topographic images, with the Muda River Basin (MRB) as the test site. The results show that
the land use land cover maps generated from the combined images have accuracies from 95 to 97%;
the best combination goes to Sentinel-1 and Sentinel-2 for the overall classification. Meanwhile, the
best combination for oil palm classification is C5 (PALSAR-2 + Landsat 8), with the highest producer
accuracy (96%) and consumer accuracy (100%) values. The combination of C-band radar images
can improve the classification accuracy of oil palm, but compared with the combination of L-band
images, the oil palm area was underestimated. The oil palm area had increased from 2015 to 2020,
ranging from 10% to 60% across all combinations. This shows that the selection of optimal images is
important for oil palm mapping.

Keywords: Google Earth Engine; land use; Muda River Basin; oil palm; Malaysia; sentinel; Landsat;
PALSAR,; climate adaptation

1. Introduction

Global exports of oil palm products now exceed USD 30 billion per year [1]. In 2020,
Malaysia exported about 17.40 Mt of oil palm to other countries, bringing about an export
revenue of approximately USD 15 billion [2]. The oil palm industry contributes significantly
to the GDP of Malaysia, but it has also led to widespread deforestation, which is considered
a major threat to global warming and climate change. Accurate oil palm distribution maps
are important sources for understanding oil palm plantation expansion trends, developing
landscape-level planning [3], and assessing the impact of land-use shifts on basins. The
increase in the oil palm planting area in the basin and the change in land use in the basin
have significant impacts on water resources and climate [4,5]. Oil palm management has
become the focus of local government departments, but traditional methods based on
field surveys are uneconomical in terms of manpower and time. Using remote sensing
technology to monitor and collect large-scale oil palm information is an effective means.

Agriculture 2022, 12, 1435. https:/ /doi.org/10.3390/agriculture12091435

https://www.mdpi.com/journal/agriculture


https://doi.org/10.3390/agriculture12091435
https://doi.org/10.3390/agriculture12091435
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/agriculture
https://www.mdpi.com
https://orcid.org/0000-0003-3939-0336
https://orcid.org/0000-0002-3334-0955
https://orcid.org/0000-0002-7540-0717
https://orcid.org/0000-0002-4919-1800
https://doi.org/10.3390/agriculture12091435
https://www.mdpi.com/journal/agriculture
https://www.mdpi.com/article/10.3390/agriculture12091435?type=check_update&version=1

Agriculture 2022, 12, 1435

20f19

From the point of view of image selection, remote sensing technology has been used
to monitor oil palm since the 1990s [6]. Many scholars have employed multi-source re-
mote sensing data to construct oil palm distribution maps from different times, spaces,
and resolutions [6-8]. To address the obstacle of poor image quality caused by frequent
cloudiness in the tropics, combining optical images with SAR images for oil palm map-
ping is a common effective way to make the accuracy of oil palm mapping better in the
humid tropics [7-10]. In Malaysia, Cheng et al. [11] used Landsat and PALSAR to map oil
palm, focusing on evaluating the impacts of different classifiers, locations, and assessment
methods. Mohd Najib et al. [9] used Landsat and ALOS images to generate an oil palm
map in Malaysia and found that the extracted area of oil palm was slightly higher than the
statistical data. Oon et al. [10] showed that L-band and C-band radar images outperformed
other sensors in the tropics to effectively distinguish between large oil palm plantations and
small farm oil palms in the peatland region of Peninsular Malaysia. However, the effects
of different optical and radar imagery combinations on o0il palm mapping, particularly
open-source data within the Google Earth Engine (GEE) platform, were less considered in
previous studies. In fact, comprehensive monitoring of oil palm expansion requires data
from multiple satellite sensors [12].

GEE is a cloud-based computing platform that integrates enormous geospatial data
with corresponding visualization and analysis-computing capabilities. The platform pro-
vides multi-source remote sensing, such as Landsat TM/OLI, Sentinel-1/2, and MODIS on
a global scale (at different scales). The data reach petabyte-level capacities, with more than
200 public datasets and over 5 million remote sensing images [13]. Compared with local op-
erations, it is easier to perform large-scale and global-level analyses [14]. Researchers have
applied GEE to various fields, mainly monitoring the changes in forests [15], aridity [16],
surface water [17], floods [18,19], crops [20], and aquaculture ponds [21].

Using open-source satellite image data and powerful computing power provided
by the GEE platform [13,22], acquiring more accurate oil palm coverage at low costs in
developing countries has become possible [23-25]. Some scholars have utilized the GEE
platform to combine multi-source images into one image as the input data to obtain the
oil palm distribution map. For example, Sarzynski et al. [7] used GEE to integrate radar
and optical images to obtain oil palm in Sumatra, and the findings revealed that the
combination of optical and radar data was superior to using optical only or radar data.
Considering the characteristics of different ground objects in multi-source images, some
scholars combined multi-source image data to obtain more information on the oil palm
estates. Danylo et al. [3] used Sentinel-1 data to acquire the oil palm farm location but the
age of the oil palm plantation was calculated using Landsat images. To tackle the problem
of missing data, some scholars have used the sensor data emitted from different periods to
study long-term oil palm changes. De Alban et al. [26] combined Landsat and L-Band SAR
data to map tropical landscapes for land cover classification and change detection. The
results showed that, compared to single sensor imagery precision, the combined imagery
could obtain from 92.96 to 93.83% of the overall classification. Because different factors and
purposes can affect the accuracies of oil palm classification results, there are no single types
of data applicable to all oil palm regions [27].

The Muda River Basin (MRB) is an important source of freshwater supply for the
northern states in Malaysia; hence, it is critical to study the influence of land use changes,
including oil palm expansion on the climate and environment. There are few literature
studies on oil palm identification and extraction in tropical river basins, i.e., Tan et al. [5]
improved the European Space Agency (ESA) land cover products to research the influence
of oil palm expansion on the hydrological cycle in the MRB, whereas Kang and Kanniah [4]
utilized GEE to analyze the impact of land use land cover (LULC) on river morphology in
the Johor River Basin in the southern part of Peninsular Malaysia. However, the assessment
of the synergistic effects of different types of satellite images within GEE in oil palm
mapping is limited; hence this study aimed to evaluate the effects of the L-band radar
image, C-band radar image, and optical image combinations on the LULC classification,
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focusing on the oil palm distribution. This study considered the MRB as the research object
and used GEE to identify oil palm plantation areas within the basin. It was selected due
to its important role in serving ecological protection, flood control, and food security in
northern Peninsular Malaysia. The research findings can be helpful to researchers or oil
palm managers from other tropical countries to produce better oil palm distribution maps
for their estate planning and management.

2. Materials and Methods
2.1. Study Area

The Muda River is located between 5°20'-6°20’ latitude and 100°20’-101°20’ longitude,
its drainage area is about 4111 square kilometers, and its elevation range is —19-1845 m
(Figure 1). The Muda River is the main river in Kedah, providing Kedah and Penang with
fresh water for domestic, industrial, and agricultural uses [5]. The basin is dominated by
forest, followed by rubber and oil palm plantations, and is the main rice-growing area
in Malaysia [5]. The area of oil palm in the basin has altered considerably during the
previous two decades. Taking the basin as the study object, it may better represent the
applicability and application potential of the combined image method in the basins with
large differences in land cover types. Figure 1 shows the location of the basin.
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Figure 1. Study area. (a) location map of MRB in Peninsular Malaysia; (b) elevation map of MRB;
(c) Landsat 8 image covering MRB.

2.2. Satellite Data

Landsat 8 imagery, Sentinel-2 imagery, Sentinel-1 imagery, ALOS PALSAR-2 imageries
that are available in the GEE platform were used to classify and evaluate the oil palm
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changes of MRB from 2015 to 2020. The Landsat imagery, developed by NASA and USGS,
images the whole Earth at a resolution of 30 m approximately every two weeks [28].
Sentinel-2 is a European Space Agency (ESA) multispectral imaging satellite that was
launched in 2015. It consists of two satellites, 2A and 2B, with ground resolutions of 10, 20,
and 60 m, respectively [29]. The PALSAR-2 yearly mosaic data were seamless global SAR
images, 25 m resolution, created by stitching PALSAR-2 SAR images [30], and calling the
HH and HV bands. The Sentinel-1 satellite with 10 m resolution was also obtained from the
ESA and provided SAR images with high temporal and spatial resolutions. The 30 m spatial
resolution Space Shuttle Radar Topographic Mapping Mission (STRM) elevation data [31]
were imported. Through the GEE code editing platform, the 223 Sentinel-2, 29 Sentinel-1,
and 43 Landsat 8 satellite images of the MRB in 2020 were aggregated into one image,
respectively, and re-encoded to a resolution of 30 m. The aggregated imagery was used to
generate the MRB 2020 LULC map. The image property values are displayed in Table 1.

Table 1. Parameters of remote sensing images required for mapping in the current study.

Pixel Size The Time of Images
Data Sensor Bands (m) (Year)
Blue, green, red, near-infrared
(NIR), Short-wave infrared .
Landsat 8 1(SWIR1), short-wave infrared 30 2015-2020
. 2(SWIR2)
?II::CZI Blue, green, red, near-infrared
& (NIR), Short-wave infrared 2015-2016
Sentinel-2 1(SWIR1), short-wave infrared 10,20 2020 !
2(SWIR2), Red Edgel, Red Edge2,
Red Edge3, Red Edge4
Global
SAR PALSAR-2/PALSAR HH, HV 25 2015-2020
image yearly mosaic
Sentinel-1GRD VvV, VH 10 2015-2020
Topographic data NASA SRTM Elevation 30 2000

digital elevation

2.3. Preprocessing of Data
2.3.1. Preprocessing of Landsat 8 and Sentinel-2

First, the 2015 and 2020 Landsat 8 imagery were directly selected through the GEE
platform. We selected six bands for analysis, including blue (B2), green (B3), red (B4),
near-infrared (B5), shortwave infrared 1 (B6), short infrared 2 (B7), and thermal infrared 2
(B11) with a resolution of 30 m. We modified the code from Sarzynski et al. [7] to perform
cloud detection, cloud masking, and cloud shadow pre-processing on the Landsat 8 images
to build a simple cloud-free Landsat composite image. A simple composite method (used
to select a subset of the scene at each location) converted it to top-of-atmosphere (TOA)
reflectance. Lastly, a simple cloud score was used to obtain the median of the fewest
cloud pixels.

Sentinel-2 images available on the GEE platform included both surface reflection and
TOA products. We employed TOA, multispectral instrumentation, and Level-1C images to
reduce the radiometric differences between Landsat 8 and Sentinel-2 images. Sentinel-2
has many spatial resolutions. Four 10 m resolution bands (blue B2, green B3, red B4, and
near-infrared B8), and six 20 m resolution bands, comprising four red edges (B5, B6, B7,
and B8A), two short-wave infra-red (B11 and B12), were chosen for this study.

2.3.2. Preprocessing of PALSAR-2 and Sentinel-1

The phased array L-band synthetic aperture radar - 2 (PALSAR-2) images were ob-
tained from the Japan Aerospace Exploration Agency (JAXA) through the GEE platform.
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These data have been successfully used in previous studies [7,32]. The HH and HV chan-
nels of the raw SAR images were first smoothed using a 3 x 3 refined Lee filter, which
also helped to reduce the scatter effect. Digital numbers (DN) of the HH and HV images
were then converted to normalized radar backscattered coefficients (¢° in decibels (dB)),
following Equation [33]: ¢° = 10 x log,,(DN?) + CF, where CF stands for the absolute
calibration factor of —83 dB.

The Sentinel-1 images for this study were preprocessed by the Google Earth team,
which included the removal of the thermal noise, radiometric calibration, and terrain
correction [34]. The backscatter coefficient (c°) of the image is in decibels (dB). We utilized
the ground range detected (GRD) product. Vertical transmit—vertical receive (VV) and
horizontal receive (VH) dual bands are explicitly referred to as the available polarization
bands; the interferometric wide swath acquisition mode was selected.

2.4. Spectral and SAR Indices

Normalized difference vegetation index (NDVI) [24,35], normalized difference water
index (NDWI) [24,36], and enhanced vegetation index (EVI) [7,8] are common spectral
indices used to improve oil palm classification in optical images. These three indices mainly
enhance the ability to discriminate between vegetation and non-vegetation. NDVI has the
benefit of being sensitive to chlorophyll concentration and green leaf density and can be
used to extract information on ground green vegetation. NDWI and EVI enhanced the
identification of deciduous rubber plantations, oil palm, and forests [36-38]. We calculated
these three optical indices using the pre-processed optical images Landsat 8 and Sentinel-2
images, then merged them with the images to participate in the subsequent classification.

Textural information, such as canopy shape and size, plays an important role in oil
palm classification due to the unique plant texture [3,39]. Complementing the information
obtained from the SAR channel [3,40], texture measurements were performed in GEE using
gray-level co-occurrence matrix (GLCM) texture functions from the average directional
bands inside a 3 x 3 neighborhood range. Texture measurements add information to dis-
tinguish land cover and improve the classification accuracy for broad land cover types [41].
GLCM texture metrics include arc second moment (ASM), average (AVG), contrast (CON),
correlation (COR), dissimilarity (DIS), entropy (ENT), inverse difference moment (IDM),
and variance (VAR). Using raw SAR backscatter coefficients, four metrics were calculated
to increase the level of information and enhance classification, including average (AVE),
difference (DIF), and a simple ratio of HH and HV channels (RAT1 and RAT2). These four
indicators have good accuracy in distinguishing the forest from non-forest, coconut trees,
oil palm, and rubber trees [26]. Furthermore, they improved the mapping of a broad range
of land cover types, including farmland, forests, built-up areas, and water [42,43]. Oil palm,
rubber, and other plantations can be distinguished well by DIF [44]. In this work, these 12
indices were computed from the pre-processed SAR images (PALSAR-2 and Sentinel-1)
using GEE, as supplemental information for the oil palm classification. Table 2 displays the
specific formulas.

2.5. Training and Validation Sample Data

As indicated in Figure 2, the land cover in the study area was classified into six
categories: forest (FRSE), urban (URBN), water (WATR), oil palm (OILP), rubber (RUBR),
and rice (RICE). A total of 30-50 training samples were chosen for each class for the
land cover classification [45]. The time axes of image browsing on the Google Earth Pro
platform were set to 2015 and 2020, respectively. A total of 840 samples were randomly
selected from the high-definition images and field experiences on the crop characteristics
for both 2015 (420 samples) and 2020 (420 samples) [46,47]. We randomly selected 70% to
train the classifier and 30% to validate the classification map from the total samples. The
distributions of sample data of the basins in 2015 and 2020 are illustrated in Figure 2.
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Table 2. Spectral and SAR Indices.
Indices Formula
NDVI NDVI = (NIR — RED)/NIR + RED)
Spectral Indices NDWI NDWI = (NIR — SWIR)/(NIR + SWIR1)
p - EVI=25 x (NIR — RED)/
(NIR + 6.0x RED — 7.5 x BLUE + 1.0)
AVE (HH + HV)/2; (VV + VH)/2
DIF HH — HV;VV — VH
RAT1 HH/HV; VH/VV
RAT?2 HV/HH; VV/VH
ASM ASM = X {p(i,j)}?
ij
2N,
A g/, )
VG AVG = ¥ (ip(ary) (1))
1—2
CON Ne 1 o
SAR Indices CON = ZO n’ Zl ):1?7(’ ) g li—il=mn
n= i=1j
L i (67)p i) —uxu
COR COR = /Ty
Np—1
pIs DIS= ¥ {): L p(i, )% b li—jl =n
n=1 i=1j=1
ENT ENT = — ZZP(Z j)log(p(i,j))
IDM I R W
IDM = ZZ(M: P ) p(i,j)
VAR VAR = ):Z(zfu) p(i,f)
The samples of Muda River Basin
{a) 2015 ;i {h} 2020 ‘N\
_— : 5 s
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Figure 2. Samples of (a) 2015 and (b) 2020 collected from Google Earth Pro imagery and the field trip.



Agriculture 2022, 12, 1435

7 of 19

2.6. Methods
2.6.1. Land Cover Land Use Mapping

Optical and radar satellite imageries were used to produce (1) a detailed 30 m resolu-
tion LULC map in 2020 corresponding to eight data combinations for producing six LULC
categories, and (2) a LULC map from 2015 using the best combination identified from the
2020 map to study the oil palm expansion. The overall workflow consists of four main
stages—data source selection, data combination optimization, accuracy assessment, and
variation analysis.

The Landsat 8 and Sentinel-2, Sentinel-1 images were first analyzed to select suitable
images for analysis and preprocessing. Second, this study adopted pixel-based supervised
classification, i.e., random forest (RF), as the classifier, to classify the chosen images. To
build the final training and validation samples, we selected training samples based on the
Google Earth Pro map visualization interface and on-site sampling. Third, the classification
outcomes of diverse data combinations were assessed using the accuracy assessment criteria.
Accuracy assessment approaches included three prominent metrics, overall accuracy (OA),
producer accuracy (PA), and consumer accuracy (CA), retrieved from confusion matrix
reports, as well as kappa coefficients from statistical methods [48]. Finally, the various
radar images and optical images provided by GEE for oil palm classification were analyzed.
The specific research process is shown in Figure 3.

Google Earth Engine

Image Classification

Reference Image

Training Samples(70%)

@omparison and Assessme@

Figure 3. Methodology flow chart of this study. Xu et al. [6].

The RF algorithm is a multi-decision tree classification method that uses an ensem-
ble [49], in which boosting and bagging are the two major techniques used for resolving the
classification issue of satellite image pixels. The random forest decision tree model is built
by randomly extracting sample data and feature quantities [26]. RF algorithms, due to their
high classification accuracies and good anti-noise performances, are frequently utilized in
remote sensing image classification [50]. The accuracy of RF classification is determined by
two parameters: the number of trees (Ntree) and the number of features (Mtry) [4].
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Typically, a sensitivity test is used to determine the size of the Ntree, which may be
made as big as possible to successfully prevent overfitting [4]. The Ntree for the RF classifier
of this study was fixed to 30 after referring to the study by Shaharum et al. [24], the number
of samples in MRB, and the comparison between 30 and 100. Basically, the classification
results between 30 and 100 Ntree did not show much difference. The Mtry is more sensitive
to classification accuracy than the Ntree; a smaller Mtry will increase speed but decrease
classification accuracy [50]. The maximum Mtry in the 8 combined datasets in this study
was 36, and the number of variables per split was set to the default value, which was based
on the square root of the total number of features.

Previous studies have shown that OA, PA, and CA are often used to assess the
accuracy [26,51], and the magnitude directly reflects the classification accuracy. Kappa
statistics may also be used to assess the accuracy of classification results [49,52]. In our
study, two evaluation methods were used simultaneously [34,52,53].

2.6.2. Image Composition Creation

Based on the literature review on oil palm mapping using the GEE platform, several
commonly used optical and radar images were selected to create eight datasets on these
images. For example, topographic data, such as slope, aspect, and elevation, provide rich
features for oil palm classification to increase the probability of extracting oil palm from
forest distributions [36,54]. Therefore, the terrain information elevation was added to all
combined images.

Eight combinations, as listed in Table 3, were formed to analyze the accuracy of oil
palm extraction. C1 is composed of the PALSAR-2 image and the derived exponential band,
C2 is composed of the Sentinel-1 image and the derived exponential band, and C3 and C4
represent Sentinel-2 and Landsat 8 and their derived exponential bands, respectively. C5
and C6 represent the combination of radar image PALSAR-2 and optical images (Landsat
8 and Sentinel-2) and derived exponential bands, respectively. C7 and C8 represent the
combination of radar image Sentinel-1 and optical image (Landsat 8 and Sentinel-2) and
derived exponential bands, respectively. The GEE codes are available as Supplementary
Material Code S1.

Table 3. Image combination information.

Year Symbol Name Description Band
C1 PALSAR-2 SAR data, SAR indices, and ’s
topographic data
2 Sentinel-1 SAR data, SAR 1.nd1ces, and ’3
topographic data
C3 Sentinel-2 Optical data, spectral indices, and y
topographic data
2015, C4 Landsat 8 Optical data, spectr'al indices, and 10
2020 topographic data

Optical and SAR data, spectral and

5 PALSAR-2 +Landsat 8 SAR indices, and Topographic data 32
. Optical and SAR data, spectral and

<6 PALSAR-2 +Sentinel-2 SAR indices, and topographic data 36
. . Optical and SAR data, spectral and

<7 Sentinel-1 + Sentinel-2 SAR indices, and topographic data 36

c8 Sentinel-1 + Landsat 8 Optical and SAR data, spectral and 3

SAR indices, and topographic data

2.6.3. Oil Palm Area Change

The LULC maps generated from different combinations of images in 2015 and 2020
were post-processed, and the isolated pixel values were smoothed using the reduced
neighborhood function in the 3 x 3 model in GEE. Then, we compared the difference
between the local detailed map with the best classification effect and the high-definition
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base map image in ArcGIS. Finally, the LULC maps were divided into oil palm and non-oil
palm in ArcGIS software and compared with the oil palm area of the basin generated by
Xu et al. [6].

3. Results
3.1. Accuracy Assessment

Table 4 shows the results of optical, SAR, and combined classification for 2020. The
differences between the OA and kappa coefficients of the radar image combinations
C1(PLSAR?2) and C1(51) were 10 and 12%, which were much larger than the difference in
the OA and kappa coefficient of the optical image combination of C3(S2) and C4 (L8) (1%).
When radar information was added to the optical image, the OA and kappa coefficients of
the combined radar and optical maps were higher than those of the single image combina-
tion, and the OA and kappa coefficients increased to more than 90% (C5—C8). C7 (S1 + S2)
obtained the highest OA and kappa coefficient values, 97% and 97%, respectively, and the
highest oil palm classifications were PA at 96% (C4, C5, C6, and C7) and CA at 100% (C5)
(Table 4 and Figure 4).

Table 4. Accuracy assessment of land use-land cover classification in 2020.

al SAR Optical SAR + Optical
ass C1 C2 c3 C4 Cs5 Cé c7 cs
FRSE PA 96% 84% 96% 96% 100% 96% 96% 96%
CA 92% 95% 96% 100% 100% 100% 100% 96%
URBN PA 70% 65% 100% 91% 91% 100% 100% 95%
CA 57% 83% 96% 88% 100% 96% 96% 96%
WATR PA 92% 96% 100% 96% 96% 92% 96% 96%
CA 80% 81% 90% 89% 83% 92% 96% 89%
OILP PA 46% 88% 92% 96% 96% 96% 96% 92%
CA 67% 74% 96% 93% 100% 96% 96% 92%
RICE PA 68% 92% 92% 88% 88% 96% 96% 88%
CA 81% 92% 100% 100% 92% 100% 96% 100%
RUBR PA 65% 69% 97% 100% 100% 96% 100% 100%
CA 60% 76% 100% 100% 100% 92% 100% 95%
Overall accuracy 73% 83% 96% 95% 95% 96% 97% 95%
Kappa statistic 68% 80% 95% 94% 94% 95% 97% 94%
100% 100%
[ ] [ ] e (O]
90% - . ¢ O | 9%
80% - 80%
< 70% A 70% O
60% - 60%
50% - 50%
]
®PA ©CA
40% T T T T T T T 40%

C1 C2 C3 C4 C5 C6 c7 C8
Image Combination

Figure 4. Producer accuracy and consumer accuracy for oil palm in 2020.

Combined with 148 validation samples, including FRSE, URBN, WATR, OILP, RICE,
and RUBR, we calculated the confusion matrix for eight combinations (Figure 5). There
were misclassifications in all land categories in individual image dataset combinations
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(C1-C4). In the combined image dataset combinations (C5-C8), the error matrix of the C5
classification images showed that there were no misclassifications of FRSE, URBN, and
WATR, and the three land types of OILP, RICE, and RUBR were misclassified into other
land types. Rubber was mainly misclassified as FRSE and URBN, and a few oil palm pixels
were misclassified into forest and rubber land cover categories.

Cl OA: 73% Kappa:68% C2 OA:83% Kappa:80% C3 OA: 96% Kappa:95% C4 OA: 95% Kappa:94%
FRSE o 0o o o 1 el 0 3 0 0 1

0 FR5500100

g
or] © P71 1 JEEM 2 4 - allp

RICE{ © 2 4 2 0 RICE
aer{ 2 3 o 3 o H ruBr{ 1 1 i a5 o RuBR{ © 0 1 0o o RuBR{ 0 0
Y

0

< 3 & & < 3 & & ¢ & & 3 & & ¢ & & 38 & &
& F &S ¢S & FF & &S & FFS& &S EFFE P &S
Predicted Predicted Predicted Predicted
(a) (b) (c) (d
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Figure 5. Confusion matrix plot for (a) C1I—PALSAR2, (b) C2—Sentinel-1, (c) C3—Sentinel-2A,
(d) C4—Landsat 8, (e) C5—Landsat 8 + PALSAR?, (f) C6—PALSAR-2 +Sentinel-2, (g) C7—Sentinel-1
+Sentinel-2 and (h) C8—Sentinel-1 + Landsat 8 combinations.

The importance levels of the combining image variables in the random forest classifier
are shown in Figure 6. Elevation was not only the most important variable in the classifi-
cation of single-sensor composite images, but also ranked first in multi-sensor composite
images, where it ranked fourth in C5 and C7, fifth in C6, and third in C8. Optical image
band indices occupied important positions in the multi-sensor combinations; the three
important variables in the C5 and C8 combinations were NDWI, B6, and B7. Meanwhile,
B11, B12, NDVI, and NDWI were the four most important variables in the C6 and C7
combinations. Some variables, including DIF, HH_asm, HH_ent, RT1, RT2, HV_ent, and
HV_asm only played minor roles in the combinations in which PALSAR-2 was involved.

Figure 7 illustrates in detail the LULC maps of MRB generated by different schemes.
The C1, C2, C3, C4, C7, and C8 combinations show consistent land cover type patterns
across all classifications, with the forest being the most dominant land cover type in the
basin, followed by rubber. Forest patches are widely found in the upper reaches of the
basin, rubber patches are largely dispersed in the center and west of the basin, and oil palm
patches are distributed in the southwest of the basin.
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th)

The 2020 LULC detail map of MRB generated according to the C7 combination was
enlarged and compared with the high-definition image of the same position (as shown
in the rectangular box in Figure 8) to verify the classification effect. In Figure 8b, the
boundaries of oil palm, forest, and rubber can be seen, in which a small amount of rubber
and urban are mixed. However, in general, the forest, oil palm, and rubber areas have
good coherence, and the boundaries between ground objects are clear, reflecting the better
separation of ground objects. Figure 8d shows a very heterogeneous urban zone with
mixed water, paddy fields, rubber, and oil palm, but the oil palm and rubber zones have
good internal coherence and can also better reflect the boundaries of oil palm and rubber.

3.2. Oil Palm Area Changes

The 2015 and 2020 oil palm areas of the MRB generated by the eight combined images
are shown in Table 5. The oil palm areas showed an increasing trend between 2015 and
2020, ranging from 10 to 60% across all combinations. For 2015, C6 (PALSAR-2 + S2) had
the highest oil palm area at 475.81 km?, while for 2020, the image combination C4 (L8) had
the highest oil palm area at 602. 9 1 km2. Comparing the oil palm area in 2015 and 2020 in
the combination C7 (S1 + S2) with the highest classification accuracy, it was found that the
oil palm area increased from 323.25 km? to 465.73 km? in the MRB, which was about 44%.
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Figure 8. Comparison of the 2020 MRB LULC maps (a,b,d) and the high-definition images (Source:
Esri, Maxar, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and
the GIS User Community) of the basin (c,e).

Table 5. Accuracy assessment of LULC classification.

Area of OPIL (km?2)

Symbol 2015 2020 Data
C1 406.26 528.8
2 319.43 382.67 SAR
C3 363.55 583.12 Ootical
C4 463.49 602.91 P
c5 377.45 529.78
Cé6 475.81 522.99 .
c7 323.25 465.73 Optical + SAR
C8 418.03 496.92

Xu et al. [6] 598

From Table 5, it is found that the oil palm area of the MRB in 2015 in the C7 (S1 + S2)
combined map was 323.25 (km?), which underestimates the value reported by Xu et al. [6] of
598 km?. Compared with the LULC map generated in the same period [5], the distribution
of various land types was consistent in terms of spatial distribution, but the oil palm area
was underestimated by 8% when compared in terms of area.

Figure 9 shows the difference between the C7 (51 + S2) LULC map and the oil palm
distribution map generated by Xu et al. [6]. There were four cases in which (1) both were
considered oil palm, (2) only the C7 combination was oil palm, (3) only the XU2020 was
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oil palm, and (4) both were considered a non-oil palm, respectively, as represented by
agreement OILP, C7 OILP, XU OILP, and agreement NO OILP. In the MRB, the C7 LULC
map was oil palm, but in XU2020 it was a non-oil palm, accounting for 1.81%, while the C7
LULC map was a non-oil palm, but in XU2020, oil palm accounted for 8.89%.

>z

B o onr
|l

class a
N Age=ment NO OILF | 52 46%
k CT QILF 1.81%
XU CILP 2.89%

Agreement OILP 5.84%

XU one

- — B o7 owr
Bl roeemeni QIR
@/ [l o e (0)| | rgreemenivo op c)

Figure 9. Classification map after binarization by (a) the combination 7, (b) XU2020, and (c) difference
maps of combination 7 and XU2020 classification maps.

4. Discussion

In tropical regions, where frequent cloud cover results in poor image quality, the open-
source data provided by the GEE platform (Landsat series, Sentinel series, and PALSAR
yearly mosaic products) help to create high-quality LULC maps [39]. OA ranged from
73 to 97% across the eight combinations. Combination 1 (PALSAR-2) showed the lowest
OA, while the other image combinations had accuracies higher than 80%. The possible
reason is that the land cover classification system in this research belongs to the coarse
classification system and only has six categories. Li et al. [55] compared ALOS PALSAR
L-band and RADARSAT-2 C-band data for land cover classification in tropical regions and
found that (whether it was L-band or C-band images) using a coarse classification system
could improve the classification accuracy.

Due to the noise in radar imagery, together with the pixel confusion between oil
palm and many other land cover types (bare ground, agricultural land), Cheng et al. [56]
recommended not using the PALSAR images alone to distinguish oil palm from other
LULC. The single radar image combination 1 (PALSAR-2) obtained the lowest classification
accuracy (75%), which was close to other similar studies [7,55]. Li et al. [55] found that the
L-band data were 72.2% accurate, while the C-band only provided 54.7%. In this study, the
C-band radar image combination (C2) obtained a higher classification accuracy than the
L-band radar image combination (C1). The possible reason is that the 10 m resolution S1
image increases the resolution of ground objects and improves the classification accuracy.

The appropriate choice of variables has a large impact on classification accuracy.
Elevation was one of the most important variables in all of the data sets in this study. As
elevation and land cover types are uniformly distributed, with most oil palms growing
on flat and low elevation sites [57], elevation helps to distinguish oil palms from bare
ground and agricultural land. Elevation in combination with other data can be effective in
detecting oil palms [54]. C1 and C2 have the same number of variables, but the classification
accuracy varies greatly. The possible reason for this is that there is interference between the
redundant variables, which reduces the classification accuracy.

Textural features have strong additional roles in distinguishing oil palm, rubber, and
forest while improving the overall classification accuracy. According to Torbick et al. [27],
textural information can effectively capture the differences between plantation and natural
forest based on canopy, spacing, and structure, which helps distinguish oil palm and rubber
plantations from other forms of LULC. Rakwatin et al. [40] found that adding textural
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information to radar imagery increased the classification accuracy of forest mapping in
tropical forests in central Sumatra, Indonesia, by 10%. However, this study also found that
the accuracy improvement of the combined image (by texture features) was smaller than
that of the SAR image, which was similar to the findings reported by De Alban et al. [26].

Sentinel-2 images and Landsat 8 have similar spectral bands, with the former having
four red-edge bands. Generally, the OA obtained from Sentinel-2 is higher than Landsat
8 due to its higher spatial resolution and smaller cloud percentage [58,59]. Nurmasari
et al. [58] compared Sentinel-2 and Landsat 8 optical images in the detection of oil palm
plantations in Indonesia and found that Sentinel-2 had a higher classification accuracy than
Landsat 8. Zeng et al. [59] used Sentinel-2 and Landsat 8 images to obtain land use maps of
the Johor River Basin in Malaysia, they found that the classification accuracy of Sentinel-2
was 3% higher than that of Landsat 8. In this study, the accuracy of Sentinel 2 was only 1%
higher than that of Landsat 8 images. One possible reason might be due to the high cloud
coverage in tropical regions, where cloud removal will cause poor image quality for both
Sentinel-2 and Landsat 8 images.

GEE provides thousands of data types, including data from different sensor types,
different resolutions, and different characteristic themes. For specific species in specific
regions, it is crucial to choose the appropriate combination of images. Our results showed
that the classification accuracy of the multi-source imagery combination (C5-C8) is higher
than that of the single radar imagery combination (C1 and C2) and the single optical
imagery combination (C3 and C4), which is consistent with [7,8,26]. Radar images provide
images through their radiation (which can penetrate clouds), and provide information
through backscattered energy, which has a bigger influence on the identification accuracy
of oil palm.

The detection accuracy rate for oil palm plantations has been maintained at about
90% [60]. The OA of the multi-source image combination (C5-C8) in this study was greater
than 90%, mainly because the optical image could identify different land cover categories
through the reflected energy and spectral characteristics of the band, and the increase of
the near-infrared and spectral index improved the contrast. Distinguishing oil palm from
the background is consistent with [36,61]. The combination of radar imagery and optical
imagery can overcome the cloudy obstacles in tropical regions where 0il palm is mainly
grown; this combination technique can improve the classification accuracy (Table 4), which
is similar to previous studies [7,9].

The classification accuracies for C5, C6, C7, and C8 only have slight differences. The
C-band radar image and optical image combinations (C7, C8) all have higher classification
accuracies than the combination of the L-band radar image and optical image. In tropical
climate regions, owing to cloudy conditions, the accuracy of radar contributes more than
that of optical. Although the best combination was Sentinel-1 and Sentinel-2, the best
combination for oil palm classification was C5 (PALSAR-2 + Landsat 8) to obtain the best
PA (96%) and CA (100%). The OA was consistent between C5 and C8, but the difference
in classification accuracy was greater for oil palm. L-band radar is regarded as the most
effective method for mapping forest vegetation and oil palm because it can penetrate the
tree canopy and provide information on the structure under the tree canopy [62].

Compared with Xu et al. [6], our combined map has higher resolution and classification
accuracy. All radar images were resampled to 30 m to match the resolution of Landsat 8.
To match MODIS data, Xu et al. [6] generated an oil palm area with a 100 m resolution
dataset (AOPD) with an accuracy of 86.61%. The oil palm area was underestimated in all
four combined maps compared to Xu et al. [6]. The main reason is that the effectiveness
of SAR data for the detection of mature oil palms was confirmed using a combination of
optical and radar image data [44], but the backscatter characteristics of some young oil
palms (similar to the bare ground) were misjudged as bare land [63], so the area of urban
increased, thus underestimating the area of oil palm. Combination 6 (52 + P LSAR-2) and
Xu2020 had the closest oil palm area in this study, as both used L-band radar images. With
the advent of high-resolution C-band radar images, Dong et al. [42] discovered that the
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complementarity of C-band and L-band radar images enhanced the classification accuracy.
In this study, S1 images were used for combination 7 (S1 + L8) and combination 8 (S1 + S2);
the oil palm areas generated by these two combination maps were closer in 2020.

When the same classification method and data combination are used in basins with
large differences in land coverage, the rational selection of samples plays a key role in
the classification results, and a good sample selection method can improve the accuracy
of land classification [64,65]. Poortinga et al. [8] mapped the Myanmar plantations with
systematic error quantification by combining Landsat-8, Sentinel-2, and Sentinel-1 images;
filtering the validation points, the classification accuracy could reach 91% from 84%. In this
study, 420 samples were selected in 2015 and 2020 from the basin, respectively, as shown
in Figure 2. The samples were all from Google Earth Pro high-definition images (2015)
and field surveys (2020), which ensured the quality of the samples. However, because the
spectral characteristics of the rubber and forests are close to those of 0il palm, and some
newly planted oil palms and paddy fields have similar spectral characteristics, the area of
rubber and paddy fields increased in the LULC maps of the basin.

5. Conclusions

This paper presents an attempt to map oil palm in a tropical river basin using open-
source data within Google Earth Engine (GEE). Based on the open-source satellite images,
i.e., 30-m Landsat 8 imagery, 20-m Sentinel-2 imagery, 10-m Sentinel-1, and PLSAR?2 radar
data, we obtained a series of oil palm distribution maps with over 90% accuracy. The
same conclusion was reached as with most studies; that is, the accuracy of LULC maps
obtained by a single image combination in this study was lower than that of a multi-source
data combination. The combination of Sentinel-1 and Sentinel-2 achieved the greatest OA
(97%) and kappa (97%), although the extracted oil palm area was the lowest among all
multi-source imagery combinations.

The L-band radar image (PLSAR2) played a different role in the oil palm classification
process than the C-band radar image (Sentinel-1), according to the accuracy analysis
of the classification results. The homogeneity of the classification map obtained by the
combination of L-band radar images was better, and the oil palm area was nearest to the
oil palm area obtained from [6]. The growth rate of the oil palm area extracted by each
combination varied greatly between 2015 and 2020, ranging from 10 to 60%. There is a trend
in multi-source remote sensing imagery (in oil palm mapping) to better understand the
differences in oil palm extraction from multi-source remote sensing image combinations,
to select the most optimal data combination to generate the oil palm distribution map,
which will lead to a rational analysis of oil palm in the basin (as an effective means of
changing trends).

Supplementary Materials: Code S1: Link to Google Earth Engine repository https://code.earthengine.
google.com/?accept_repo=users/zengju926/ MUDA_OIL_PALM (accessed on 1 September 2021).
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