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Abstract: Considering the population growth rate of recent years, a doubling of the current worldwide
crop productivity is expected to be needed by 2050. Pests and diseases are a major obstacle to
achieving this productivity outcome. Therefore, it is very important to develop efficient methods
for the automatic detection, identification, and prediction of pests and diseases in agricultural crops.
To perform such automation, Machine Learning (ML) techniques can be used to derive knowledge
and relationships from the data that is being worked on. This paper presents a literature review on
ML techniques used in the agricultural sector, focusing on the tasks of classification, detection, and
prediction of diseases and pests, with an emphasis on tomato crops. This survey aims to contribute
to the development of smart farming and precision agriculture by promoting the development of
techniques that will allow farmers to decrease the use of pesticides and chemicals while preserving
and improving their crop quality and production.

Keywords: plant diseases and pests; classification; detection; forecasting; precision farming; machine
learning; smart farming

1. Introduction

Due to extremely high infant mortality, the human population of the planet increased
slowly until the year 1700. The first billion was reached in ca. 1800, followed by the second
billion in 1928, the third billion in 1960. In 2017, the world’s population reached its seventh
billion. The fast population growth over recent decades is mainly due to better medical
care. According to predictions from the United Nations, the world’s population is expected
to reach 9.7 billion in 2050, and 10.9 billion in 2100 [1].

Rapid population growth over recent decades has resulted in an increased demand for
agricultural goods, which in turn has lead to a large expansion of cultivation [2]. To meet
rising population demands for food, bio-fuels, and animal products, crop yield production
must double its output by 2050. In order to achieve this goal, key crop yields must improve
by 2.4% each year, but they are now only increasing by roughly 1.3% per year [3]. However,
fulfilling this condition will have negative consequences for the ecosystem, including
the loss of biodiversity and increased greenhouse gas emissions. Traditional agricultural
production is not sustainable from an economic or environmental standpoint; hence, it is
critical to optimize the use of resources such as water and soil to enable high yield crops [2].

Moreover, crop output is continually threatened by diseases and insect pests. It is
estimated that between 20% to 40% of yearly crop production is lost due to plant diseases
and insect assaults across the world, costing the global economy $220 billion and $70
billion, respectively. The amount of these losses varies across the globe and often occurs
due to transboundary plant pests and diseases. For instance, the spread of crop pests and
pathogens between 1950 and 2000 was greater in North America when compared with
other world regions [4].

Pest damage and development are affected by the rise in global temperature brought
by climate change. When the temperature rises, the metabolic rate of insects increases,
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driving them to consume more food and inflict more damage. Growth rates of several
insect species are also affected by temperature. For each degree of average global warming
of the earth’s surface, worldwide agricultural losses due to insect pests are expected to
increase by 10% to 25% [5].

Pesticides and chemical treatments have long been used by farmers to keep pests away.
The use of pesticides for crop protection is on the rise [6], with negative consequences for
human health and increased environmental damage to soil and groundwater. On the other
hand, this also increases the risk of pests developing pesticide resistances [5].

The traditional method of detecting and identifying plant diseases involves naked
eye observation by experts. This takes time and talent, and is not a practical solution
for monitoring large farms. Therefore, to overcome the limitations of manual detection,
automated methods for crop monitoring and forecasting are required [7]. A system capable
of performing such tasks can play an important role in avoiding the excessive use of
pesticides and chemicals, reducing both the damage caused to the environment and the
production costs associated with the use of pesticides and chemicals [7].

The growing availability of big data analysis methods has the potential to spur even
more research and development in smart farming. Besides promoting higher yield crops
in a more sustainable manner, it also aims to contribute to event forecasting, detection of
diseases, and management of water and soil. Big data is coming to the agriculture domain
by collecting data from meteorological stations, remote sensors, historical data, and publicly
available data-sets [8].

ML approaches have been successfully utilized in a variety of areas, including illness
detection from medical images [9], image classification on large data-sets [10], self-driving
automobiles [11], and academic research fields such as physics [12].

ML-based applications for agriculture are still young, but are already showing promise.
For instance, disease classification from images can be done using popular Convolutional
Neural Network (CNN) architectures for different plants with different diseases [13];
relationships between weather data and pest occurrence can be retrieved using Long Short
Term Memory (LSTM) networks for forecasting future pest attacks [14]; insect detection on
leaves can be performed using object segmentation and deep learning techniques [15].

Commercial tools and services for smart farming that make extensive use of machine
learning are currently available to farmers. A few examples are as follows. Plantix, created
by the German startup Progressive Environmental and Agricultural Technologies (PETA), is an
android-based farming assistant tool that provides crop health information, helping with
identification of plant diseases using computer vision and deep learning techniques [16].
Other examples of similar applications are Agrio [17] and CropDiagnosis [18]. Gamaya
is a startup company based on Switzerland that offers a wide variety of smart farming
services services based on the analysis of images images acquired by drones connected
to IoT systems [19]. The asian iFarmer [20] is another company that offers IoT-based soil
analysis and satellite imaging-based crop monitoring solutions. See & Spray, developed by
California-based Blue River Technology, is a large tow-behind herbicide sprayer, that uses
computer vision and deep learning-based algorithms to automatically locate and identify
weeds (in real time), applying herbicides to the specific locations found rather than to the
entire field [21].

Some related surveys can be found in the literature, but most of them are focused on
traditional ML techniques: in [22], a comparison of ML algorithms for predicting the yield
of soybean crops is presented; in [23] research papers from the last ten years for predicting
the start of disease at an early or presymptomatic stage are analysed and categorised; in [24],
the possibility of using different ML techniques in agriculture are discussed, but most of the
present work is about statistical forecasting methods from weather data for predicting wheat
yield. Since the mentioned surveys do not simultaneously cover forecasting, detection, and
classification of diseases and pests, and do not fully explore recent deep learning-based
techniques, the review performed in this paper aims to fill the gaps on these subjects.
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The literature review presented in this paper also aims to provide guidance on the
development of such ML-based tools, in order to provide farmers with data-driven decision
making assistance systems. In this way, farmers can be assisted with lowering the need for
pesticide application and the harm that comes with it, while also preserving and enhancing
crop quality and yield. This contributes to the continued availability of food to meet global
population demands while doing less damage to the planet.

The application of ML-based techniques has promoted the emergence of projects that
have enriched the development and the evolution of smart farming [25]. With this in mind,
this article also contributes to the progression, development, and success of such projects.

2. Literature Review

Data gathering, data pre-processing (i.e., data preparation that includes feature extrac-
tion), and ML classification models are the three basic steps of ML applications, represented
in Figure 1. The following sections present and discuss different approaches used in these
three stages.

Data acquisition Data pre-processing Machine Learning 
Model Clasification

Figure 1. Simplification of the ML pipeline.

2.1. Data Acquisition

Data acquisition is the process of gathering data from various sources systems [26].
Previous studies gather their data various sources to be used for ML techniques. Some of
them produce their own images by taking pictures of plants in greenhouses, such as in
the studies from Gutierrez et al. [15] and Raza et al. [27]. However, image data acquisition
using manual processes, as done by many, generally results in small image data-sets, which
can compromise the development of effective ML-based models. Weather data collection is
also proposed in the literature using for instance sensors in greenhouses, as done by Rustia
and Lin [28]. Meteorological data can also be obtained from weather stations of regional
areas, which typically store records for a longer period of time [14,29].

Images can be collected using search engines on their own [30,31]. This approach
can get a large number of images, but ground truth must be checked by domain experts,
and data cleaning is frequently used to filter out images that do not meet the requirements.

Remote sensing images from satellites and drones have the advantage of being able
to retrieve image data for large agricultural areas. Remote sensing data from satellites
typically consists of multi-temporal and hyper-spectral imagery data, which can be used
to assess the development of the crops. This task can be performed by monitoring the
evolution of vegetation indices [32], which provide important information about the de-
velopment status of the crop fields. Spectral imagery can be used for computing different
vegetation indexes, such as those proposed in [33–39], which are robust to variations
on the sun illumination [37], an important advantage when compared to visible light
spectrum imagery.

Images retrieved from drones can also be used, but have additional needs: to define the
path of the device; to coordinate the drone position with the camera for image acquisition;
and to correct geometric distortions on each acquired image in order to merge the different
acquired images in order to reconstruct a larger image of the whole field [40].

Therefore, it can be stated that data consists of different modalities and variables.
With ML-based and data analysis techniques it can be possible to understand their inter-
action and how they relate to a studied outcome. In the context of the cultivation fields,
the questions are usually: which disease is affecting crops? What pest is causing damage?
What is the relation between weather data and disease and pest occurrence? The most
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important variables related to the appearance of plant diseases and pests are reviewed in
Section 2.1.1.

Freely available data-sets can also be utilised for the development of ML-based ap-
plications. This enables researchers to directly compare the performance of different ML
techniques and approaches. In Section 2.1.2, a brief summary of the main available data-sets
is presented.

The data conditions a significant impact on the performance of ML models. Section 2.1.3
addresses this issue. Data-sets should be representative and include enough records for the
model to perform an effective generalization.

2.1.1. Variables Influencing Crop Diseases and Pests

It’s crucial to be able to predict the arrival of diseases and pests in crops, in addition to
correctly detecting and identifying them. Real-time meteorological data obtained by un-
manned observation planes, as well as long-term data analysis from weather stations, have
been used to create models capable of anticipating disease occurrence. In [41], the General
Infection Model, proposed in [42], was used for assessing the prediction capabilities of the
system. It was found that, if integrated systems such as this are implemented and various
input data-sets essential for interrelationship analyses are collected, accurate plant disease
prediction systems can be constructed.

When it comes to forecasting occurrences, it’s crucial to know which variables will
have an influence on what is being forecast. In the work by Henderson et al. [43] this
was done by discovering which weather variables influence the forecast. On the other
hand, Lasso et al. [44] determined the time period window for each weather variable and
crop-related feature that is the most significant for the appearance of coffee leaf rust disease
in coffee crops.

In [45], Small et al. used weather data, information on potato and tomato crops re-
sistance to late blight (from published literature and field experiments), and management
strategies, to create a web-based decision support system that allows the dynamic pre-
diction of disease outbreaks, with an emphasis on the late blight disease on tomato and
potato crops.

The work proposed by Ghaffari et al. [46] addresses the very early detection of diseases
in tomato crops using atmospheric data and volatile organic compounds. Plants produce
a wide spectrum of volatile organic compounds in reaction to physical and biotic stress,
as well as infection [47]. In [46], the diseases under study were the powdery mildew and
spider mites.

A model developed by Diepeveen et al. in [48] can be used in agriculture to understand
the influence of location and temperature on crops. In addition, elements such as soil,
humidity, rainfall, and moisture were found to have an influence on crop yield [49].

Plant diseases and pest development are greatly influenced by weather and environ-
ment conditions [50]. Humidity is a favorable condition for the development of fungus
diseases. The humidity can be caused by the weather or by poor watering practices that
cause a high wetness among the leaves, making tomatoes more susceptible to diseases,
e.g., leaf mold or bacterial spot [51].

In addition, temperature is a primary driver of insect development, affecting their
metabolic rate and population growth [5].

Plants absorb part of the radiation coming from the sun and reflect the rest. Depending
on the health of the plant, the amount of radiation absorbed and reflected differs. This
difference can be used to distinguish between healthy and diseased plants and to assess
the severity of the damage [52]. The concept is illustrated in Figure 2.
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Figure 2. Absorbed and reflected radiation for plant’s health estimation (adapted from [53]).

Temperature

Insects are ectothermic, meaning that they cannot regulate their internal temperature
and have to rely on environmental heat sources. Temperature affects the population growth
and metabolic rates of insects [5]. Thus, the duration of an insect’s life cycle is highly
influenced by the number of days where the temperature is suitable for its development.
Two temperature thresholds can be define: an upper threshold, in which insect development
slows down or stops and a lower one where there is no insect growth. These thresholds
vary according to the specific insect species.

Degree day is a concept concerning the accumulation of heat by insects [54]. One degree
day is a period of 24 h in which the temperature was one degree above a given baseline.
Different models for determining the number of degree days associated to common pest
species were proposed in [55]. For instance, tomato crops are susceptible to the greenhouse
white fly (Trialeurodes vaporariorum), whose number of degree days from egg to adult is
380 DGG [56]. Depending on the temperature of the environment, this development time
can be longer or shorter.

Biofix date is the date to start accumulating degree days associated with a given insect
species [57]. This date can be determined by noticing specific insect species on traps or
by detecting eggs on plant leaves. From this date, degree days can be used to estimate
the period at which insects are reaching a given development stage suitable for pesticide
application. Temperature and weather forecasts are nowadays sufficiently accurate to
enable the estimation for the time required for an insect to reach a given development
status [58].

In the context of ML-based applications, related work focused on studying the impact
of weather in pest insect development found a higher correlation between the number of
pest catches and temperature, when compared with other factors [28,32].

Some diseases affect the transpiration rate of the plant and, consequently, its tempera-
ture [27]. Therefore, plant leaf temperature can be used for disease detection. ML models
can achieve higher accuracy for disease identification when combining thermal images
with visible light images. The benefits are more useful for early detection when the plant
has not yet developed symptoms recognizable by the naked eye.

Humidity

Diseases affecting plants are often caused by fungus or bacterial pathogens. High
relative humidity environments favor the development of these microorganisms. Thus,
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humidity has to be managed by good watering practices, while avoiding excessive leaf
moisture and soil moisture [59].

Different studies using regression models and weather data demonstrate the influence
of humidity on disease and pest development [14,29]. Thus, the collection of humidity
records in greenhouses using sensors can be helpful for disease forecasting.

Leaf Reflectance

Plants absorb solar radiation between 400 to 700 nm (photosynthetically active radia-
tion) which corresponds approximately to the visible light region. For wavelengths greater
than 700 nm (red) in the Near Infra-Red (NIR) region there is a sharp order-of-magnitude
increase in leaf reflectance due to chlorophyll characteristics, a phenomenon known as red
edge [60].

Diseased plants with damaged leaves have different leaf spectral reflectance com-
pared to a healthy plant because of the different chlorophyll concentration and leaf tissue
damage. Diseased plants end up absorbing less of the visible light and more of the NIR
light. From this knowledge, disease detection can be done using leaf reflectance infor-
mation [40,52,53]. In a study concerning late blight infection, a disease that tomatoes are
also susceptible to, it was found that spectral differences in the visible region between
healthy and diseased plants are small and more significant differences are noticeable in the
NIR [40].

Various vegetation indices can be retrieved from remote sensing [33]. A common index
is the Normalized Difference Vegetation Index (NDVI) (Figure 2) for assessing the degree
of vegetation of an area by using leaf reflectance information. NDVI can be computed
using satellite data or from modified cameras [40,53]. It was found that the combination of
NDVI and temperature gives higher accuracy in predicting pests appearances than weather
variables alone [32]. NDVI can also be used as input data for ML models to accurately
evaluate disease severity.

Pest development varies depending on the development stage of the plants. NDVI
can be used to monitor plant growth and establish relationships between the crop stage
development and pest occurrence.

2.1.2. Agriculture Data-Sets

Many data-sets used in the context of agriculture include images of plant diseases or
pests with the goal of classifying them. PlantVillage, PlantDoc, IP102, Flavia and, MalayaKew
Leaf are some data-sets that are freely available. Here is a brief summary of each of these:

• PlantVillage [61]: popular data-set used for plant disease classification. Specifically for
tomato, it contains 18,160 images representing leaves affected by bacterial spot, early
blight, late blight, leaf mold, septoria leaf spot, spider mites, two-spotted spider mite,
target spot and tomato yellow leaf curl virus. It also includes images of healthy leaves.
Figure 3 depicts two sample images taken from this data-set.

• IP102 [62]: data-set for pest classification with more than 75,000 images belonging
to 102 categories. Part of the image set (19,000 images) also includes bounding box
annotations. This is a very difficult data-set because of the variety of insects, their cor-
responding development stages (egg, larva, pupa, and adult) and image backgrounds.
The data-set is also very imbalanced. Figure 4 presents two examples of images from
this data-set.

• PlantDoc [63]: contains pictures representing tomato diseases which were acquired
in the fields. Among the considered diseases are: tomato bacterial spot, tomato early
blight, tomato late blight, tomato mold, tomato mosaic virus, tomato septoria leaf spot,
tomato yellow virus and healthy tomatoes.

• Flavia [64]: contains photos of isolated plant leaves over a white background and in
the absence of stems. This data-set covers 33 plant species.

• MalayaKew Leaf [65]: was gathered in England’s Royal Botanic Gardens at Kew. It con-
tains images of leaves from 44 different species. There are situations where leaves from
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different species are very similar, presenting a greater challenge for the development
of plant identification models.

Tomato Powdery Mildew Disease (TPMD) is a different type of data-set because it
is related to meteorological data. It offers statistics on powdery mildew disease suscepti-
bility depending on a variety of weather-related variables such as humidity, wind speed,
temperature, global radiation, and leaf wetness [66].

(a) Tomato leaf affected by mosaic virus disease (b) Tomato leaf affected by late blight disease

Figure 3. Examples of tomato leaves affected by diseases taken from the PlantVillage data-set [61].

(a) Rice leaf roller (Marasmia exigua) (b) Winter grain mite (Penthaleus major)

Figure 4. Examples of insect images taken from the IP102 data-set [62].

2.1.3. Field-Collected vs. Laboratory-Collected Data

ML models performance is influenced by the quality and type of input (image or
other). Images acquired in a controlled laboratory environment and images acquired in the
field can result in completely different processes and/or results. The difficulty for disease
and pest classification is much higher for images acquired in the field than for images taken
in a controlled environment.

Under a controlled laboratory environment, images typically contain a single leaf
over a neutral artificial background [67]. The PantVillage data-set is an example of such
situation [61]. It is possible to achieve great performance on these data-sets [13]. However,
the creation of these types of data-sets is a time consuming and costly process.

When compared with images acquired in the laboratory, field images have much
higher complexity, due to the presence of multiple leaves in the same image, presence of
other plant parts, different shading, and lighting conditions, different ground textures,
different backgrounds, etc. [63]. According to the studies in [63,68], training ML models
using laboratory images provides poor outcomes when tested in the field, making them
useless for the task. Training on field photographs and testing on laboratory photographs,
on the other hand, produce reasonable outcomes [68]. The addition of field images in the
training data has been shown to boost the results significantly, however testing on images
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from alternative data sources is advised [68]. PlantDoc demonstrates that cropping the
leaves improves the accuracy of CNN architectures when dealing with in-field photos [63].

Table 1 shows the performance achieved on a few studies that analysed the impact of
image acquisition conditions on the performance of disease classification models. In each
table cell, “L” corresponds to lab images, “F” to field images and “L + F” for both types of
images. In addition, the data-sets associated to the weights of the pre-trained models that
were used for Transfer Learning (further explored in Section 2.3.4) are also shown.

Table 1. Performance comparison of field vs. laboratory data.

Study Pretrained Weights Training Testing Performance

[68] -

L F 33.0% acc.

F L 65.0% acc.

L + F L + F 99.0% acc.

[63]

ImageNet L F 15.0% acc.

ImageNet + PlantVillage F F 30.0% acc.

ImageNet + PlantVillage F (cropped images) F (cropped images) 70.0% acc.

[13] ImageNet L L 99.0%+ acc.

2.2. Data Pre-Processing

Pre-processing data before feeding it to the model is common in most ML-based
applications. Images are typically pre-processed using computer vision techniques to
remove noise, to enhance the image contrast, to extract the regions of interest, to extract
image features, etc. In general, image pre-processing steps usually lead to better model
outcomes. The most common data pre-processing techniques are covered in the following
sub-sections.

2.2.1. Noise Reduction

Different types of filters, such as Gaussian and median filters, are used to reduce
noise to obtain smoother images. These filters have an effect of blurring and removing
non relevant details of an image, at the expense of potentially losing relevant textures or
edges [69].

Erosion and dilatation are two morphological image operations that can be applied
to binary or grey-scaled images. Erosion removes islands and tiny items, leaving only
larger objects. In other words, it shrinks the foreground objects. On the other hand, dilation
increases the visibility of items and fills in tiny gaps, adding pixels to the boundaries of
objects in an image [70]. These operations reduce details and enhance regions of interest.
These methods are helpful, for instance, for pest detection against a neutral background,
such as images of traps with captured insects [28,71].

Images are usually stored in the RGB format, which is an additive color model of red,
green, and blue components. Due to the high correlation between these color components,
it is usually not suitable to perform color segmentation in the RGB color space. Therefore
it is important to bear in mind that there are others color spaces such as HSV or L*a*b*.
In HSV the color components are: hue (pure color), saturation (shade or amount of grey),
and value (brightness). In the L*a*b* color space, L* is the luminance (brightness), a* is the
value along the red-green axis, and b* is the value along the blue-yellow axis. In these color
spaces, the brightness of a color is decoupled from its chromaticity, allowing the images
to be processed with different lighting conditions [69]. This is significant in the context
of agricultural images acquired in the fields, since they can have been shot under various
lighting circumstances or at different times of the day.

Histogram equalization is a technique for adjusting contrast. In low contrast images,
the range of intensity values is smaller than in high contrast images. Equalization of the
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histogram spreads out the intensity levels throughout values in a wider range. Contrast
enhancement is not directly applied in the RGB color space, because it applies to brightness
values. Thus, images have to be converted either to grey-scale or to a color space that
contains a brightness component, such as the HSV or L*a*b* color spaces [69].

2.2.2. Image Segmentation

Image segmentation is the process of grouping pixels into regions of interest. In the
context of crop disease identification, these regions of interest can be, for instance, diseased
areas on the plant leaves, for assessing the severity of the infection by the amount of the
infected area, or for background removal, since the removal of the background allows
highlighting of the regions of interest for further analysis. An example of background
removal is shown in Figure 5.

(a) Strawberry leaf scorch (original) (b) Strawberry leaf scorch (segmented)

Figure 5. Example of background removal from the PlantVillage data-set [51].

Blob detection is a computer vision technique for getting regions of pixels that share
common properties. The properties of these regions, such as color and brightness, differ
greatly compared to their surroundings. This technique can be used, for instance, to detect
and count insects in images [28,71].

The k-means clustering algorithm is a popular unsupervised ML algorithm that can
be used for image segmentation. Pixels are grouped into clusters which have pixels with
similar color and brightness values. This technique is helpful, for instance, to detect
damaged regions on leaves [31,72]. Fuzzy c-means is a soft clustering technique where
a pixel can be assigned to more than one group. This method was used by Sekulska-
Nalewajko and Goclawski [73] and Zhou et al. [74] for plant disease classification.

Region growing is a region-based image segmentation technique used by Pang et al.
in [75] to accurately define the image regions corresponding to the plant leaf parts affected
by disease.

Intensity thresholding is a straightforward and simplified approach for image segmen-
tation. According to the pixel value, that pixel is classified into a group (e.g., healthy or
diseased). When using this technique, images are frequently converted to grey-scale first
and then thresholded using a grey intensity value [76]. Figure 6 shows an example of an
image converted to grey-scale.
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(a) Black rot apple (original) (b) Black rot apple (grey)

Figure 6. Example of an image converted to grey-scale from the PlantVillage data-set [51].

2.2.3. Feature Extraction

Feature extraction is a common step in the pre-processing of images for shallow
ML models. Common image feature extraction algorithms include the Histogram of
oriented Gradient (HoG), Speeded Up Robust Features (SURF) and Scale Invariant Feature
Transform (SIFT) [62,77]. Different feature extractors obtain different features that can be
more or less suitable for the specific problem at hand. HoG focuses on the structure and
shape of the image objects, by detecting edges on images oriented according to different
directions. The distribution of gradients according to these directions are used as features.
SIFT finds scale and rotation invariant local features through the whole image, obtaining a
set of image locations referred to as the image’s key-points. SURF is conceptually similar to
SIFT, with the advantage of being much faster, which can be relevant for the implementation
of real-time applications.

The distribution of image colors is represented by a color histogram. Since most
diseases have symptoms that impact the color of the leaves, the histogram can also be used
for distinguishing between healthy and unhealthy plants [77].

Some computer vision algorithms for feature extraction demand that pictures are
converted to grey-scale, such as Haralick texture [78] or edge detection algorithms [79], etc.
Haralick texture features are computed from a Grey Level Co-occurrence Matrix (GLCM),
a matrix that counts the co-occurrence of neighboring grey-levels in the image. The GLCM
acts as a counter for every combination of grey-level pairs in the image. Diseased and
healthy leaves have different textures since a diseased leaf has a more irregular surface and
a healthy leaf has a smoother one. These features allow differentiation of a healthy leaf
from a diseased one.

Local Binary Pattern (LBP) [80] is another technique used for image texture features
extraction robust to variations on lighting conditions. The LBP technique was used by
Tan et al. in [81] for the extraction of information about diseases on tomato leaves.

Multi-spectral image data-sets can be exploited to create new data and improve the
performance of models. For instance, in [40], originally, there were NIR pictures of the
fields and from this data the authors created new images from spectral differences (between
green and blue bands, and between NIR and green bands), band ratios and dimension
reduction using principal component analysis. The authors also assess which type of data
achieves best performance on the models.

2.2.4. Cropping and Resizing Images

Cropping and resizing images is used for decreasing the input image dimensions,
to allow greater processing speed or to fit hardware requirements. It can also be used for
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creating more data to train the models, for example, from a low number of high resolution
pictures, a much higher number of low resolution images can be retrieved [40].

2.2.5. Pre-Processing in Tabular Data

Tabular data consisting of weather records was commonly found in the literature
analysed in the scope of this paper. When gathering data records with varying dates
and locations, these records can be integrated in two ways: cross-year, where models are
validated over the years at the same location, and cross-location, where models are validated
across the various locations for the same year. The average coefficient of determination (r2)
was found to be higher for cross-year models for all ML algorithms tested [29].

Common procedures in pre-processing are scaling/standardization of data and miss-
ing values processing [14]. Most algorithms require that there are no missing values in data
and others, such as neural networks, can benefit from the normalization of feature values
to improve training and reduce the effects of vanishing gradients [29].

Down sampling is a useful way to process data when there is a high number of records.
In [52], measurements of leaf reflectance were done, from 760 to 2500 nm with a 1 nm
interval. The 1740 wavelengths measurements were compressed into 174, and afterwards
10 wavelengths were selected using the stepwise method. From the regression analysis, re-
sults showed a coefficient of determination r2 = 0.94 for these wavelengths and leaf severity.
Experiments showed that fewer than those 10 wavelengths would worsen performance.

2.2.6. Pre-Processing in Deep Learning

Deep learning pre-processing does not focus on feature extraction since one of the
most essential and beneficial properties of deep learning is its ability to generate features
autonomously. For this reason, pre-processing is focused mainly on creating more im-
ages through data augmentation and resizing the input images to fit the models input
parameters.

Some studies have compared the manual selection of features with deep learning.
When it comes to categorizing insects in the field, manually selected features were not
able to capture all of the relevant information about insect infestations or to handle the
noise of real-world photos. Manually selected features were also not able to capture subtle
differences between different insect species that share similar appearance [62]. For insect
detection, deep learning techniques achieved higher accuracy and took less time to process
since they efficiently select regions of interest [15]. In the work done by Brahimi et al. in [67],
tomato disease classification using deep learning achieves higher accuracy, with values
above 98%, but the accuracy of models using feature extractors is not very far behind,
reaching values above 94%.

When comparing the use of original color pictures with images converted to grey-
scale or background segmentation, deep learning models performed better in the original
color pictures [13]. These findings are also confirmed in [82], where the performance of
color vs. grey-scale pictures is compared. This supports the idea of deep learning not
requiring extensive pre-processing of images. Nevertheless cropping images achieve better
performance on field images classification, by increasing the region of interest and reducing
the varying background [63].

Data augmentation is a process to artificially expand and increase the diversity of
the training data-set. This process benefits the performance of the models, by introducing
variability in the data and allowing a better generalization of the domain [83]. Some
common transformations are rotation, cropping, scaling, and flipping.

Data cleaning is the process of assessing the quality of the data and to either modify
or delete it. It is usually applied in studies that retrieve their data-set images from search
engines in an automatic way, removing pictures that do not correspond to the intended
labels or that do not comply with minimum resolution requirements [30,62].

Image resizing is usually performed to fit the input parameters of the models. Studies
have compared the performance of the models with different input image sizes, and con-
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cluded that with larger images the models achieve higher accuracy but require more time
for each training epoch [68] and more powerful hardware [71].

Table 2 shows the pre-processing techniques applied to deep learning classification
models analysed in the scope of this review. The ‘type’ column shows the data pre-
processing technique used and the ‘info’ column contains additional details about it.

Table 2. Pre-processing when deep learning techniques were used.

Study Type Info

[13]

Greyscale -

Background Segmentation Masks

Resize 256 × 256

[30]

Data Augmentation Affine, perspective, rotation

Data Cleaning -

Resize 256 × 256

[71] Resize 52 × 52, 112 × 112, 224 × 224

[62]
Data Cleaning -

Resize 224 × 224

[15]
Data Augmentation Crop, rotation, Gaussian noise, scale, flip

Resize 600 × 1024, 300 × 300

[67] Resize 256 × 256

[68] Resize 256 × 256

[82]
Greyscale -

Resize 60 × 60

From the table, it is noticeable that all analysed papers employing deep learning-based
techniques used image resizing. It is also worth mentioning that the application of data
augmentation was found in 25% of the depicted works, and the same goes for image color
conversion to grey-scale and data cleaning.

2.3. Machine Learning Models

ML models enable researchers to get insight into data and existing correlations between
various factors that influence occurrence of diseases and pests in crops. After data is
processed and features are extracted, models can be used for classification, regression,
among other goals. In classification, a new data sample is assigned a label according to the
relations retrieved during the training process. In regression, a continuous output value is
estimated from the input variables.

The following sub-sections contain a description about the ML models used, published
work that have used them and the achieved performances. In addition, as a consequence of
the conducted research, it was decided to include a sub-section about the use and potential
of Transfer Learning (TF) in the research under consideration.

2.3.1. Support Vector Machine

SVM [84] is a model that creates a hyper-plane that separates two classes (can also be
adapted and applied for multi-class problems). By maximizing the distance, or margin,
between the nearest data points (support vectors) of each class to the hyper-plane, SVM
chooses the optimum hyper-plane to segregate the data. SVM can also perform well in
non-linear data by using the so called kernel trick technique. The SVM kernel is a function
that transforms a low dimensional input space into a higher dimensional space that is
linearly separable. For this reason, SVM can be very effective in high dimensional spaces.
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SVM can also be used for regression problems [29,40,85]. Furthermore SVM can also be
used in a hybrid way as Bhatia et al. did in [86], by using SVM together with logistic
regression algorithm to predict powdery mildew disease in tomato plant.

A syntheses of agricultural studies using SVM as the ML model can be observed in
Table 3. The type of SVM used, as well as its kernel and result can be observed. Linear,
polynomial, and RBF kernels seem to be most commonly used on SVM-based classification
and regression algorithms applied to agriculture contexts.

Table 3. SVM performance.

Study
Classification/ Kernels

Regression Type Results

[52] Classification
Polynomial 90.0% acc.

Radial Basis Function 97.4% acc.

[29] Regression Not specified SVM outperformed

[40] Regression Linear r2 = 0.45

[27] Classification Linear 90.0%+ acc.

[31] Classification

Radial Basis Function 90.5% acc.

Quadratic 92.0% acc.

Linear

91.0% acc.Multi-Layer Perceptron

Polynomial

[67] Classification Not specified 94.6% acc., 93.1% f1

SVM can achieve better performance than other ML techniques such as ANNs and
conventional regression approaches in forecasting plant diseases [29].

2.3.2. Random Forest

Random Forest (RF) is a widely known ensemble built from decision trees trained
on different subsets of the training data. Also, when deciding which variable to split
on a node, RF considers a random set of variables and not the whole set of features.
During classification, each tree votes and the class most agreed upon is returned. As each
tree is trained on a subset of data and of features, the computation is fast. A high number
of trees and the diversity of each of them makes them robust to noise and outliers. Some
studies that have employed Random Forest (RF) are shown in Table 4.

Table 4. Performance of Random Forests.

Study Classification/Regression Number of Trees Performance

[40] Regression 100 r2 = 0.75
[32] Regression 200 r2 = 0.75
[77] Classification - 70.0% acc.
[67] Classification - 95.5% acc., 94.2% f1

RFs can achieve greater accuracy with less number of samples when compared to
other ML techniques [77].

2.3.3. Artificial Neural Networks

Artificial Neural Networks (ANN) are models inspired by biological brains. ANN
consists of neurons distributed in input, hidden, and output layers and can have multiple
hidden layers and multiple units in each layer. With more hidden layers, an ANN is able to
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learn complex relations from the hierarchical combination of multiple features, and thus
create high-order features, Figure 7 shows an illustration of an ANN. Deep learning is
associated with ANNs that contain a large amount of layers.

OutPut + Δoutput

w + Δw

Output

Hidden

Input

Figure 7. ANN example.

Learning occurs by a process called optimization, which is an iterative method for
minimizing an error function, typically based the Gradient Descent algorithm. Instead of
calculating the gradient from the entire data-set, the optimization process typically uses
chunks of data records called batches. After the network processes the input, the output is
compared to the expected output and the error is computed. The error is then propagated
back through the network, one layer at a time, and the weights are updated according to
the amount they contributed to the error. This updating process is called back-propagation.
After all records in the data-set are processed once, a training epoch is completed. Training
the network can require several epochs until desired results are achieved.

CNNs are a type of a deep learning network that commonly are applied on image
classification tasks. In this type of network, the use of the so-called convolutional layers
enables an hierarchical extraction of features, where simpler features such as edges are
extracted in the first layers and more specific and complex features are extracted in deeper
layers. The dimensionality of the input is decreased by the use of pooling layers. Fully
connected neural networks are usually placed on top after the convolutional and pooling
layers and act as classifiers using these high-level features.

Recurrent Neural Networks (RNN) are also a type of deep learning network, usually
applied to time series data. RNNs extract features automatically from data and can capture
temporal relationships. Because of the architecture of these networks, the gradients calcu-
lated to update the weights can become unstable, becoming too high (Exploding Gradient)
or too low (Vanishing Gradient).

The recurrent layers can be structured in a wide variety of ways to produce distinct
RNNs [87]. The LSTM cell was proposed by Hochreiter and Schmidhuber in [88]. Here,
the remembering capacity for the standard recurrent cell was improved in order to deal
with undesirable dependencies on the long-term.

Recently, Xiao et al. suggested in [14] that LSTM networks have specific advantages in
processing time-dependent problems. LSTM networks can be used, for example, to retrieve
relationships between meteorological data and pest occurrence in order to forecast future
pest attacks.
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In the context of agriculture, obtaining a large amount of annotated data for the
training of ML-based algorithms can be a rather difficult task. Few-shot learning ap-
proaches have been trying to mitigate this problem by managing to learn with fewer data.
The methods typically associated with this technique can be organized according to four
groups [89]: data augmentation, metric learning, external memory, and parameter opti-
mization. Yang et al. present a survey on the developments, application, and challenges of
this approach.

When using ANN models, authors might use one of two methods. They either create
their own model designs or adopt well-known architectures that have been shown to
perform well in previous studies, particularly CNN architectures for image classification.

User-Defined Network Architectures

This sub-section presents studies where the authors defined their own neural net-
work architectures.

In [40], Duarte-Carvajalino et al. built and compared the outcome of two different neu-
ral networks models. The first model was a Multi-Layer Perceptron (MLP) with 2 hidden
layers, each having half the number of nodes of the previous layer. The authors used
a learning rate of 0.01, the Adamax optimizer, batch normalization and dropout with
probability of 0.2 in all layers, and ReLU as activation function. The other model was a
CNN trained using the same hyperparameters used on the MLP. The CNN consists of two
convolutional layers using 20 filter kernels of size 3 × 3, followed by a max pooling layer
of size 2 × 2. The succeeding network layers are another two convolutional layers using
40 filter kernels of size 5 × 5 followed by a max pooling layer. After flattening, a dense
layer is added before the output is computed. It was concluded that the CNN achieved
better results than the MLP.

In [14], an LSTM network was used for processing time series data, i.e., winter and
autumn data. The LSTM network consisted of two fully connected layers with five hidden
units each. The results showed that the LSTM network achieved the best performance with
92% accuracy when compared to RF, SVM, and K-Nearest Neighbors (KNN). The Apriori
algorithm [90] was applied for interpretability.

Disease prediction for different regions was also studied with the use of an ANN in [29].
In this case, the back-propagation neural network [91] and the generalized regression neural
network [92] models were used.

A model suggested by Patil and Kumar in [93] attempted to identify the link between
weather variables and the emergence of 4 types of rice diseases. In this work, the authors
used an ANN to perform the detection, identification and prediction of the appearance of
diseases in rice crops. The meteorological data-set referred to data between 1989 and 2019.
The ANN consisted of 8 neurons in the input layer, 15 in the 2 hidden layers, and 5 in the
output layer.

In [94], Sharma et al. performed a prediction of the potato late blight disease based on
meteorological data only, using an ANN. In this case, data from 2011 and 2015 was used.
Several tests with different network activation functions and data-set splits were done. It
was concluded that the larger the data-set, the better was the performed prediction.

In addition, other algorithms relying on meteorological data and ANNs for performing
predictions have been proposed. In [95], Dahikar and Rode present an ANN for predicting
which crop will grow best in a certain area. The predictions were based on weather and
soil data. Refs. [96,97] proposed ANN-based models for predicting crop yield.

Convolutional Neural Network Architectures

Image classification has achieved great results, with various model architectures being
developed over the last 10 years. Most of these deep learning models were proposed in the
context of the “Large Scale Visual Recognition Challenge” (ILSVRC). These models include
well-known architectures such as AlexNet, GoogleNet, VGG, and ResNet, which have been
widely used for image classification in different application domains.
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Table 5 summarizes a set of studies that used pre-existing CNN architectures, depicting
the architecture used in their work and the corresponding results.

Table 5. Performance of CNN architectures.

Study Architecture Results

[13]
GoogleNet 99.3%

AlexNet 99.3%

[30] CaffeNet 96.3%

[71] VGG16 98.0% validation, 81.0% in new apple orchard

[62]

GoogleNet 43.5% acc., 32.7% f1

FPN 54.9% mAP 0.5

ResNet 49.4% acc., 40.1% f1

VGGNet 48.2% acc., 38.7% f1

AlexNet 41.8% acc., 34.1% f1

[67]
GoogleNet 98.7% acc., 97.1% f1

AlexNet 99.2% acc., 98.5% f1

[68]
AlexNet 99.4% acc.

VGG16 99.5% acc.

[63]

VGG16 60.4% acc., 60.0% f1

InceptionResNet V2 70.5% acc., 70.0% f1

Inception V3 62.1% acc., 61.0% f1

[82] LeNet 98.6% acc., 98.6% f1

As can be observed from Table 5, several CNN architectures developed over the last
decade have been successfully used, showing great potential for agriculture applications.
From these, the use of older CNN architectures such as AlexNet (2012), VGG16 (2014), and
GoogleNet (2014) were found on 44%, 33%, and 33% of the analysed papers, respectively.
Although the use of the most recent CNN architectures is not expressed in the papers
analysed in this review, we believe that, in the near future, the application of newer
architectures to agriculture will be a reality.

2.3.4. Transfer Learning

TF makes use of already existing knowledge for some related task or domain in order
and apply it to the problem under study. Models previously trained for image classification
on large data-sets are usually used and adapted to the data-set under study. A common
approach is to substitute the last network layers (i.e., the dense layers) of a pre-trained
network, adapting it for a different classification task. The model is then trained but only the
newly inserted layers are trainable—all network layers remain frozen during the training
process. In extension of this approach, fine-tuning, is also commonly used. Besides training
the newly inserted layers, fine-tuning allows the training of additional layers of the base
model, typically the deeper convolutional layers of the network.

TF is usually done when the studied data-set is small, with insufficient samples for
training a CNN model from scratch.

Table 6 synthesizes several deep learning-based studies where TF was applied. It
presents details addressing: the data-set used for the base model training, the used TF
method and the performance difference between using TF and training from scratch.
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Table 6. TF analysis.

Study Model Dataset for Pretrain Method
Performance Difference
Compared to Training

from Scratch

[13] AlexNet, GoogleNet ImageNet All layers trainable ~−2% acc.

[30] CaffeNet ImageNet
Low learning rate for
original layers (0.1),

high for top layer (10)
~−0.50% acc.

[62] AlexNet, GoogleNet,
VGGNet, ResNet ImageNet Fine tune ~−14.0% acc. in best model

(ResNet)

[15]

Faster RCNN
(ResNet101, Inception

V2, Inception
ResNet V2)

COCO Fine tune No comparison

[67] AlexNet, GoogleNet ImageNet Fine tune ~−2%

[63] VGG16, Inception V3,
Inception ResNet v2

ImageNet and/or
PlantVillage Fine tune ~−31.0% using ImageNet

and PlantVillage

As can be observed from the table, the use of TF leads to lower performance when
compared with training the full model from scratch. Nevertheless, there are many cases
where such a difference is small, which means that TF can indeed be a useful possibility
when the data-set is not sufficiently large.

3. Discussion

The studies collected in this review show that plant disease classification is a domain
with promising results, with some studies achieving very high results [13,67]. Diverse data-
sets have been employed, each with their own characteristics and associated difficulties:
intraclass variability, background diversity, and different lighting and shading conditions
during image acquisition. Due to these reasons, performance comparisons between the
analyzed studies is not a straightforward task.

3.1. Data Acquisition

The data acquisition phase will have great influence on the quality of the ML model
results, since the quantity and quality of data will influence the behaviour of ML models
both in terms of good results and robustness.

Disease classification has shown promising results when the images of leaves are
taken in laboratory conditions, with a single leaf against a neutral color background [13].
Laboratory image data is usually acquired using controlled lighting conditions using
neutral color image backgrounds. On the other hand, images acquired in the cultivation
fields are much harder to classify due to the presence of multiple leaves and plants, varying
shading and lighting conditions, different ground textures and background objects [63].
Training ML models using laboratory images does not transfer well to testing in field
conditions, achieving poor results. As for the opposite, reasonable results have been
achieved [63,68]. The inclusion of images acquired in the field to the training processes can
greatly improve performance of the models [68]. Nevertheless, the choice of data should
always reflect the target objective of the application. For instance, if the model is intended
to work in the laboratory environment, it isn’t necessary to train it using data acquired on
uncontrolled environments, since robustness to different acquisition conditions will not be
necessary for the case. On the other hand, if the model is to be used in the field, images
from the real context must be used. If the latter is not ensured using a large amount of
images, the model will probably not perform well on the real conditions that exist in the
crop fields.
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Many studies applied ML-based algorithms to weather data records, since the weather
conditions have an important role in the development of diseases and pests. Sensors
for measuring weather data such as temperature, humidity, and rainfall fill data records
that can be used to find correlation between the data and the development of pests or
plant diseases in order to predict theses kind of developments [14,28,29]. Data records of
meteorological measurements and pest occurrence can also be analyzed by deep learning
with good results, as can be seen in [14]. Pest occurrence can be periodically manually
analyzed by counting insect appearances [32] or by automated processes using computer
vision techniques that detect insects on leaves or in traps [15,28,71].

Plants reflect NIR radiation differently depending on the disease damage [52]. If re-
mote sensing data [32] or cameras equipped with filters [40] (allowing the capture of images
at different bands of the light spectrum) are available, they can be used to compute NDVI.
In [32], Skawsang et al. finds the relevance of NDVI and temperature for predicting pest
occurrence. In [32], it is suggested that NDVI contains information about the relation
between the crop growth stage and pest development. Duarte-Carvajalino et al. suggests
in [40] that the NIR band is more suited for late blight detection than color imagery.

Thermal imagery combined with colored images provides higher accuracy when com-
pared with using color features only, when detecting diseases that affect the temperature of
the plant [27]. This is especially useful for detecting specific diseases in their early stages,
where the plant has not yet developed visible symptoms. Knowledge about the variables
that will influence the state of the plantation being worked on is very important when it
comes to deciding which types of data should be acquired.

3.2. Data Pre-Processing

Data pre-processing techniques vary according to the used ML-based approach. In the
case of image data, feature extraction can be done manually by applying computer vision
algorithms, or automatically using deep learning.

Manual feature extraction processes typically demands pre-processing steps such as
noise reduction or contrast enhancement. The researchers have to decide and select which
feature extractors are more suitable for the problem at hand. When using deep learning,
pre-processing is typically focused on data augmentation, enriching the training data-set in
order to achieve a better model generalization. Deep learning shows better results when
directly analyzing the originally acquired images when compared with the use of images
converted to grey-scale [82] or subject to background removal [13]. This is a useful finding
because background removal can be a complex and arduous task for images taken in field
conditions, with complex and varying background [68]. When comparing the performance
of ML models based on manual feature selection with models based on deep learning,
the latter has shown better performance in studies that compared both approaches using
the same input data [15,67,83].

Highlighting the region of interest of the leaves and reducing the background noise
can increase the model’s performance. This is valid for plant disease identification [63] as
well as for insect classification [71].

3.3. Machine Learning Models

The studies presented along this paper have mostly used SVM, RF, or deep learning-
based ML models. All of these have show promising results, highlighting the potential of
using ML techniques for disease and pest classification, detection, and prediction. SVMs
are robust and useful in high dimensional spaces due to their use of kernel trick. RF can
avoid overfitting due to the high number of trees trained in different subsets of data. Deep
learning usually achieves the best classification results due to its ability to create and extract
hierarchical features from the inputs. Deep learning beats other ML models, particularly in
image classification domains, especially when using pre-existing CNN architectures such
as Inception and ResNet [62,63].
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Despite deep learning models achieving higher accuracy values, SVM and RT can
also achieve high values with accuracy above 94%, especially in disease classification on
laboratory images [67]. SVM also achieves high accuracy, with values above 90%, in the
detection of tomato diseases [30].

RNNs are capable of establishing relationships between weather data and pest occur-
rence, surpassing other models such as RF and SVM [14].

In scenarios where data is difficult to obtain, models trained with a lower amount
of data can benefit from the use of TF, rather than having the models trained from
scratch [13,52,72,76,77]. Most studies have their models pre-trained on large data-sets
for image classification such as ImageNet or COCO. The inclusion of the PlantVillage data-
set with ImageNet for pre-training helps to improve the accuracy of models for disease
classification on images acquired in the field [62]. TF is typically applied by training some
of the top layers of the pre-trained model jointly with the new classifier.

An alternative would be to address lack-of-data problems using few-shot learning
approaches, as suggested in [89].

4. Conclusions

This survey presented an insight into existing research addressing the application of
ML-based techniques for forecasting, detection, and classification of diseases and pests.

Data-sets containing weather, diseases, and pests data should keep records for long
periods of time. Time-series ML models, such as RNN, can be employed to accurately
forecast the occurrence of diseases and pests based on meteorological measurements
series. NDVI measurements can also be helpful, since they provide additional information
regarding the crop’s development.

Detection and classification of pests and diseases can be performed using computer vi-
sion and deep-learning algorithms based on CNN models, which show better performance
when compared with older image classification approaches based on “manual” features
extraction. However, deep learning models require large amounts of data, which can be
difficult to obtain. To tackle this issue, the use of transfer learning or few-shot learning
methods can prove useful. Nonetheless, although the performance of deep learning-based
methods is high for images acquired under controlled conditions, additional research is
required regarding the analysis of images taken in the field, under real life conditions.

Since the literature does not yet include substantial work on pest and disease fore-
casting using combinations of different data modalities, this article also aimed to provide
a general overview on the use of ML techniques over different types of data, in order to
facilitate further developments that may help fulfill this gap.
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Abbreviations
The following abbreviations are used in this manuscript:

ANN Artificial Neural Network
CNN Convolutional Neural Network
GLCM Grey Level Co-occurrence Matrix
HoG Histogram of oriented Gradient
ILSVRC Large Scale Visual Recognition Challenge
JU ECSEL Joint Undertaking
KNN K-Nearest Neighbor
LPB Local Binary Pattern
LSTM Long Short Term Memory
ML Machine Learning
MLP Multi-Layer Perceptron
NDVI Normalized Difference Vegetation Index
NIR Near Infra-Red
PETA Progressive Environmental and Agricultural Technologies
RF Random Forest
RNN Recurrent Neural Network
SGD Stochastic Gradient Descent
SIFT Scale Invariant Feature Transform
SURF Speeded Up Robust Features
SVM Support Vector Machine
TF Transfer Learning
TPMD Tomato Powdery Mildew Disease
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