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Abstract: In greenhouse nurseries, one of the important tasks of the automatic transplanter is
replanting missing or bad seedling holes with healthy seedlings. This requires the transplanter to
spend significant time moving between the supply trays and target trays during replanting. The
diversity and complexity of the transplanting routes affect transplanter efficiency. Path planning
method can find a better path for the manipulator and improve the efficiency of transplantation.
The A* algorithm (A*), which is one of the optimal path search algorithms, is often used in practical
applications of path planning. In this paper, the heuristic function of the A* is optimized by the ant
colony algorithm (ACA), and an improved A* algorithm (Imp-A*) is obtained. Simulation tests and
transplanting trials of Imp-A*, A*, ACA, Dijkstra (DA), and common sequence method (CSM) were
carried out using 32-, 50-, 72-, and 128-hole plug trays. The results show that Imp-A* inherits the
advantages of A* and ACA in terms of path planning length and computation time. Compared to A*,
ACA, DA, and CSM, the transplanting time for Imp-A* was reduced by 2.4%, 12.84%, 11.63%, and
14.27%, respectively. In just six trays of transplanting tasks, Imp-A* saves 60.91 s compared to CSM,
with an average time saving of 10.15 s per tray. The combination optimization algorithm has similar
application prospects in agriculture.

Keywords: greenhouse; replanting; seedlings; path planning; optimization algorithms

1. Introduction

Seedling transplanting has the advantage of climate compensation, which can improve
the survival rate and output. It has replaced the traditional direct seeding method in the
North-West of China [1–4]. Seedling leakage, seedling germination, and seedling stunting
occur in the cultivation of seedlings, with healthy seedlings accounting for 80–95% of
the population [5]. To ensure the consistency and effectiveness of field transplanting,
seedling growth must be monitored, and seedlings missing, or bad seedling holes should
be eliminated and replaced with healthy seedlings. At present, the common sequence
method (CSM) is still used for the replanting of seedlings, but this method is invalid in
path planning [6].

The researchers used machine vision technology [6–9] and image processing algo-
rithms [10–12] to detect the growth status of plug tray seedlings and identify unhealthy
seedlings in preparation for replanting. When the replanting of seedlings begins, the ma-
nipulator needs to grasp the healthy seedlings from the plug tray that supplies seedlings
and transplants them to the plug tray that needs replenishment seedlings, and this process
involves the reciprocating movements of the manipulator with different routes. In the case
of manipulator moving speed, the shorter the moving route, the higher the transplant-
ing efficiency. Seedling transplanting path planning is similar to the traveling salesman
problem (TSP) [13,14], where the optimal path is found after passing through all the city
nodes entering from the source. The length of the transplanting path and computation
time are two important indexes to measure the algorithm model. Greedy algorithm (GRA)
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and genetic algorithm (GA) are used to solve single-source path planning. According to
the characteristics of this algorithm, GRA looks for local optimal solutions step by step,
the final result may be infinitely close to the optimal solution, but it requires more time
than other algorithms. GA has advantages in computation time, but it does not always
find the optimal solution. The greedy genetic algorithm (GGA), developed by combining
GRA and GA, has been used to good effect for the thinning and transplanting of plug tray
seedlings, with improved path optimization and computation time [15–21]. Ant colony
algorithm (ACA) is a common algorithm to solve combinatorial optimization problems,
and its optimal path is determined by the pheromone concentration released by bionic
ants. However, the biggest drawback of the ACA is that it tends to fall into local optimality
and converge too slowly. Resulting ACA does not perform well in terms of path planning
length and algorithm computation time, but improved and optimized ACA often shows
excellent performance [13,22–26].

To improve the computing speed of the path planning algorithm model, researchers
have begun to explore more effective algorithm models. A* algorithm (A*), as one of the
optimal path search algorithms, adopts the breadth-first search strategy, a heuristic function
to guide the search direction, effectively shortens the path search length computation time.
With the development of computer science, people’s demands and expectations of the
A* algorithm have grown more and more, and they have started to search for faster and
more efficient ways to improve the A* algorithm. The combination of ACA and A* as a
new method, by combining bidirectional search with intelligent ACA, the selection factor
of the heuristic function of A* is obtained, then use the factor to improve the algorithm
function and get a more efficient improved A* algorithm (Imp-A*) [27,28]. However, there
are relatively few cases in which Imp-A* is applied to transplanter path planning.

The calculation time and path optimization of the seedling transplanter path planning
algorithm model is studied. Under the guidance and optimization of the heuristic function
of ACA, this method is applied to seedling transplanting path planning of transplanters
based on the network grid model. The Imp-A* searches from source O to target grid node
E and also searches from target grid node E to source O. The algorithm terminated when
the same coincidence grid node is searched in both directions. By training the heuristic
function of A* with ACA, more accurate heuristic function factors can be obtained in a
shorter time, and the efficiency of A* can be improved. The main contributions of this study
were as follows:

1. The A* algorithm was optimized and improved in combination with the ACA, an
improved A* algorithm (Imp-A*) was obtained, and the algorithm model was applied
to the field of plug tray seedling transplantation successfully, and it provided the
optimal path for replanting seedlings of the manipulator.

2. The path planning length and calculation time data of the Imp-A* model were ob-
tained through simulation tests, and compared with simulation data of other algo-
rithm models, the optimal route length and calculation time of the algorithm model
were obtained.

3. Based on the simulation model, the transplanting trials of replanting were designed,
the Imp-A* in this paper was applied to the practical operation, and the robustness of
the algorithm was tested; the efficiency and practicability of the Imp-A* were verified.

The rest of the paper is divided into the following sections: The second section
introduces the working principle of transplanter and several path planning algorithm
models. In the third section, the simulation test and transplanting trials results are explained
and analyzed in detail. Finally, Sections 4 and 5 describe the discussion and introduction of
this study.

2. Materials and Methods
2.1. Structure of the Device and Path Planning Principles

Figure 1a shows the three-dof transplanting device supporting X, Y, and Z movements.
As shown in Figure 1b, dark circles represent healthy seedlings, and white circles represent
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holes removed from poor-quality seedlings. When transplanting, the manipulator starts
at the O-source point and transplants healthy seedlings from the seedling supply trays
(referred to as S tray hereafter) to the inferior seedling holes in the target trays (referred to
as T tray hereafter).
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Figure 1. Diagram of (a) the 3-dof transplanting device and (b) tray location and transplanting
path. The red circles indicate healthy seedlings to be transplanted; the grey circles indicate healthy
seedlings; the white circles indicate empty holes.

The random position of the holes in the S tray for healthy seedlings and the T tray for
poor quality seedlings determines the variety and complexity of the transplanting path
planning. For a given control system parameter, the three-dof transplanting system moves
at a given speed, and the transplanting unit needs to be paused during transplanting,
depending on the speed at which the transplanting task is completed. The transplanting
path optimization is based on the traditional Common Sequence Method (CSM) and uses a
path search algorithm to plan the shortest possible reciprocal movement sequence for the
manipulator, shortening the length of its movement route to reduce the pause time of the
transporter and improve the efficiency of the transplanter.

2.2. Path Planning Methods

The seedling trays with different numbers have the same external size (560 mm
in length and 280 mm in width). A total of 32 (specification: 4 × 8), 50 (specification:
5 × 10), 72 (specification: 6 × 12), and 128 (specification: 8 × 16) holes are frequently used
in the North-West of China. It is known from reference [21] that the randomness of the
positions of M (1 ≤ M ≤ G) holes in the S tray and N (M ≤ N ≤ G) healthy seedlings in
the T tray determine that there are paths available for replanting seedlings. In the case of
50 holes, if inferior quality seedlings account for 5–20% of the total, M = 5 in the S tray
and the healthy seedlings N = 45 in the S tray, there are 45!× 5!/(45− 5)! ≈ 1.76× 1010

alternative transplanting paths. If the traversal method is used to find the optimal path, the
calculation is too much, and the operation time is too long, it is not in line with the concept
of fast and efficient automatic transplanting equipment. Therefore, it is necessary to find an
effective path planning algorithm.

As shown in Figure 2a, the location of the seedless holes in visual image processing
is transmitted to PC in the form of a digital matrix that is converted to a grid map of
coordinates when a path planning model is established. Set the S tray numeric matrix to S
and the T tray numeric matrix to T, scanning the matrix from left to right, top to bottom,
corresponding to the coordinate grid, as shown in Figure 2b. The position of the holes in
the S tray can be expressed in Si, and the position of holes in the T tray can be expressed in
Tj, corresponding position of the holes of missing and bad seedlings.
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Figure 2. Diagram of (a) digital matrix of plug tray information and (b) grid network model.
Si indicates the hole location of the seedling supply tray and Ti indicates the hole location of the
target tray.

The length of path planning is the sum of the horizontal and vertical distances. For
greater clarity, the path is represented by the shortest distance between two points. Starting
with the coordinates of source point O, the manipulator moves toward the X and Y axes.
First, the manipulator reaches the S tray and selects a healthy seedling to transplant into
the hole in the T tray. The distance traveled by the manipulator for a single replanting task
can be expressed as:(

xSi − xTj

)
+
∣∣∣ySi
− yTj

∣∣∣+ (x Si
− xT′j

) +

∣∣∣∣yT′j
− ySi

∣∣∣∣ (1)

where x and y are the horizontal and vertical coordinates of the holes position of the
manipulator, xSi , and are the horizontal and vertical coordinates of healthy seedling holes
located in the S tray to be captured in the next step, xT′j

, and are the horizontal and vertical

coordinate of the holes location of the T tray to be transplanted into seedlings.
Where xTj and yTj

are the horizontal and vertical coordinates of the position of the
cavity in which the transplanter was located at the time of the previous transplanting
step, and xSi and ySi

are the horizontal and vertical coordinates of the position of the
healthy cavity in the supply cavity to be picked up in the next step, and xT′j

and yT′j
are the horizontal and vertical coordinates of the empty holes in the destination holes to
be replanted.

2.2.1. Common Sequence Method (CSM)

CSM is one of the most commonly used transplanting methods in practical production.
The classic method is to scan the S and T tray from top to bottom, from left to right, and
remove healthy seedlings from the S Tray, transplanting healthy seedlings into the T tray.
This method does not plan or compare the path of plug seedlings nor involve the operation
of a path planning algorithm. There is no algorithm for calculating time because the path
planning of the process has been determined. Therefore, the CSM only takes part in the
comparison test of the path planning length and does not take part in the comparison test
of the calculation time (Figure 3).
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Figure 3. Diagram of CSM to complete 50 holes transplanting path planning. The red circles indicate
healthy seedlings to be transplanted; the green circles indicate healthy seedlings; the white circles
indicate empty holes.

2.2.2. Dijkstra Algorithm (DA)

DA is a greedy algorithm that solves the problem of the shortest path for a single
source by first finding the shortest path, then the second shortest path is found by referring
to this shortest path until the shortest path from the source to the target node is found. DA
was applied to pot seedling transplanting path planning, which could be transformed into
the scanning of the S tray and T tray from bottom to top and from left to right; starting from
the source point, the manipulator grasps the healthy pot seedlings in the S tray nearest to
itself and transplants them to the first hole position scanned in the T tray. Then, using this
location as a source of greed, look for the nearest healthy pot seedlings in the S tray and
transplant them to the next hole scanned in the T tray (each node can be visited only once).
As shown in Figure 4, circulate until all the holes in the T tray are filled, and transplanting
all healthy pot seedlings into the S tray was considered an experimental group. Several
groups of experiments were carried out, and the calculation time required by the DA model
to complete the path planning and the path length of transplanting were counted.

2.2.3. Ant Colony Algorithm (ACA)

ACA means that the feasible solution of the problem to be optimized is expressed by
the path of ants, and all the paths of the ant colony constitute the solution space of the
problem to be optimized. Ants with shorter paths release more pheromones, and over time,
the accumulation of pheromones increases in ants with shorter paths, and the number of
ants choosing path increases [25,27]. Finally, the ant colony focuses on the optimal path
under the action of positive feedback, and the corresponding path is the optimal solution
to the problem to be optimized.
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Figure 4. Diagram of DA to complete 50 holes transplanting path planning. The red circles indicate
healthy seedlings to be transplanted; the green circles indicate healthy seedlings; the white circles
indicate empty holes.

To ensure that each healthy seedling grid in the S tray and each empty grid in the T
tray can be visited only once, Openlist and Closelist were created to store the grids that
need to be visited, and the grids were visited by ants. Closelist allows ants to retrace their
journeys after completing a path search. Assuming that the n ant set U remains the same,
and in U, the starting point O for all ants is used as the starting point U. Setting the rules for
each ant’s movement: from the starting point to the healthy seedling hole in the S tray, the
hole will be added to the Closelist when they leave, then the ant moves to the hole position
in T tray, and when they leave, the hole will be added to the Openlist. The ant must then
maintain a healthy seedling position in S tray and circulate until it visits all the holes. Any
ant k will make a probabilistic decision when implementing these rules. After selecting
grid i, it visits the next grid j with the following probabilities:

Pk
ij(t) =


[τij(t)]

α·(ηij)
β

∑j∈Nk
j
[τij(t)]

α·(ηij)
β , if i ∈ Nk

j

0 , else

(2)

When the ant is in j, it visits the next grid i with the following probabilities:

Pk
ij(t) =


[τij(t)]

α·(ηij)
β

∑i∈Nk
i
[τij(t)]

α·(ηij)
β , if j ∈ Nk

i

0 , else
(3)

where τij(t) is the pheromone between grid i and j after t iterations, η= 1/dij is the heuristic
information, and dij is the distance from grid i to grid j. α is the degree effect of pheromone
concentration on ant behavior, β is the degree effect of path length on ant behavior, Nk

i
denotes an unvisited seeded hole in grid S, and Nk

j denotes an unvisited empty hole in the
grid T.
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When n ants pass through all the holes in the grid T, the pheromones in their path are
with the Equations (4) and (5) as follows:

τij(t + 1) = (1−ρ)τij(t) + ∆τij(t, t + 1) (4)

∆τij(t, t + 1) =
m

∑
k−1

∆τk
ij(t, t + 1) (5)

where ρ is the fluctuation of pheromones (ρ ∈ (0, 1) ), ∆τk
ij(t, t + 1) is the total amount of

pheromones released by ant k on the path of the current cycle (i, j). ∆τij(t, t + 1) denotes
the pheromone increment on the path (i, j) in each cycle. Pheromones can be updated by
various methods, and volatilization is one way of pheromone update; when the path is not
selected by ants, the pheromone on that path will also volatilize over time, which leads
to an infinite accumulation of pheromones that mislead ants. ∆τk

ij(t, t + 1) can be defined
as follows:

∆τk
ij(t, t + 1) =

{
Q/Lk , path (i, j) is visited in t iterations
0 , else

(6)

where Q is a constant representing the number of pheromones stored in a given ant path
search after an iteration, Lk being the total length of the ant k path search.

ACA flowchart, shown in Figures 5 and 6a, is the ACA’s roadmap for planning a
50-hole plantings path. Set the maximum number of iterations per path search performed
by the ACA to 50, and the variation between the optimal path length and average path
length of the path optimization task segment and the number of iterations performed by
the ACA model is shown in Figure 6b. Experimental results show that the algorithm is
effective and has good convergence. Thus, the relatively optimal transplanting path is the
route chosen by the vast majority of ants.
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2.2.4. A* Algorithm (A*)

A* is one of the most popular and effective heuristic search path optimization algo-
rithms. The innovation of this algorithm is to select the next node using the known global
information and carry out probability analysis and cost analysis [28]. According to the
estimated distance between the current node and the target node, the algorithm evaluates
the nodes on the optimal path, realizes the search of the nearest node, and improves search
efficiency.

The heart of A* is the creation of the heuristic function. Assuming that ε is the current
grid node position, the heuristic function for this node can be expressed as:

f′(ε) = g(ε) + h′(ε) (7)

where g(ε) is the actual distance function from the source point O to the current grid (S
grid) node ε , and h′(ε) is the minimum estimated distance from the current grid node ε to
the target grid(T grid) node e. Since h′(ε) is an estimate of the minimum distance ignoring
obstacles and movement rules, h′(ε) is defined as the Euclidean distance from the S grid
node ε to the T grid e in the path-finding model; if we make h = 0, A* will degrade to DA.

Suppose the source point coordinates are O
(
Ox, Oy

)
, a healthy seedling hole coordi-

nates
(
Six, Siy

)
in the S grid is the intermediate node, and empty hole coordinates

(
Tjx, Tjy

)
in the T grid is the target node, then the heuristic function can be expressed as:

f′(ε) = g(ε) +
√(

Six − Tjx
)2

+
(
Siy − Tjy

)2 (8)

where g(ε) =
n
∑

t=1
d(t) , d(t) is the distance between two neighboring grids.

Instead of traversing all nodes, A* introduces heuristic information to guide the
movement to the target node, making it easier for the algorithm to accelerate computations.
However, ignoring a large number of “dotted points” in the search process can affect
computations. Because of the complexity of the real environment, it is sometimes wrong to
introduce heuristic information into the cost function, so we improved and optimized it in
conjunction with the ACA.
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2.2.5. Improved A* Algorithm (Imp-A*)

The A* uses a heuristic function to evaluate the cost from the current node ε to the
target node e. In grid search mapping, the heuristic function refers to the Manhattan
distance from the current node to the target node:

h(ε)=|Sex−Tεx|+ |Sey−Tεy

∣∣∣ (9)

where Sex and Sey are the x and y coordinates of the current node, and Tεx and Tεy are the
x and y coordinates of the target node.

Due to the existence of obstacles in the actual environment, h(ε) in Equation (9) is
not necessarily smaller than h′(ε) in Equation (7); this will result in the shortest route in
the plan not necessarily being the best or taking the least time. Based on this question,
we introduce the Imp-A*. Imp-A* searches from source O to target grid node e and also
searches from target node e to source O. The algorithm terminates when the same grid
node is searched in both directions. The optimization of the grid method transplanting
path for inserted tray seedlings is a non-negative weighting problem, and there are no other
dynamic influences, so this study incorporates ACA to train the heuristic function of A* to
improve the efficiency of A*.

The speed of the algorithm depends on the heuristic function, and using ACA to train
the heuristic function improves the flexibility of the algorithm and brings the algorithm
closer to the actual value. However, the biggest drawback of ACA is its tendency to fall
into local optimum solutions. In this paper, we propose an ACA based on parallel rewards
for this problem, where parallelism means multiple backups for ants, and rewards mean
additional information to the optimal path as well as rewarding the pheromone of the paths
adjacent to the optimal path. If additional pheromones are rewarded to the current optimal
path, the formula is as follows:

∆`∗ij
(
εj
)
= ρ′∆`ij

(
εj
)

(10)

where ∆`∗ij
(
εj
)

is the additional reward pheromone, ρ′ is the reward factor, and εj is the set
of nodes.

Pheromone update formula:

`ij
(
εj
)
= ρ× `ij

(
εj
)
+ ∆`ij

(
εj
)
+ ∆`∗ij

(
εj
)

(11)

The pheromone of the reward to the neighboring path is denoted as:

∆`∗ij
(
εj
)
=
(
ρ ′
)m · ∆`ij

(
εj
)

(12)

where m is the reward coefficient (m ∈ N) and m is positively related to the distance
between adjacent and optimal paths. Assuming that in a grid system of n nodes, m
artificial ants are moving at speed υk . Ant k is searching for the optimal path, and the
current node is evaluated using a bidirectional A* based on a parallel reward ant colony
system to train the heuristic function. Initialize the pheromone of the raster topology edge
as < εi, εj > , then:

`ij
(
εj
)
= const (13)

where const is a constant, ∆`ij
(
εj
)
= 0 , then `ij

(
εj
)
= 1/dij , where dij is the distance from

the node εi to node εj , then the following equation is established:

µij
(
εj
)
= 1/


∣∣∣TCmax

ij −TCdesign
ij

∣∣∣∣∣∣TCaverage
ij −TCdesign

ij

∣∣∣ ·
L2

ijρij

υk

 (14)
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where µij
(
εj
)

is the heuristic information function, TCmax
ij is the hourly maximum ant

colony flow, TCdesign
ij is the set hourly ant colony flow, TCaverage

ij is the hourly average ant
colony flow, υk is the current velocity, ρij is the current flow density, and Lij is the path
distance. Nmax is the maximum number of cycles of the ACA, which is achieved by the
following steps.

Assuming that εO is the source node and εe is the target node, the grid map is searched
from the original node using the bidirectional A* algorithm. If the node εi is not the target
node, it needs to be extended in the next cycle, denoting the set εj of this node denoted as:

f′
(
εj
)
= g

(
εj
)
+ h′

(
εj
)

(15)

Using a parallel reward ant colony system to train h′
(
εj
)

, computing from the current
node εjx to the target node εjx ∈ εj , placing m ants and their k backup ants into the node
εjx , using the following equation for selection:

pk
ij
(
Vjx
)
=


arg max

{[
`k

ijx

(
εjx

)]α[
ηk

ijx

(
εjx

)]β}
···(1) q ≤ q0[

`k
ijx
(εjx)

]α[
ηk

ijx
(εjx)

]β[
µk

ijx
(εjx)

]γ
∑n

x=1

[
`k

ijx
(εjx)

]α[
ηk

ijx
(εjx)

]β[
µk

ijx
(εjx)

]γ ···(2) otherwise
(16)

where q0 is a fixed value and q is a random number. The next node is selected according to
Equation (1) if q0 ≥ q ; otherwise, the next node is selected according to Equation (2).

Each ant will choose a least-cost path after one cycle, and the pheromone will be
updated as the ant chooses its path:

`ij
(
εj
)
= (1− ρ)`ij

(
εj
)
+ ∆`k

ij
(
εj
)

(17)

where ρ is the pheromone volatility and ∆`k
ij
(
εj
)
= Q/dij is the total amount of pheromone

released by ant k on the pathway.
When m ants have all reached the target node, the optimal path is selected based on

the minimum cost path obtained by the global pheromone update in step (3), and additional
pheromones are rewarded according to the following equation:

`ij
(
εj
)
= (1− ρ)`ij

(
εj
)
+ ∆`ij

(
εj
)
+ ∆`∗ij

(
εj
)

(18)

where ∆`∗ij
(
εj
)
= ρ′∆`ij

(
εj
)

, ρ′ is the pheromone reward factor and:

∆`ij =
m

∑
k=1

∆`k
ij (19)

where ∆`ij is the amount of pheromone reward, and are the pheromones released by ant
k on the path. ∆`k

ij = Q/L , where L is the distance traveled by the ants on the optimal
path to reach the target node in one cycle. Moreover, additional pheromones need to be
rewarded to neighboring paths:

`ijy

(
εjy

)
= (1− ρ)`ijy

(
εjy

)
+ ∆`∗ijy

(
εjy

)
(20)

where ∆`∗ijy

(
εjy

)
= (ρ ′ )n∆`ijx

(
εjx

)
, and ∆`∗ijy

(
εjy

)
are the amount of pheromone reward.

When the number of loops reaches Nmax, the optimal path obtained is compared
and the smallest path is selected. The estimated cost of the optimal path is based on the
following formula:

h
(
εj
)
= Min∑ T (21)
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where T = Lij/υk + pijTij + pT is the length of each road segment on the optimal path.
To find the best path to the other nodes, get an estimated distance for each node

through the following steps:

f
(
εjoe

)
= g

(
εjoe

)
+ h

(
εjoe

)
(22)

where εjoe
∈ εj , insert nodes into an openlist and rank them in descending order according

to their assessment.
Storing the source points in the Openlist table, indicating that the source node O is

the smallest node, and then set the cost of O to g1(o) = 0 , and the cost of the other nodes
to infinity.

After accessing the original node, perform the following actions on the remaining
node n:

• Calculate the cost of each successor node ε using the concurrent reward-based ACA:

f′1(ε) = g1(ε) + h′1(ε) (23)

• Set visiting rules to give priority to all nodes with status “1” in the S grid and then to
those with status “0” in the T grid.

• Search for the target node and add it to the Openlist.

Delete the node m with the smallest cost f′1(ε) from the Openlist, and change the
search status of the node ε to Least, determine whether node m satisfies the above two
termination conditions. If they are satisfied, the last step is performed; if not, the following
steps are performed at the next node.

Determining the termination node k of a bidirectional search based on the above termi-
nation conditions can obtain the same optimal path as the A* algorithm but greatly reduces
the algorithm’s running time. In addition, two backtracking searches were conducted,
including two paths from source node O to termination node k and from termination
node k to target node e, to complete the calculation of the optimal path. Figure 7 shows a
schematic of the bidirectional search principle.
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Figure 7. Bidirectional A* schematic.

The heuristic function of A* was trained and improved using ACA, and it achieved
bi-directional guidance during path finding. When the program starts running, one search
path starts from the source point O and visits a healthy seedling grid in the S tray, and
the visited healthy seedling grid is added to Closelist and then visits a hole grid in T tray,
and the visited hole grid is added to Openlist. While the other search path starts from the
source point O and visits a hole grid in T tray, then visits a healthy seedling grid in S tray.
Both search paths start at the same time, and the algorithm terminates when both search
paths meet at the same node, and all the hole grids in the T tray have been visited. After
several searches, the paths of the bidirectional search are connected to the optimal path.
Figure 8 shows the detailed search flow diagram of Imp-A*; Figure 9 shows a schematic
diagram of the optimal path for path planning using Imp-A* for a 50-hole tray.
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Figure 8. Flow chart of the Imp-A algorithm.
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Figure 9. Diagram of Imp-A* model to complete 50 holes transplanting path planning. The red circles
indicate healthy seedlings to be transplanted; the green circles indicate healthy seedlings; the white
circles indicate empty holes.
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3. Results

To validate the efficacy and performance of the Imp-A* designed in this paper, mi-
gration path planning simulations were performed using 32-, 50-, 72-, and 128-hole plug
trays. The simulation environment is PYTHON 3.6, and the algorithm compiler is PyCharm
Community Edition 2020.3.3.

3.1. Randomized Comparative Simulation Test

To verify the advantages and disadvantages between the Imp-A* and other algorithm
models, comparative experiments using the CSM, DA, ACA, and A* as comparison schemes
with metrics of transplant path planning length and computation time. Since the CSM
has a known transplanting route and does not involve computing time, the CSM is only
involved in the transplanting path length comparison and not in the algorithm computing
time comparison.

Choose from 32, 50, 72, and 128 holes for simulation, with the T tray and S tray the
same size. The number and location of no seedling plug were randomized, the task of
replanting one destination tray was defined as one section, and the number of healthy
seedlings in an S tray was defined as one group. Poor quality seedlings accounted for 5–20%
of the plug trays and required an S tray seedling to give 5–10 T trays seedlings. The length
of each transplanting path and the time of the algorithm at each node are calculated and
summarized as the experimental results of each group. As shown in Table 1, the number
of missing seedlings in each group of plug trays for each of the four sizes; for example, in
the first set of tests with 32-hole plug trays, the number of healthy seedlings in the S trays
was 25, and replanting was carried out to 5 T trays; in the second set of experiments with
32-hole plug trays, the number of healthy seedlings in the S trays was 26, and replanting
was carried out to 6 T trays.

Table 1. Number of transplanted seedlings for random comparison tests.

Plug Tray
Size/Hole

Test
Groups

The Number of T Tray
Total

1 2 3 4 5 6 7 8 9 10

32

1 5 6 6 3 5 - - - - - 25
2 3 6 4 5 3 5 - - - - 26
3 6 3 4 6 5 3 - - - - 27
4 2 4 5 5 3 5 4 - - - 28
5 4 3 5 6 2 4 5 - - - 29
6 5 4 4 3 6 5 3 - - - 30

50

1 7 6 3 5 4 9 6 - - - 40
2 5 4 4 7 6 3 8 4 - - 41
3 7 5 6 8 9 7 - - - - 42
4 3 3 7 6 4 9 5 7 - - 44
5 10 6 4 4 7 5 7 3 - - 46
6 6 9 7 4 5 7 3 6 - - 47

72

1 8 5 6 4 11 7 9 5 - - 55
2 11 7 8 8 5 6 6 7 - - 58
3 9 5 7 8 7 6 10 8 - - 60
4 7 5 5 6 8 10 6 4 10 - 63
5 10 8 10 5 6 7 8 7 5 - 65
6 6 11 9 10 9 5 7 11 - - 68

128

1 12 9 15 11 8 10 9 13 15 - 102
2 16 10 12 9 13 9 11 10 16 - 106
3 11 14 10 9 15 12 14 8 9 9 111
4 15 9 12 11 9 12 13 11 14 9 114
5 12 14 8 19 10 11 9 12 8 15 118
6 18 11 9 9 10 13 8 12 17 14 121
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3.2. Analysis of Randomized Comparative Simulation Test Results

Figure 10 shows the results of the 32-, 50-, 72-, and 128-hole path planning length
simulations. DA, A*, and Imp-A* have a similar length of complementary path planning,
significantly shorter than CSM, and ACA is superior to the CSM in the length of pathway
planning but not as long as DA, A*, and Imp-A*. Based on the results, the statistical
transplanting path planning lengths for CMS, DA, ACA, A*, and Imp-A* in the 32-hole
plug trays simulation test were 208,690.0, 176,120.0, 193,250.0, 16,560.0, and 163,10.0 mm,
respectively; 50-hole path planning lengths were 289,238.0, 269,252.0, 276,670.0, 261,354.0,
and 25,666.0 mm, respectively; 72-hole path planning lengths were 428,337.0, 315,354.9,
412,227.0, 305,276.4, and 303,399.0 mm, respectively; 128-hole path planning lengths were
740,250.0, 599,274.5, 701,215.0, 584,310.0, and 580,490.0 mm, respectively. By comparison,
we can see the superiority of the five path planning algorithm models in the following
order: Imp-A*, A*, DA, ACA, and CSM. Imp-A*, A*, and DA perform significantly better
than other algorithm models in terms of path planning length when plugs were increased
to 72 and 128 holes. When the number of holes increases, the invalid search of the ACA
increases sharply and is more likely to fall into the local optimum, the Imp-A* has a precise
heuristic function of bidirectional guidance, and it can find the optimal path more precisely.
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DA, and 29.7% compared to ACA under 72 holes. At 128 points, the maximum path plan-
ning length for Imp-A* was 24.9% for CSM, 5.4% for DA, 18.9% for ACA, and 1.1% for A*. 
Data show that Imp-A* has a significantly shorter path planning length than CSM and 
ACA and a significantly shorter path planning length than DA. 

Figure 10. Comparison of planned path length for different size plug trays based on simulation tests.

To demonstrate the superiority of Imp-A* in transplantation path planning, the dif-
ferences between Imp-A* and the other four transplantation path planning length ratio
algorithm models were calculated, as shown in Figure 11. At 32 holes, the optimal path
planning length for Imp-A* was 25.1% for CSM, 9.2% for DA, 18.8% for ACA, and 1.6% for
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A*. At 50 holes, Imp-A* had a 16.4% better path planning length than CSM, 6.3% better than
DA, 11.7% better than ACA, and 3.1% better than A*. The maximum path planning length
for Imp-A* was 16.4% for CSM, 6.3% for DA, 11.7% for ACA, and 3.1% for A*. Imp-A* had
a maximum path planning length of 31.3% compared to CSM, 5.6% compared to DA, and
29.7% compared to ACA under 72 holes. At 128 points, the maximum path planning length
for Imp-A* was 24.9% for CSM, 5.4% for DA, 18.9% for ACA, and 1.1% for A*. Data show
that Imp-A* has a significantly shorter path planning length than CSM and ACA and a
significantly shorter path planning length than DA.
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Figure 11. Changes in the path planning length difference ratio between Imp-A* and other algo-
rithmic models. D1 = (CSM-Imp-A*)/CSM, D2 = (DA-Imp-A*)/DA, D3 = (ACA-Imp-A*)/ACA,
D4 = (A*-Imp-A*)/A*.

Figure 12 shows a comparison of the computation times for different algorithmic
models for path planning. It can be seen that the path planning time of A* and Imp-A*
is significantly shortened compared with DA and ACA, and the path planning time of
Imp-A* is substantially shortened compared with ACA and A* after the improvement
of the heuristic function of A* by using ACA. Based on the results of the experiment,
the statistical results show that DA, ACA, A*, and Imp-A* took 29.62 s, 19.84 s, 7.97 s,
and 4.86 s for 32 holes; 40.73 s, 29.17 s, 11.12 s, and 9.47 s for 50 holes; 56.36 s, 39.84 s,
27.43 s, and 16.46 s for 72 holes; 96.74 s, 86.40 s, 48.64 s, and 36.88 s for 128 holes transplant-
ing path, respectively. Comparing four algorithm models, the order of time required for
path planning is Imp-A*, A*, ACA, and DA. Because when the number of holes increases,
ACA and DA search for invalid nodes more frequently and are more likely to fall into local
optimality, whereas Imp-A* has a heuristic function of fast bidirectional guidance to find
the optimal path in a shorter time.

To further illustrate the superiorities of Imp-A* in computation time for transplantation
path planning, a graph of computational time variation between Imp-A* and three other
algorithm models was obtained, as shown in Figure 13. Imp-A* had a maximum calculation
time of 86.0% of DA, 80.1% of ACA, and 46.5% of A* in 32 holes. At 50 holes, Imp-A* had a
maximum calculation time of 79.9% of DA, 71.5% of ACA, and 20.5% of A*. In 72 holes, the
calculation time of Imp-A* was 71.8% compared to DA, 63.0% compared to ACA, and 41.4%
compared to A*. At 128 holes, the calculation time of Imp-A* was 63.4% compared to DA
and 41.4% compared to A*. In 128 cavities, the calculation time of Imp-A* was optimized
by 63.4% compared to DA, up to 58.9% compared to ACA, and 28.1% compared to A*.
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As shown in Figure 14a, the standard deviation values of the simulated path planning
lengths of the four algorithm models are analyzed. The standard deviation DA, ACA, A*,
and Imp-A* path planning lengths were from 1333.44 to 2120.31, from 1264.09 to 2274.91,
from 1273.91 to 2169.12, and from 1073.91 to 1869.12, respectively. Figure 14b shows the
standard deviation values of the simulated computation times of the four algorithm models.
The computation time standard deviation was from 0.16 to 0.33, from 0.17 to 0.27, from 0.12
to 0.20, and from 0.10 to 0.17 for the four algorithm models, respectively. It can be seen that
the maximum value of path planning length and computation time Imp-A* are smaller than
other algorithm models, and the minimum value is smaller than other algorithm models.
The results show that Imp-A* is more stable in obtaining the optimal transplanting path for
transplanted seedlings of different specifications than DA, ACA, and A *, with a smaller
time gap calculated by algorithmic models.
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ling visual inspection device and the transplanter were two parts of the test that have not 
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ning algorithm was selected to transplant the first group of 6 T trays, and after completing 
the task (and all the time it took), another tray was replaced with another until healthy 

Figure 14. Standard deviation diagram of (a) path planning length and (b) calculation time.

Simulation tests show that Imp-A* has plug trays significant advantage over CSM
and ACA and is shorter than DA and A* in the planning length of the transplanting
pathway. Imp-A* is significantly shorter than DA and ACA and shorter than A* in terms of
computation time in the algorithm model. Imp-A* shows better optimization capability
and efficiency, both in terms of path planning length and calculation time.

3.3. Test Verification

To verify the performance of the Imp-A, the implants under different algorithmic mod-
els were experimentally investigated. The path planning lengths and computation times of
CSM, DA, ACA, A*, and Imp-A* for transplanting 50 holes tray seedlings were counted.
Figure 15a shows the automatic transplanter developed by our team, and Figure 15b shows
the sample transplanter used for the experiment.

Tomato seedlings are placed in cuttings at the age of 15 d and are grown in 50 holes
at the “Muxi Greenhouse” nursery in Xinjiang, China. In total, 35 trays of seedlings were
selected, and 30 of these trays were divided into five groups, with six trays in each group
serving as T trays and the number of missing seedlings in each group corresponding to
the number of trays in each group. The remaining five trays were used as S trays, and the
number of seedlings lost per T tray is shown in Table 2. Before the test, a visual inspection
of the plug seedlings was performed, the plug substrate was derived, and unhealthy
plug seedlings were removed from the T tray by a manipulator (the lab-developed plug
seedling visual inspection device and the transplanter were two parts of the test that
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have not incorporated but do not affect the test). At the beginning of the experiment, one
path planning algorithm was selected to transplant the first group of 6 T trays, and after
completing the task (and all the time it took), another tray was replaced with another
until healthy seedlings were transplanted from the S tray. The remaining four groups
were then transplanted using other algorithms. The distance between the T tray and S
tray is 100 mm, depending on the actual demand. The manipulator is known to move at
speeds of 200 mm/s, 200 mm/s, and 100 mm/s in the X, Y, and Z directions, respectively.
The manipulator takes to fall by 1.0 s and rise by 0.8 s (the transplanter is more stable).
The length of the replanting path (known as the replication path) and time (known as
the replanting time) required for the manipulator to complete each plug of seedlings are
recorded, as shown in Table 2.
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Table 2. Comparison of plug seedling replanting results for different algorithms.

No.
of T
Tray

Number of
Transplanted

Seedlings

Path Planning Length (mm) Calculation Time (s) Replanting Time (s)

CSM DA ACA A* Imp-A* DA ACA A* Imp-A* CSM DA ACA A* Imp-A*

1 3 2912.0 2686.0 2804.0 2642.0 2596.0 0.40 0.36 0.31 0.24 36.56 35.43 36.02 32.21 30.98
2 4 4536.0 4262.0 4398.0 4236.0 4210.0 0.45 0.44 0.40 0.28 44.68 43.31 43.99 39.18 38.05
3 6 6108.0 5230.0 5620.0 5186.0 5186.0 0.66 0.62 0.58 0.44 52.54 48.15 50.10 41.93 40.37
4 7 7088.0 6770.0 6906.0 6724.0 6708.0 0.71 0.68 0.63 0.48 77.44 75.86 76.53 68.62 67.54
5 9 8662.0 8466.0 8512.0 8396.0 8372.0 1.09 1.02 0.96 0.72 95.31 94.33 94.56 85.98 84.06
6 10 9680.0 9024.0 9346.0 8986.0 8924.0 1.22 1.21 1.04 0.79 120.40 117.12 118.73 106.93 105.02

Total 39 38,986.0 36,438.0 37,586.0 36,170.0 35,996.0 4.53 4.33 3.92 2.95 426.93 414.20 419.93 374.85 366.02
Average 999.6 934.3 963.7 927.4 923.0 0.12 0.11 0.10 0.08 10.95 10.62 10.77 9.61 9.39

As can be seen from Table 2, CSM, DA, ACA, A*, and Imp-A* have significantly
improved performance in practice. The total path planning length of these five algorithm
models was 38,986.0, 36,438.0, 37,586.0, 36,170.0, and 35,996.0 mm, respectively, and op-
timization capability affected: Imp-A* > A* > DA > ACA > CSM. Imp-A*, A*, and DA
have similar path planning lengths, 7.67%, 7.22%, and 6.54% shorter than CSM, and 4.23%,
3.78%, and 3.01% shorter than ACA, respectively. The calculation times of DA, ACA, A*,
and Imp-A* were 4.53, 4.33, 3.92, and 2.95 s, respectively, and Imp-A* was 34.88%, 31.87%%,
and 24.74% less than DA, ACA, and A*, respectively. The total replanting time was 426.93,
414.20, 419.93, 374.85, and 366.02 s using CSM, DA, ACA, A*, and Imp-A* for a total of
39 × 6 holes in the 6 T trays, in descending order: Imp-A*, A*, DA, ACA, and CSM. While
the ACA’s calculation time is shorter than DA’s, its path planning is longer than DA’s,
leading to longer manipulator execution during the transplant process. Imp-A* saved
60.91 s on CSM, 48.18 s on DA, 53.91 s on ACA, and 8.83 s on A*. The average value of the
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length of the transplanting path and the time taken by the manipulator to complete each
seedling in a plug tray. It is easy to see that Imp-A* performs best in terms of path planning
length, computation time, and replantating time.

Data from six transplantation trials in Table 2 were analyzed. Figure 16 shows the
optimization rate of Imp-A* relative to the other four algorithm models in terms of path
planning length, computation time, and replanting time. It can be seen that Imp-A* has the
highest optimization rate of 40.00% and 36.36% in terms of computation time compared to
DA and ACA. Imp-A* has superior performance in computation time and can be applied
to a variety of plug tray specifications. Validation tests show that the Imp-A* proposed in
this paper performs well and has a good path optimization capability, and the practical
results match the simulation results.
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4. Discussion

The layout of transplanted seedlings was simulated by establishing a matrix grid of
transplanted seedlings. Simulation tests were carried out by using the path optimization
model. The path planning length and computation time of different algorithm models
were obtained. Simulation results show that the proposed algorithm has good performance
in path planning length and algorithm computation time. To verify the reliability and
practicality of the algorithm model, experiments were carried out on the transplanting of
plug tray seedlings. The results show that the Imp-A* can plan the optimal transplanting
path for the manipulator in less time, and the efficiency of the transplanter can be improved
by using a superior algorithm model when the transplanter control system is determined.

Imp-A* had an average path planning length of 27,185.0, 43,844.3, 50,733.2, and
96,765.0 mm, and average calculation times of 0.83, 1.58, 2.72, and 6.81 s, respectively, when
plug tray size was 32, 50, 72, and 128 holes, respectively, in a simulation test of Section 3.2
of 128 holes of paper. In the transplanting trials in Section 3.3 of this paper, the time
taken to transplant Imp-A* was calculated to be 2.4%, 12.84%, 11.63%, and 14.27% shorter
compared to A*, ACA, DA, and CSM, respectively. In the literature [23], by analyzing the
performance of the algorithm GA and ACA from the perspective of path planning length
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and computation time, it was concluded that ACA is superior to GA in path planning
length but far less than GA in computation time. Due to the difference in the size of the
insert plug tray and the motion of the manipulator, the data of the path planning length
proposed in this paper cannot be compared with the literature [23], but it has obvious
advantages in computation time. By applying the greedy algorithm (GRA) model to the
transplantation path planning problem [17], the path planning length of different holes
is obtained, and the data are similar to this paper. It can be seen from the above that
although DA’s path planning length is similar to that of Imp-A*, the significant difference
in algorithm model computation time is because GRA’s computation time is limited by
local search elements, and the optimal solution cannot be found quickly.

Path planning length and computation time are two important indexes of the al-
gorithm model. The length of path planning and computation time will directly affect
transplanting efficiency and actual production efficiency. The Imp-A* algorithm developed
in this paper has good performance in both aspects; the algorithm is stable and can provide
a reference for the optimization of the migration path. However, the algorithm model in
this paper has some shortcomings. For example, this algorithm model is suitable for trans-
planting seedlings in transplanters of the same specification. If the size of the transplanter
and T tray is different, the algorithm model needs to be improved to adapt to different
operating environments.

5. Conclusions

In this paper, the heuristic function of A* is trained and improved, and the path
optimization performance of each algorithm is compared by simulation tests and trans-
plantation trials.

In the 50-hole path planning length simulation test, the average path lengths of Imp-
A*, A*, ACA, DA, and CSM to complete the transplanting task in one T tray differed
significantly. The ACA did not perform as well in path planning, with Imp-A* and A*
performing more prominently as the hole tray sizes became larger. In the 50-hole oper-
ation time simulation test, the average running time for Imp-A*, A*, ACA, and DA to
complete a T tray transplanting task differed significantly. The DA performed the worst
in terms of algorithm calculation time, with the DA and ACA significantly decreasing
as the hole size became larger and the Imp-A* still maintaining a fast calculation time.
In the 50-hole transplanting trial, the transplanting time of different algorithm models is
very different. The actual performance of Imp-A* matches the simulation results, and the
path planning algorithm developed in this paper for transplanting seedlings in plug trays
performs well and is ideal for practical applications. In mass production, transplanting path
planning by the transplanting method can save a lot of time and improve the efficiency of
transplanting machinery.

Taken together, Imp-A* inherits the strengths of ACA and A* and has significant
advantages in transplant path planning simulation tests and practical production. This
research can provide ideas and references for improving the efficiency of transplanting
machinery and accelerating the automation and intelligence of transplanting machinery.
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