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Abstract: Genotype by environment interaction influences the effectiveness of dairy cattle breeding
programs in developing countries. This study aimed to investigate the optimization of dairy cattle
breeding programs for three different environments within Kenya. Multi-trait selection index theory
was applied using deterministic simulation in SelAction software to determine the optimum strategy
that would maximize genetic response for dairy cattle under low, medium, and high production
systems. Four different breeding strategies were simulated: a single production system breeding
program with progeny testing bulls in the high production system environment (HIGH); one joint
breeding program with progeny testing bulls in three environments (JOINT); three environment-
specific breeding programs each with testing of bulls within each environment (IND); and three
environment-specific breeding programs each with testing of bulls within each environment using
both phenotypic and genomic information (IND-GS). Breeding strategies were evaluated for the
whole industry based on the predicted genetic response weighted by the relative size of each environ-
ment. The effect of increasing the size of the nucleus was also evaluated for all four strategies using
500, 1500, 2500, and 3000 cows in the nucleus. Correlated responses in the low and medium produc-
tion systems when using a HIGH strategy were 18% and 3% lower, respectively, compared to direct
responses achieved by progeny testing within each production system. The JOINT strategy with one
joint breeding program with bull testing within the three production systems produced the highest
response among the strategies using phenotypes only. The IND-GS strategy using phenotypic and ge-
nomic information produced extra responses compared to a similar strategy (IND) using phenotypes
only, mainly due to a lower generation interval. Going forward, the dairy industry in Kenya would
benefit from a breeding strategy involving progeny testing bulls within each production system.

Keywords: genotype by environment; breeding strategies; selection index; response

1. Introduction

Animal breeders are often challenged to carry out selection in the presence of genotype
by environmental interaction (GxE). GxE affects sire and dam rankings among environ-
ments, consequently impacting on selection across environments and the optimal design of
breeding programs [1]. GxE is also important among the dairy industries in developing
countries where, to a large extent, genetic improvement relies on imported semen and
herds vary in terms of input and output [2]. Often, the breeding goals of local dairy farmers
and the breeding organizations that control semen supply are not always well aligned,
ultimately affecting the rate of genetic progress in semen importing countries [3–6]. In this
situation, local breeding programs involving genetic evaluation and progeny testing of
sires within the country are advisable.

An effective genetic improvement program is lacking in Kenya due to various con-
straints, including small herd size, inadequate animal performance and pedigree recording,
organizational challenges, and a lack of standardized methods of genetic evaluation [5,7]. A
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functional local breeding scheme would provide motivation to achieve higher participation
of dairy farmers in pedigree and performance recording [8]. This would also facilitate
farmers to select their breeding stock and produce replacement stock through a genetic
evaluation within production systems. A breeding program with large-scale farms as
the nucleus has been recommended as a solution to the small herd sizes, recording, and
organizational challenges in Kenya [8,9]. However, this strategy could result in biased
selection as is suggested by Wahinya [2], and Ombura [10], due to the fact that the large-
scale farms are intensive with high input and output production systems. Under intensive
systems, the scaling effect due to the spread in breeding values influences sire and index
rankings [11]. Wahinya [2], recommended selection among animals evaluated within the
target production systems as an alternative to the current selection based on intensive
production systems. To maximize the overall gains, three strategies including: selection in
one environment, selection within each environment, and selection on an index combining
information in each environment were evaluated to determine the optimum strategy. These
strategies have been applied in different studies to optimize dairy cattle breeding programs
for different environments while accounting for GxE [1,12–15]. The local dairy cattle breed-
ing program in Kenya has not been optimized for the different environments with genotype
by environment interaction. Genomic information is not considered in the current national
selection scheme and the potential of a multiple-trait genomic index to optimize genetic
improvement for multiple environments with the presence of GxE in Kenya is not known.

Using selection index theory, different strategies based on sire proving can be evaluated
to identify an optimum strategy to maximize the overall genetic gain in the three production
systems. A deterministic simulation was therefore used in this study to evaluate and
recommend an optimum dairy cattle breeding strategy to maximize the overall genetic
gain for low, medium and high dairy production systems in Kenya.

2. Materials and Methods
2.1. Breeding Objective

A single dairy cattle breeding program with three production systems represented in the
overall breeding objective was simulated to optimize genetic gain. The production systems
were defined as low, medium, and high production systems, categorized based on milk yield
occurring within a standard lactation [2]. The low, medium, and high production systems
differ in terms of inputs and outputs as detailed in Wahinya [16]. Genetic improvement
was defined by the selection of six traits including milk yield (MY, kg) which was the total
milk yield in a lactation, butterfat yield (FY, kg), the total butterfat yield in a lactation, age
at first calving (AFC, days), the age in days at the time of first calving, calving interval (CI,
days), the time interval between subsequent calving events, mature weight (MWT, kg), the
live weight at maturity, and survival rate (SR) which is the average probability of an animal
to survive between lactations. The economic importance of these traits has been shown by
Wahinya [16]. Revenue from dairy cattle is mainly derived from milk and the sale of animals.
Fat yield influences the energy requirements, thus the amount of feed required. Fertility traits,
including age at first calving and calving intervals have an influence on the days in milk and
the number of calves for replacement or sale in the productive lifetime of a cow. Cull for age
cows and cull heifers are also marketed based on their live weight. Cow survival between
lactations is of economic importance in the tropics where disease and significant mortality
rates are a constraint [17]. These traits were chosen to account for the current situation in
Kenya, characterized by minimal recording within the dairy industry. To account for G x E,
each trait was considered as a different trait in the three production systems.

2.2. Population Structure

The population consisted of a nucleus where elite dams and sires are selected and used
as parents for the next generation of selection candidates. All dams in the nucleus were
assumed to have phenotypes to provide information for genetic evaluation of the selection
candidates. The nucleus consisted of three populations including dams in low, medium,
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and high production systems. To evaluate the effect of different nucleus sizes, we simulated
nucleus populations with 500, 1500, 2500 and 5000 dams, of which the performances were
recorded annually in each of the three production systems. Two-hundred and nineteen test
bulls were assumed across the three production systems.

The population consisted of overlapping generations. Dams and test bulls were spread
across eight age classes. Annually, 10 bulls and 300 cows (100 in each production system)
were selected to produce the next generation. Each of the 10 selected bulls was progeny
tested with 5, 10, 15, and 30 daughters per year. The daughters were considered to attain
sexual maturity in their second year and therefore their first offspring were born in the third
year (36 months) with a lifetime period of eight years (up to the sixth lactation). Therefore,
progeny information was available when the bulls were five years and above. A 50:50 sex
ratio was assumed for calves at birth while the calving rates were assumed to be 0.67, 0.74,
and 0.77 under the low, medium, and high production systems, respectively. The survival
rates under low (0.90), medium (0.93), and high (0.94) production systems were used to
calculate the number of dams available for selection at different age classes up to eight
years. The commercial population was assumed to have non-recorded dams and it relied
on the sires selected in the nucleus for genetic improvement.

2.3. Breeding Strategies

Sires and dams were selected annually by truncation selection using multi-trait index se-
lection. Progeny and existing sires and dams were used as selection candidates to produce the
next selection of candidates. Candidates were considered for selection after all the information
needed for selection decisions was available. In the simulation, we assumed an animal model
for genetic evaluation considering all the genetic relationships. Male selection candidates
were evaluated based on their half-sib sisters, daughters and dams information while females
were evaluated on their own performance records, half-sib sisters and parent’s information.
To reduce bull maintenance cost and loss of selection candidates due to involuntary culling,
we assumed a situation where semen was collected and stored. Bulls were therefore culled
after two years. Genetic evaluation and selection of male and female candidates was varied to
represent different selection strategies. We considered several strategies to maximize genetic
gain in the overall objective with three production systems.

The breeding program aimed to maximize genetic gain in the overall objective (∆H)
with genetic gains in each of the three production systems:

∆H = ∆HLow + ∆HMedium + ∆HHigh

where ∆HLow, ∆HMedium and, ∆HHigh are the genetic gains in the low, medium, and high
production systems, respectively. The proportions of cows in the low (0.30), medium (0.33),
and high (0.37) production systems in Wahinya [2], were used to weight the gains in the
respective production systems for the population size. The breeding goal (Hi) within each
(Low, Medium, and High) breeding program was defined as:

Hi = v’a

where v’ and a are vectors with economic weights and true breeding values for the six
traits in the breeding objective under the ith production system: low, medium, and high
production systems, respectively. Four different breeding strategies were simulated in this
study: (1) one breeding program with progeny testing all bulls in the high production
system only (HIGH), (2) one joint breeding program with progeny testing all bulls in each
of three environments (JOINT), (3) and three environment-specific breeding programs
(sub-programs) each with testing of bulls only within each environment (IND). A fourth
strategy similar to IND was simulated to evaluate the effect of genomic information on
genetic improvement (IND-GS).

HIGH strategy consisted of one breeding program with progeny testing of bulls in the
high production system. The aim was to improve the breeding objective with the six traits in
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the high production system. Selection of candidate sires was therefore based on the selection
index under the high production system. The economic weights for the traits under the low
and medium production system were therefore set to zero. The low and medium production
systems obtained a correlated response from selection in the high production system.

JOINT strategy consisted of one breeding program with progeny testing of all test
bulls in the three production systems. The aim was to improve the breeding objective with
eighteen traits representing the six traits in all three production systems simultaneously.
Economic weights specific for each production system were obtained from Wahinya [16].

IND strategy consisted three separate breeding sub-programs, one for each production
system. Test bulls were progeny tested and selected within their sub-program of origin.
The aim was to improve the breeding objective with six traits within each breeding program
separately. The number of test bulls used in each production system was equated to the
relative proportion of the population of cows under each production system multiplied by
the total number of test bulls. Proportions of 0.30, 0.33, and 0.37 were assumed for the low,
medium, and high production systems, respectively [2].

IND-GS strategy was similar to IND. The only difference was that phenotypic and
genomic information were used to select males and females. The breeding objective
therefore had twelve traits, one extra trait for each of the six traits in the IND strategy to
represent the genomic information. All dams within the three production systems were
assumed to be genotyped and phenotyped to form the reference population.

2.4. Prediction of Genetic Gain

Response to selection was predicted by deterministic simulation based on selection
index theory using the SelAction software. SelAction predicts genetic gains at equilibrium
accounting for overlapping generations, a build-up of pedigree information [18], and
reduction of genetic variance due to selection [19]. Further details about the features and
the theoretical background of the software are described in Rutten [20]. Selection was
simulated by truncation with overlapping generations, while the annual genetic gain due
to selection was estimated as in Ducrocq and Quaas [21]. Genomic selection was simulated
by adding an extra trait to represent the marker information [22,23]. Marker information
was modelled using a trait with a heritability of 0.999, correlated to each trait. The genetic
correlation between the marker and each trait was the accuracy of genomic EBV (rgĝ). The
accuracy of genomic information depends on the size of the reference population (np), the
effective number of loci for which the effects have to be estimated (nG), and the correlation
between the true breeding value of a genotyped individual with its phenotypic record (r).
This was calculated as [22,24]:

rgĝ =

√
λr2

λr2 + 1

where λ = np/nG, np is the number of individuals in the reference population with both
phenotypic records and genotypic information and nG depends on the historical effective
population size (NE) and was estimated as nG = 2NEL, where L is the size of the genome in
Morgan. Since individuals in the reference population are genotyped and phenotyped, r is
equal to the square root of heritability of the trait and therefore, r2 = h2. The environmental
correlation between the marker information and the original trait was set to zero based
on the assumption that genotypes can be observed without error, the marker information
is fully heritable and has no residual variance [23]. Genetic and phenotypic correlations(

rQ̂1Q̂2

)
between the genomic EBVs were calculated as in Dekkers [22].

Table 1 shows the assumed genetic and phenotypic standard deviations, economic
weights, heritabilities, genetic, and phenotypic correlations for traits under the low, medium
and high production systems. The estimated accuracy of the genomic information for the
breeding objective traits with different reference populations under the low, medium, and
high production systems is shown in Table 2.
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Table 1. Genetic (σa) and phenotypic standard deviations (σp), economic weights (EW) and genetic parameters; heritabilities—diagonal, genetic—below diagonal
and phenotypic—above diagonal correlations for traits under the low, medium and high production systems.

Trait 1 σa σp EW 2 Low Medium High

MY FY AFC CI MWT SR MY FY AFC CI MWT SR MY FY AFC CI MWT SR

Lo
w

MY 285.94 626.1 20.43 0.21 0.83 0.02 −0.01 0.31 0.16
FY 9.94 29.70 51.44 0.65 0.11 −0.09 0.08 0.00 0.16

AFC 77.73 156.48 −4.62 −0.38 −0.22 0.25 0.00 −0.11 −0.04
CI 33.3 130.85 −114.69 −0.11 0.02 0.03 0.06 0.03 0.00

MWT 14.53 31.97 −5.95 0.23 0.11 −0.09 −0.41 0.21 0.00
SR 0.36 1.11 399.26 0.24 0.20 −0.01 −0.22 0.01 0.02

M
ed

iu
m

MY 467.32 923.12 18.35 0.42 0.56 −0.22 −0.53 0.16 0.26 0.26 0.84 0.02 0.02 0.31 0.16
FY 26.97 60.47 56.84 0.56 0.33 −0.09 0.03 0.10 0.20 0.54 0.20 0.15 0.08 0.00 0.16

AFC 66.58 129.67 −5.73 −0.14 −0.12 −0.06 0.24 −0.15 −0.01 −0.05 0.34 0.26 0.03 −0.11 −0.04
CI 15.81 97.56 −180.42 −0.46 −0.01 0.29 0.05 −0.40 −0.03 0.34 −0.04 −0.12 0.03 0.03 0.00

MWT 29.65 54.14 −6.48 0.23 0.10 −0.09 −0.40 0.06 −0.26 0.16 0.10 −0.15 −0.40 0.30 0.00
SR 0.34 1.06 486.4 0.27 0.19 −0.01 −0.25 0.01 0.50 0.26 0.19 0.01 −0.23 0.01 0.02

H
ig

h

MY 613.03 1226.38 20.31 0.64 0.66 −0.25 −0.07 0.12 0.22 0.75 0.65 −0.21 0.14 0.12 0.26 0.25 0.81 −0.01 0.04 0.31 0.16
FY 28.66 56.84 61.41 0.62 0.84 −0.12 0.06 0.11 0.21 0.61 0.58 −0.10 0.03 0.11 0.21 0.73 0.25 0.01 0.08 0.00 0.16

AFC 13.61 60.75 −7.88 −0.05 −0.12 −0.64 0.51 −0.13 −0.04 −0.47 −0.15 0.32 −0.44 −0.13 0.00 −0.28 −0.14 0.05 0.03 −0.11 −0.04
CI 13.72 68.01 −298.59 0.00 0.15 −0.50 0.08 −0.35 0.03 0.51 0.15 0.06 0.62 −0.34 −0.01 0.43 0.14 0.09 0.04 0.03 0.00

MWT 29.65 54.14 −7.8 0.21 0.11 −0.11 −0.45 0.51 0.01 0.17 0.11 −0.16 −0.42 0.51 0.00 0.16 0.12 −0.13 −0.39 0.30 0.00
SR 0.34 1.06 605.56 0.26 0.21 0.02 −0.24 0.03 0.50 0.22 0.20 0.00 −0.25 0.03 0.50 0.22 0.22 −0.01 −0.19 0.01 0.02

1 MY—lactation milk yield (kg); FY—butterfat yield (kg); AFC—age-at-first calving (days); CI—calving interval (days); MWT—mature weight (kg); SR—cow survival (%). Source of
genetic parameters: [2,16,25–28]. The standard errors for the genetic parameters ranged between 0—0.5. Source of economic weights: [16]. 2 EV—economic weights (Kenya Shillings).
The genetic correlation matrices were bended to make them positive definite using the Higham [29], algorithm in R software [30].
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Table 2. Accuracies of genomic information for the breeding objective traits depending on the size of
the reference populations under the low, medium and high production systems.

System Reference
Population

Trait 1

MY FY AFC CI MWT SR

Low

500 0.10 0.08 0.12 0.06 0.11 0.03
1500 0.18 0.13 0.20 0.10 0.18 0.06
2500 0.23 0.17 0.25 0.13 0.23 0.07
5000 0.31 0.24 0.34 0.18 0.32 0.10

Medium

500 0.12 0.10 0.12 0.04 0.10 0.03
1500 0.20 0.18 0.20 0.07 0.18 0.06
2500 0.26 0.23 0.26 0.09 0.23 0.07
5000 0.35 0.31 0.35 0.13 0.32 0.10

High

500 0.12 0.12 0.05 0.05 0.10 0.03
1500 0.20 0.20 0.09 0.08 0.18 0.06
2500 0.25 0.25 0.12 0.10 0.23 0.07
5000 0.34 0.34 0.16 0.14 0.32 0.10

1 MY—lactation milk yield (kg); FY—butterfat yield (kg); AFC—age-at-first calving (days); CI—calving interval
(days); MWT—mature weight (kg); SR—cow survival (%).

3. Results
3.1. Response to Selection

The responses to selection per year under the low, medium, and high production
systems for each of the different breeding strategies for six traits assuming a nucleus with
500 dams are shown in Table 3. A positive response was predicted for lactation milk yield
(5.37 to 19.49 kg), lactation fat yield (0.12 to 0.78 kg), mature weight (0.02 to 0.05 kg), and
survival rate (0.002 to 0.004%) within all breeding strategies and production systems. Age
at first calving (−0.03 to −1.53 days) under all production systems and calving interval
(−0.18 to −0.41 days) under the low production system had negative responses, which is
desirable according to their economic weight. Responses in lactation milk yield, fat yield,
mature weight, and survival rate increased across production systems with the level of
production. There was no clear trend for the fertility traits (age at first calving and calving
interval). Relying on one breeding program based on the high production system (HIGH)
generated less responses under the low and medium production systems compared to
the strategies based on evaluating bulls and cows within each of the production systems.
The JOINT strategy with one joint breeding program with bull testing within the three
production systems had the highest responses observed for most of the traits under all
production systems. The IND-GS strategy involving the use of genomic information to test
bulls within each of the production systems had slightly higher responses compared to a
similar strategy that did not use genomic information (IND).

Table 3. Response to selection per year for six traits under the low, medium, and high production
systems: total economic gain within each system and overall gain with four selection strategies and a
nucleus with 500 dams.

Traits 1
HIGH2 JOINT 2 IND 2 IND-GS 2

Low Medium High Low Medium High Low Medium High Low Medium High

MY 5.37 9.44 14.26 8.48 14.53 19.49 6.48 10.60 13.39 6.59 11.45 13.69
FY 0.20 0.48 0.61 0.25 0.67 0.78 0.12 0.36 0.58 0.12 0.39 0.59

AFC −0.33 −0.36 −0.07 −1.15 −0.46 −0.03 −1.51 −0.28 −0.07 −1.53 −0.25 −0.07
CI −0.17 0.05 0.08 −0.41 0.02 0.15 −0.18 0.09 0.08 −0.18 0.11 0.08

MWT 0.01 0.02 0.03 0.03 0.04 0.05 0.02 0.02 0.03 0.02 0.02 0.03
SR 0.002 0.002 0.002 0.004 0.004 0.004 0.002 0.002 0.002 0.002 0.002 0.002
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Table 3. Cont.

Traits 1
HIGH2 JOINT 2 IND 2 IND-GS 2

Low Medium High Low Medium High Low Medium High Low Medium High

TEG 1

(KES) 141.57 194.41 304.28 240.35 305.38 402.49 166.92 200.04 285.93 169.67 214.92 292.13

OG 1

(KES) 640.25 948.22 652.89 676.72

1 MY—lactation milk yield (kg); FY—lactation fat yield (kg); AFC—age at first calving (days); CI—calving
interval (days); MWT—mature weight (kg); SR—survival rate (%). 2 HIGH—one production system breeding
program with bull testing in High environment only; JOINT—one joint breeding program with bull testing in
three environments; IND—three environment-specific breeding programs each with testing of bulls within each
environment; IND-GS—three environment-specific breeding programs each with testing of bulls within each
environment using genomic information; TEG—total economic gain; OG—overall objective gain.

3.2. Effect of Nucleus Size and Number of Progeny per Sire on Response

The effects of increasing the size of the nucleus from 500 to 5000 in response to
selection are shown in Figure 1. Response for all the traits under the three production
systems increased (−1.74 to 2.65 phenotypic standard deviations) for all strategies with an
increase in the size of nucleus. However, the rate of increase in response is not linear.
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Figure 1. Comparison of response to selection per year as a proportion of the phenotypic standard
deviations expressed as a percentage under the low, medium and high production systems with
different strategies. MY—lactation milk yield (kg); FY—lactation fat yield (kg); CI—calving interval
(days); MWT—mature weight (kg); SR—survival rate (%). HIGH—one production system breeding
program with bull testing in one environment; JOINT—one joint breeding program with bull testing
in three environments; IND—three environment-specific breeding programs each with testing of
bulls within each environment; IND-GS—three environment-specific breeding programs each with
testing of bulls within each environment using genomic information.
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4. Discussion

A joint breeding program with bull testing within each of the three production systems
(JOINT) produced the highest response among all the three strategies using progeny testing
due to higher accuracy of the index and higher variance of the overall breeding objective.
The response predicted under the low and medium production systems from selection
in the high production system (HIGH) is lower compared to other strategies where bull
testing is carried out within each of the three production systems (Table 3). The JOINT
strategy is a favorable strategy compared to having separate breeding programs. The extent
to which the three production systems would select the same sire(s) is dependent on the
genetic correlations between the breeding objectives of the three production systems. The
correlations between the breeding objectives under the low and medium, low and high,
and medium and high production systems are 0.79, 0.66, and 0.77, respectively [16]. A
strategy where bulls are tested within each of the production systems would help selection
of more robust animals to maintain diversity without necessarily developing specialized
lines. This would also lead to an increase in the effective population size [31].

Genomic selection has greatly transformed animal breeding and significantly impacted
dairy cattle genetic improvement, especially in developed countries. This has widened
the gap between countries implementing genomic selection and semen importing coun-
tries [32]. Several studies have recommended the potential of a genomic selection scheme
to provide a higher rate of genetic improvement for small-sized nucleus breeding programs
in developing countries [33–35]. Combining phenotypic and genomic information had a
minimal effect on the response compared with the use of progeny phenotype only (Table 3).
This shows that genomic selection cannot compete with traditional selection when the
number of phenotypic records is limited, unless in a situation where the generation interval
is significantly reduced by using genomic selection only [23,33]. The reduction of the gener-
ation interval, however, comes at a cost of reduced accuracies. The accuracies of genomic
breeding values predicted in this study could be low due to the low to moderate heri-
tabilities (Table 2) for the traits used in this study [36], and the small reference population.
Regardless of this, genomic selection schemes are still attractive and could be beneficial for
multi-trait selection with limited phenotypic records considering that traditional breeding
schemes still need many phenotypes and long generation intervals for progeny testing.
This is shown in Wahinya [37], where using correlated genomic information lead to a
higher overall economic response compared to progeny testing for a nucleus with 5000
dams. Correlated genomic information could not be implemented in this study due to a
limitation of number of traits in SelAction software. Genomic information could also be
used for parentage assignment and breed composition determination, which is particularly
beneficial to enhance the pedigree for genetic evaluation [35,38].

The dairy industry in Kenya would benefit from a higher response achieved by
increasing the size of the nucleus. A large nucleus allows a higher selection intensity, young
bulls can also be evaluated with more daughters, and it also minimizes inbreeding. A
large nucleus would also help to address the structural weakness of the current breeding
program due to a few herds contributing breeding males [39]. To create a larger nucleus it
would require a considerable effort to persuade many herds to participate by providing
pedigree and performance records to the recording organization. This has been a constant
challenge in the developing dairy industries where pedigree and performance recording
is already minimal and erratic. One of the main reasons linked to this is the failure of
the recording scheme to meet the farmer’s expectations and to offer noticeable returns [7].
Nevertheless, in practice, farmers still need records within their herds to make management
decisions. As shown in this study, the current performance recording herds can be used
to drive genetic gain for the commercial herds and the national dairy herd. This however,
requires an efficient way to evaluate animal performance including as much information
provided by the farmers [2]. A platform that is conspicuously missing for the current
performance recording system also needs to be developed to provide feedback and quality
information. Good examples can be learnt from other developed dairy industries that have
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applied digital strategies and education to provide quality information and tools for better
herd improvement decisions.

5. Conclusions

This study shows that a strategy based on bull testing within production systems
would be more beneficial compared to bull testing solely in high production environments.
A higher rate of genetic improvement would also be achieved by increasing the size of the
nucleus and the number of progeny per sire. A selection strategy using genomic information
is promising with a large reference population. Application of these recommendations will
be difficult but possible with the right level of investment, backed by innovative solutions,
digital strategies, and education to encourage pedigree, and performance recording in
developing countries.
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