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Abstract: The leaf area index (LAI), commonly used as an indicator of crop growth and physio-
logical development, is mainly influenced by the degree of water and fertilizer stress. Accurate
assessment of the LAI can help to understand the state of crop water and fertilizer deficit, which
is important for crop management and the precision agriculture. The objective of this study is
to evaluate the unmanned aerial vehicle (UAV)-based multispectral imaging to estimate the LAI
of maize under different water and fertilizer stress conditions. For this, multispectral imagery
of the field was conducted at different growth stages (jointing, trumpet, silking and flowering)
of maize under three water treatments and five fertilizer treatments. Subsequently, a stacking
ensemble learning model was built with Gaussian process regression (GPR), support vector re-
gression (SVR), random forest (RF), least absolute shrinkage and selection operator (Lasso) and
cubist regression as primary learners to predict the LAI using UAV-based vegetation indices (VIs)
and ground truth data. Results showed that the LAI was influenced significantly by water and
fertilizer stress in both years’ experiments. Multispectral VIs were significantly correlated with
maize LAI at multiple growth stages. The Pearson correlation coefficients between UAV-based VIs
and ground truth LAI ranged from 0.64 to 0.89. Furthermore, the fusion of multiple stage data
showed that the correlations were significantly higher between ground truth LAI and UAV-based
VIs than that of single growth stage data. The ensemble learning algorithm with MLR as the sec-
ondary learner outperformed as a single machine learning algorithm with high prediction accuracy
R2 = 0.967 and RMSE = 0.198 in 2020, and R2 = 0.897 and RMSE = 0.220 in 2021. We believe that the
ensemble learning algorithm based on stacking is preferable to the single machine learning algorithm
to build the LAI prediction model. This study can provide certain theoretical guidance for the rapid
and precise management of water and fertilizer for large experimental fields.

Keywords: maize; LAI; unmanned aerial vehicle; ensemble learning; water and fertilizer stress

1. Introduction

Maize is the most widely cultivated food crop, not only in China, but also the world [1].
The latest data show maize planting areas and yields have reached 36% and 40% of the
total sown area of crops in China, respectively. However, drought and nutrient deficiencies
can severely affect maize growth, resulting in lower yields [2,3]. The LAI is one of the
most important crop traits reflecting crop growth and indicating potential gain yield [4].
Therefore, monitoring the LAI is beneficial to understand the degree of water and fertilizer
stress on crop growth and to evaluate precise management of water and fertilizer [5–7].

LAI measurement by using the traditional manual method is time-consuming and
laborious, and it is difficult to achieve the accurate estimation of LAI over large areas
because of crop heterogeneity. In comparison, remote sensing technology is now regarded
as the suitable means for monitoring crop growth at large scales, with the improvements
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in spatial and spectral resolution [8,9]. However, satellite remote sensing remains limited
by cloud cover, coarse resolution and satellite revisit time. As one of the most important
emerging remote sensing platforms, unmanned aerial vehicles (UAVs) are more flexible
than satellites, which can provide remote sensing data with higher temporal, spatial and
spectral resolution. UAV remote sensing is becoming a promising phenotyping tool for
frequent observations of crops and has been gradually employed in precise agriculture [10].

Recently, UAV-based phenotyping data of spectral indices has been used in different
statistical models to predict LAI. For example, height index and canopy cover information
calculated from RGB images have been used to predict forest LAI with prediction accuracy
up to R2 = 0.83 [11]. Furthermore, Cheng et al. [12] studied the ability of different algorithms
and built high accuracy models to predict LAI using remote sensing data. Recently, the
XGBoost modeling method combined with competitive adaptive reweighted sampling and
the successive projections algorithm has achieved better prediction LAI results than partial
least squares regression (PLSR) and support vector regression (SVR) [13]. Apart from the
statistical model, the physical model is also used to predict the LAI. Li et al. [14] applied
the PROSAIL model combined with agronomic knowledge to crop growth monitoring,
which also significantly improved the prediction accuracy of the LAI. The recent need
concerning UAV-based remote sensing is to improve the ability of UAV-based estimations
of LAI with the help of multi-source spectral (RGB image, multispectral, hyperspectral,
thermal infrared, lidar, etc.) fusion method. Gong et al. [15] reported that a model based on
the combination of the multispectral vegetation index and the canopy height extracted from
RGB images could reduce the impact of phenology specificity; whereas, LAI prediction
results using the fusion of RGB, multispectral and thermal infrared data were better than a
single or dual data source for the maize crop [16]. Although rich datasets come first, the
selection of features has a great impact on the simulation accuracy of the machine learning
model [17]. The selection of feature vectors cannot only improve the accuracy and stability
of the model, but also reduce the difficulty and time cost of collecting features [18].

Machine learning mainly solves problems through semi-automatic or automatic mod-
elling, with the aim of reducing human interventions. Machine learning methods are
increasingly being used for estimations of crop traits [19]. Recently, in UAV-based crop
phenotyping studies, several machine learning algorithms, including SVR, RF, GPR, Lasso,
k-nearest neighbor (KNN), gradient boosting decision tree (GBDT), etc., have been success-
fully used to increase the prediction accuracy of important crop traits [20–22]. In recent
years, with the development of computer technology and machine learning theory, en-
semble learning algorithms have been increasingly applied in various fields, especially
in agricultural research [23–26]. Ensemble learning mainly is used to combine multiple
learners in order to obtain a better and more comprehensive and strongly supervised
model. The underlying idea of ensemble learning is that even if one base learner gets a
less accurate prediction, other base learners can correct the error. The commonly used
ensemble learning algorithms include bosting, bagging and stacking algorithms. Some
studies have been conducted on the use of ensemble learning for different machine learning
models to predict the LAI and improve prediction accuracy [27,28]. It is worth mentioning
that boosting and bagging mainly consider homogeneous weak learners, such as decision
tree, while stacking can consider heterogeneous learners. The heterogeneity of stacking
enables it to integrate not only weak learners but also strong learners, such as SVR, RF, GPR,
etc. The use of the ensemble learning model trained with UAV-based multi-source data
can help increase the prediction accuracy of the LAI for better and timely understanding
of water and fertilizer stress as well as improve field management strategies for maize
crops. Therefore, in the present study, irrigation and fertilization management based on
drip irrigation were evaluated using UAV-based phenotyping and the stacking ensemble
learning method.

The main objects of this study were (1) to estimate LAI using UAV-based data and
stacking ensemble learning algorithms and (2) to evaluate the water and fertilizer manage-
ment of drip irrigation on the estimation of LAI at multiple growth stages of summer maize.
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2. Materials and Methods
2.1. Overview of the Experimental Site

The study was conducted at Qiliying comprehensive experimental station (QCES) of
the Chinese academy of agricultural sciences, Xinxiang city in Henan province of China
(Figure 1). The station lies at 35◦13′ North and 113◦76′ East with an average altitude of 78 m
above mean sea level. The average annual temperature of the experimental site is 14.1 ◦C
and the mean relative humidity is approximately 68%. A minimum average temperature of
0.7 ◦C is recorded in January while a maximum average temperature of 27.1 ◦C is recorded
in July. The site is characterized by a unimodal rainfall regime with an average annual
rainfall of 548.3 mm. Normally, rains occur between July and September. The annual
evaporation recorded is 1748.4 mm. Most of the agricultural activities are rainfed, with
wheat and maize being the major food crops throughout the year. The major source of
irrigation water is the groundwater. The study site is light loam soil. The surface soil’s bulk
density within the study sites measured is 1.4 g/cm3. Adjacent plots were selected for the
two-year experiment in order to ensure the consistency of soil nutrients when sowing in
the same planting year.
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2.2. Experimental Design

Experimental fields were evaluated across two growing seasons, 2020 and 2021, for
irrigation and fertilizer treatments (Figure 2). For this, two Maize cultivars “Taiyu 339” and
“Nongda 108” were planted for two years on 20 June 2020 and 10 June 2021 with 0.6 m row
spacing and 0.25 m plant spacing, and the row direction was North–South. The maize was
headed on approximately 10 August and harvested on 27 September with a 96-day lifespan
in 2020 and a 106-day lifespan in 2021.
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Figure 2. Distribution of the experimental plots. (a) Overview of experimental field in 2020; (b) Fertil-
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In both years’ irrigation experiments, irrigation was carried out using the drip irriga-
tion method with a total of three irrigation gradients. Irrigating quotas on each application
were 0 mm (W0), 30 mm (W1) and 70 mm (W2), respectively. The irrigation volume was
controlled by the water meter on the branch pipe. During the sowing period, the experi-
mental field was irrigated with flood irrigation once, in order to ensure the emergence rate
of maize. Afterwards, controlled irrigation treatments were carried out at the jointing stage,
big trumpet stage and silking stage of summer maize.

In 2020, fertilizer treatments were conducted under each abovementioned irrigation
treatment, using a completely randomized block design. Each irrigation treatment con-
tained fifteen experiment plots of 4 × 3 m dimensions with 1.2 m spacing, with five
fertilization treatments: CK, N, K, NK, NPK; where N, P, K are nitrogen (N, 250 kg hm−1),
phosphate fertilizer (P2O5 30 kg hm−1) and potassium fertilizer (K2O 120 kg hm−1); CK is
a non-nutritive fertilizer. Compound fertilizer (600 Kg hm−1) was basally applied to all
plots, which accounted for 50% of the total application amount. Carbamide CO(NH2)2,
superphosphate Ca(H2PO4)2·H2O, potassium chloride KCL were used as topdressing fertil-
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izers. The topdressing time was at the big trumpet stage and silking stage; each application
amount accounted for 25%. Five fertilizer treatments were repeated three times, as shown
in Figure 2.

In 2021, the randomized block design was also used in the fertilization treatment exper-
iment. However, each irrigation treatment contained twenty experiment plots (2 × 1.8 m)
with 1.2 m spacing, with four fertilization treatments: CK, N, PK and NPK. Each fertilizer
treatment was repeated five times. Fertilization application was divided into three times
throughout the entire growth period, at the sowing stage, big trumpet stage and silking
stage, while each application accounted for 33.3% of the total amount.

2.3. UAV Multispectral Images Acquisition and Process

UAV-based images were acquired using a RedEdge-MX (MicaSense, Inc., Seattle, WA,
USA) sensor mounted on the DJI M210 (SZ DJI Technology Co., Shenzhen, China). The
fields were georeferenced using UAV-mounted GPS. Then, the points were recorded to
produce a flight route. The RedEdge-MX sensor had five multispectral bands (blue, green,
red, red edge and near-infrared). The center wavelengths for the respective spectral band
were 475 nm, 560 nm, 668 nm, 717 nm and 840 nm.

UAV flight missions were conducted under clear sky and low wind speed (<5 m s−1)
conditions between 11:00 and 13:00 solar time, ensuring few shadows of features were
collected. UAV acquired images of the field at a speed of 3 m s−1 and an altitude of 30 m
above ground level. The 85% forward and 80% sideward overlap was set between images.
A standard reluctance panel was used to calibrate the multispectral images.

Summer maize has a rapid growth from the jointing stage to silking stage and reached
maximum LAI at the silking stage with no growth thereafter. Therefore, data collection
was generally conducted from the jointing to silking stage as shown in Table 1.

Table 1. Data acquisition dates.

2020 2021

UAV Flight Date Field Sampling Date Growth Period UAV Flight Date Field Sampling Date Growth Period

July 13 July 13 jointing July 12 July 12 jointing
July 24 July 24 9th leaf July 30 July 30 big trumpet
July 30 July 30 big trumpet August 11 August 11 silking

August 10 August 10 silking August 19 August 19 blister

UAV images were processed using the Pix4Dmaper 3.1.22 (Pix4D, S.A., Lausanne,
Switzerland) to calibrate and stitch the acquired images. The software output included
the experiment map, dense point cloud extraction and digital surface model (DSM). The
point clouds were accurately georeferenced to the Earth reference system, World Geodetic
System 84. The shape files were produced to clip each plot from the experimental map,
then the average reflectivity of the plot in each band was respectively extracted to represent
the actual reflectance of the plot. This part of the work was implemented in ArcGIS 10.5
(ESRI, RedLands, CA, USA). In the next step, ENVI 5.5 (Exelis Visual Information Solutions,
Boulder, CO, USA) and IDL language were used to calculate the vegetation indices. The
vegetation index can simply and effectively measure the growth of crops. It is widely used
to estimate LAI [10]. In order to reduce the influence of external environmental factors,
such as soil and atmosphere, 12 vegetation indices that perform well in this condition
were selected according to previous studies [29]. The calculation formula of the 12 VIs is
respectively shown in Table 2.
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Table 2. Details of multispectral vegetation index.

Vegetation Index Formula Reference

Normalized Difference Vegetation Index (NDVI) (ρNIR − ρR)/(ρNIR + ρR) (Xue and Su, [30])
Modified Simple Ratio (MSR) (ρNIR/ρR − 1)/(

√
ρNIR/ρR + 1) (Chen, [31])

Nonlinear Index (NLI)
(
ρ2

NIR − ρR
)
/
(
ρ2

NIR + ρR
)

(Goel and Qin, [32])
Modified Double Difference Index (MDD) (ρNIR − ρRE)− (ρRE − ρG) (Zha et al., [33])

Difference Vegetation Index (DVI) ρNIR − ρR (Tucker, [34])
Green Ratio Vegetation Index (GRVI) ρNIR/ρG (Sripada et al., [35])

Green Wide Dynamic Range Vegetation Index
(GWDRVI) (0.12ρNIR − ρG)/(0.12ρNIR + ρG) (Cao et al., [36])

Normalized Red Index (NRI) ρR/(ρNIR + ρRE + ρR) (Lu et al., [37])
Modified Normalized Difference Index (MNDI) (ρNIR − ρRE)/(ρNIR − ρG) (Lu et al., [37])

Normalized Difference Red Edge (NDRE) (ρNIR − ρRE)/(ρNIR + ρRE) (Zha et al., [33])
Red Edge Soil-Adjusted Vegetation Index (RESAVI) 1.5(ρNIR − ρRE)/(ρNIR + ρRE + 0.5) (Cao et al., [36])

Modified Soil-adjusted Vegetation Index (MSAVI2) 0.5
(

2ρNIR+1−
√
(2 ρNIR +1)2− 8(ρNIR − ρNIR)

)
(Jiang et al., [38])

Note: G, NIR, R, RE are the averaged reflectance among the waveband range to match multispectral data in the
green, near infrared, red, and red edge wavelengths, respectively.

2.4. Ground Data Acquisition

The weather data was measured with 30 min intervals by the agricultural meteorolog-
ical station installed on the flux tower near the experimental site. The parameters recorded
include air temperature, relative humidity, wind speed, soil temperature and rainfall, etc.
The ground truth LAI was measured by the SunScan (Delta-T Devices Ltd., Cambridge, UK)
device. Each experiment plot was measured at one-third equal intervals along the planting
direction, and the measurement direction was perpendicular to the planting direction;
therefore, each experiment plot was completely measured three times, and the averaged
LAI value of the plot was considered as the true LAI representative of the plot. The LAI
measurement was performed after UAV image acquisition to ensure data synchronization.

2.5. Ensemble Learning Model Construction and Evaluation

The core idea of stacking in this study was to train the base model of the first layer,
and then use the output of the first layer model as input to train the next-level model, to
finally obtain the simulated value. In this study, only two layers of learners were set. At
the same time, since each base model must be used as the input variable of the secondary
learner, the selection of the primary model should follow some principles [39]. Firstly, the
ensemble method combines the estimated values of a single model, and the performance
of each primary model can affect the final ensemble result, so each primary model should
have good estimation ability [40]. Secondly, there should be differences among the models.

The basic principle of this algorithm is shown in Figure 3. Firstly, the data was divided
into training set and test set, while the training set was divided into five parts: fold1,
fold2, fold3, fold4 and fold5. Secondly, the primary learners (basic model) were selected,
and the five-fold cross validation method was used for model training, and the trained
basic model was used to predict the test set. Then, the predicted values of the training set
were regarded as eigenvectors “A1, A2, . . . , An” to form a new training set; whereas, the
predicted values of the test set were regarded as eigenvectors “B1, B2, . . . , Bn” to form a
new test set. Finally, a predictive model was built using the secondary learner. In this study,
primary learning models included Gaussian process regression (GPR), support vector
regression (SVR), random forest (RF), least absolute shrinkage, selection operator (Lasso)
and Cubist regression, while secondary learning models included RF and multiple linear
regression (MLR). Model construction was performed using R 4.0.3. For more information,
please refer to the literature [41,42].
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2.5.1. Stepwise Regression

In order to obtain the high-performance model, the characteristic variables need
to be screened prior. Stepwise regression is used to screen all parameters. Stepwise
regression combines forward stepwise regression and backward stepwise regression. Only
one variable is added each time, but in each step, the variable will be re-evaluated, and
the variable with no or insignificant contribution to the current model can be removed.
Independent variables can be added or removed again until an optimal model is obtained.
Akaike information criterion (AIC) is used as the basis to judge whether the variable
can survive [43]. The AIC formula is shown in Equation (1). Increasing the number of
independent variables in the model can improve the goodness of fitting, but it may lead to
over-fitting of the model. AIC encourages the goodness of data fitting and tries to avoid
over-fitting. Therefore, the preferred model should be the one with the lowest AIC value.
Using AIC to deal with statistical problems can be roughly divided into the following
three steps: (1) constructing the statistical model; (2) the parameters are estimated by the
maximum likelihood estimation method; (3) the model is selected by the minimization
of AIC. The difference in AIC first depends on the likelihood function L. When there is
no significant difference in L, the model with few parameters is considered to be a good
model. Therefore, the model with better goodness of fit and few independent variables can
be developed according to AIC.

AIC = −2 ln(L)+2k (1)

where k is the number of parameters; L is the likelihood function, which can be expressed
as Equation (2):

L = −n
2

ln(2π)− n
2

ln
(

SSE
n

)
− n

2
(2)

where n is the sample size; SSE is the sum of squares error. It can be seen that L mainly
depends on the sum of squares error. Therefore, AIC can also be expressed as Equation (3):

AIC = n ln
(

SSE
n

)
+2k (3)
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2.5.2. Gaussian Process Regression

Gaussian process regression (GPR) is a machine learning algorithm based on the
Gaussian process (GP) for regression prediction of observed samples. The probability
density function of the GP is shown in equation 4. It can be seen from the formula that the
Gaussian distribution is determined by the mean vector and the covariance matrix. The
process of GPR prediction can be roughly summarized into five steps: (1) determine the
observed data points as the sampling points of the GP; (2) determine the mean function and
covariance function; (3) obtain the function of the observed data according to the posterior
probability expression; (4) use maximum likelihood estimation to solve hyperparameters;
(5) get predicted values. The specific process can be followed in Rasmussen’s research [44].

p(x1, x2, · · · , xn) =
1

2π
n
2 σ1σ2 · · · σn

exp

(
−1

2

[
(x1 − µ1)

2

σ2
1

+
(x2 − µ2)

2

σ2
2

+ · · ·+ (xn − µn)
2

σ2
n

])
(4)

2.5.3. Support Vector Regression

The support vector machine (SVM) is a classifier, but it can also be used for regression
analysis. The application model of SVM regression is called support vector regression
(SVR) [45]. The advantage of SVR is to determine the final decision function with a few
support vectors. The complexity of its calculations depends on the support vector rather
than the whole sample space, which can avoid the “disaster of dimension”. Similarly,
the final result is determined by a few support vectors, which is not only convenient to
pay attention to key samples, but also ensures that the SVM has good “robustness”. For
nonlinear problems, the main idea of SVR is to transform the original problem into a linear
problem in a high-dimensional space and perform a linear solution in the high-dimensional
space. Then, the solution of the problem becomes maximizing the following objective
function (Equation (5)) under the constraint condition (Equation (6)).

W(αi, α∗i ) =
n

∑
i=1

yi(α
∗
i − αi)− ε

n

∑
i=1

(αi + α∗i )−
1
2

n

∑
i=1

n

∑
j=1

(αi + α∗i )K
(
xi, xj

)
(5)


n
∑

i=1

(
αi + α∗i

)
= 0

0 ≤ αi, α∗i ≤ C
(6)

where αi, α∗i is Lagrange factor; W is objective function; ε and C are both positive constants;
K
(

xi, xj
)

is kernel function. Finally, using the optimization algorithm to calculate equation
5 can be obtained by the nonlinear regression function (Equation (7)). In this formula, only
a small part of

(
α∗i − αi

)
6= 0, and their corresponding samples are called support vectors.

The optimization algorithm can be expressed as Equation (8).

f (x) = (α∗i − αi)K
(

xi, xj
)
+ b (7)

min
β

1
2

βT Hβ + γT β (8)

where β =

[
α
α∗

]
, H =

[
XXT −XXT

−XXT XXT

]
, γ =

[
ε + Y
ε−Y

]
, X =

x1
...

xn

, Y =

y1
...

yn

. The

constraint conditions of Equation (8) are β*(1, ···, 1, −1, ···, −1) = 0, and α∗i , αi ≥ 0 and
i = 1, ···, n; n is sample size.



Agriculture 2022, 12, 1267 9 of 21

2.5.4. Cubist Regression

The Cubist model is an extension of the M5 model tree developed by Quinlan [46].
Cubist is a modeling analysis method based on specific rules, which is usually used in
continuous value prediction problems. Firstly, the model tree is created through recursive
processing and then simplified into a series of rules. These rules partition samples according
to their spectra and a unique linear model is then applied to predict the target variable. The
Cubist method can use the nearest neighbors in the sample to modify the model prediction
results. The first step is to build a model tree. If there is a sample to be predicted, this
method can find the closest one in the sample and finally get the predicted value. The
independent variables in this method cannot only be used for modeling, but can also
determine node branching. Using this algorithm in R, it is possible to automatically identify
independent variables that can be used for branching and modeling. More details on Cubist
and its implementation can be found in Viscarra Rossel and Webster and Minasny and
McBratney [47,48].

2.5.5. Lasso Regression

Lasso regression is not only a model with good generalization and estimation ability,
but also acts as a stable variable filter [49,50]. When the autocorrelation of variables is high,
this kind of method can avoid excessive interpretation of the current sample and explore the
law applicable to the whole population. This shift from explanation to prediction is helpful
to enhance the theoretical significance and application value of research. The loss function
of Lasso regression can be expressed as Equation (9). The first part of the formula is the
loss function of ordinary least square (OLS), and the second part is the penalty function. λ
(≥0) represents the tuning parameter, which is used to control the regression coefficient.
The larger the value, the stronger the punishment. When λ = 0, it means that the regression
model is not penalized, and the formula becomes the OLS loss function.

LLasso(β) = ||Y− Xβ||2 + λWT β (9)

where X is the matrix of predictive variables; Y is a vector of outcome variables; β is
the regression coefficient vector; W is the vector with a value of ±1 (plus or minus sign
corresponds to the corresponding value in the β vector).

2.5.6. Random Forest Regression

The random forest regression model consists of multiple decision trees, and there is no
relationship between each decision tree in the forest. The final output of the model is jointly
determined by each decision tree in the forest [51]. The randomness of random forest is
reflected in two aspects: (1) A certain number of samples are randomly selected from the
training set as the root node samples of each regression tree; (2) when establishing each
regression tree, a certain number of candidate features are randomly selected, and the most
suitable feature is selected as the split node.

2.5.7. Model Accuracy Evaluation

In this study, the coefficient of determination (R2), root mean square error (RMSE),
residual prediction deviation (RPD) and the ratio of performance to interquartile distance
(RPIQ) were used as the accuracy evaluation indexes. Among them, R2 can characterize
the stability of the model (positive relationship) and RMSE is often used to characterize
model accuracy (reverse relationship), while RPD is the ratio of sample standard deviation
(SD) to RMSE (Equation (10)).

RPD =
SD

RMSE
(10)

When 1.5 < RPD < 2.0, it is considered that the model can only roughly estimate the
LAI; when 2.0 ≤ RPD < 3.0, the model has good prediction ability and is relatively reliable;
when RPD ≥ 3.0, the model has excellent prediction ability and is reliable.
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RPIQ considers both the prediction error and the change in observation data. It is a
more objective and easier index to compare in model verification. The larger the RPIQ,
the stronger the prediction ability of the model. Different from the residual prediction
deviation, RPIQ has no assumption on the distribution of observed values [52]. Its formula
is as shown in Equation (11):

RPIQ =
IQ

RMSE
(11)

where IQ is the difference between the third and first quartiles.

3. Results
3.1. LAI under Different Water and Fertilizer Treatments

Before conducting analysis of variance (ANOVA), it is necessary to perform normal
analysis on the data. If the data does not obey the normal distribution, the statistical con-
clusions obtained may be invalid. Thus, Figure 4 shows the normality test of experimental
LAI data through Quantile-Quantile (Q-Q) image under the two treatments. It can be seen
from the figure that the data was normally distributed across the stages.
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Analysis of variance (ANOVA) results shows that the effect of irrigation and fertiliza-
tion treatments on LAI. The F test and p-value in ANOVA results are important indicators
to judge the significance of factors. The results in Tables 3 and 4 indicate significantly effect
of fertilizer and water stress on LAI.
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Table 3. ANOVA results between LAI and control variables in 2020.

Control
Variable

Jointing 9th Leaf Big Trumpet Silking
F p-Value F p-Value F p-Value F p-Value

Fertilization 3.428 0.019 9.797 3.418 × 10−5 8.296 1.248 × 10−4 4.674 0.005
Irrigation 25.266 3.69 × 10−7 20.713 2.233 × 10−6 20.563 2.379 × 10−6 12.059 1.434 × 10−4

Note: the F-crit of fertilization factor is 2.69 (α < 0.05) and that of irrigation factor is 3.32.

Table 4. ANOVA results between LAI and control variables in 2021.

Control
Variable

Jointing Big Trumpet Silking Blister
F p-Value F p-Value F p-Value F p-Value

Fertilization 2.632 0.061 6.825 6.360 × 10−4 11.389 9.277 × 10−6 5.892 0.002
Irrigation 9.508 3.324 × 10−4 10.155 2.100 × 10−4 15.044 8.466 × 10−6 24.694 4.224 × 10−8

Note: the F-crit of fertilization factor is 2.84 (α < 0.05) and that of irrigation factor is 3.23.

Figure 5 shows the LAI development of summer maize in both years under different
water and fertilizer treatments. Firstly, the LAI responded strongly to fertilizer treatment.
The results, obtained from the two years of experiments, demonstrated that the average
value of the maize LAI under NPK treatment is higher than that under CK treatment.
Secondly, irrigation treatments also significantly influenced the LAI. With the increase
in irrigation amount, the LAI gradually increased for each growing stage, especially in
2020. Thirdly, the combination of water and fertilizer further improved the maize LAI. In
both years, under the W2 irrigation and NPK fertilization conditions, the average LAI at
each stage were the highest. In addition, the highest average LAI value of each treatment
was 4.422 in 2020 and was 2.820 in 2021. This big difference is due to the waterlogging
inhibiting maize growth, resulting from heavy rainfall at big trumpet in 2021. Meanwhile,
the waterlogging causes a decrease in the LAI after big trumpet in 2021. According to
statistics, from 17–23 July to 2021, the cumulative rainfall in the experiment area was
512 mm, which was about to reach the average annual precipitation of 548.3 mm.

3.2. Correlation Analysis of Multispectral VIs and Ground LAI

Correlation between UAV-based vegetation indices (Vis) and the ground truth LAI
were calculated at all growth stages using a simple linear regression model (Table 5). On
the whole, the LAI showed significantly high (at p < 0.0001) correlations ranging from
0.573 to 0.890 with UAV-based VIs at each growth stage. Variation in the correlation values
among the growth stages were due to the influence of spectral saturation, soil background
and other factors, such as a single vegetation index, can have regional specificity and
timeliness. The correlations were increased as the maize growth progresses. After the big
trumpet stage, the correlation between the UAV-based Vis and the ground truth LAI were
higher than at the jointing stage, due to the full stretch of leaves. From the jointing stage
to the silking stage, the mean values of the coefficients of determination R2 for the LAI
and UAV-based VIs were increased from 0.464 (In 2020) and 0.427 (In 2021) to 0.601 and
0.72, respectively. The main reason of increase is that the maize plants were short at the
jointing stage, and the difference of ground coverage in the test area was low. Therefore,
the probability of measurement errors was relatively high, resulting in a low correlation at
the jointing stage.
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3.3. Evaluation of Model Accuracy for LAI Prediction

Regression analysis has a strong dependence on the sample data. If the sample size
is too small (≤60), the data sample distribution is insufficient, resulting in weak accuracy
and robustness of the model for the single growth stage. Thus, data for all growth stages
in same experiment were served as a new dataset to evaluate the robustness of the LAI
estimation model. The new sample size was 180 in 2020 and 240 in 2021. In order to
predict the relationship between ground truth LAI and UAV-based VIs in the new sample,
univariate polynomial regression equation between LAI and UAV-based VIs was fitted.
When the multi-growth stages were fused, the relationship between the LAI and VIs was
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not a simple first-order linear relationship. The fitting curves of the quadratic, cubic, and
quartic polynomials performed well. Considering the simplicity of the model, quadratic
polynomial was chosen to build the model. The univariate regression model and accuracy
evaluation of the LAI and each of the VIs are shown in Table 6. It can be found that the
ground truth LAI is significantly correlated with VIs, and the coefficient of determination
R2 was greater than 0.87, the RMSE was lower than 0.38.

Table 5. Correlation between UAV-based vegetation indices and ground truth LAI.

Vegetation
Index

2020 2021

Jointing 9th Leaf Big
Trumpet Silking Jointing Big

Trumpet Silking Blister

NDVI 0.693 *** 0.763 *** 0.824 *** 0.779 *** 0.683 *** 0.658 *** 0.645 *** 0.845 ***
MSR 0.700 *** 0.782 *** 0.830 *** 0.795 *** 0.677 *** 0.656 *** 0.670 *** 0.867 ***
NLI 0.708 *** 0.76 *** 0.818 *** 0.801 *** 0.631 *** 0.640 *** 0.677 *** 0.858 ***

MDD 0.702 *** 0.713 *** 0.758 *** 0.815 *** 0.658 *** 0.629 *** 0.788 *** 0.890 ***
DVI 0.709 *** 0.666 *** 0.750 *** 0.798 *** 0.573 *** 0.577 *** 0.697 *** 0.794 ***

GRVI 0.627 *** 0.768 *** 0.822 *** 0.735 *** 0.662 *** 0.653 *** 0.727 *** 0.866 ***
GWDRVI 0.625 *** 0.760 *** 0.819 *** 0.729 *** 0.665 *** 0.654 *** 0.731 *** 0.860 ***

NRI −0.697 *** −0.765 *** −0.825 *** −0.784 *** −0.685 *** −0.654 *** −0.616 *** −0.824 ***
MNDI 0.662 *** 0.727 *** 0.772 *** 0.708 *** 0.662 *** 0.635 *** 0.776 *** 0.811 ***
NDRE 0.653 *** 0.746 *** 0.802 *** 0.741 *** 0.663 *** 0.645 *** 0.763 *** 0.835 ***

RESAVI 0.687 *** 0.725 *** 0.777 *** 0.807 *** 0.647 *** 0.635 *** 0.783 *** 0.884 ***
MSAVI2 0.714 *** 0.735 *** 0.797 *** 0.813 *** 0.639 *** 0.616 *** 0.701 *** 0.854 ***

*** represents highly significant correlation at the level of p < 0.0001.

Table 6. Univariate polynomial regression model accuracy for UAV-based VIs.

Vegetation
Index

2020 2021

Model R2 RMSE Model R2 RMSE

NDVI Y = 3.1x2 + 13.5x + 2.83 0.958 *** 0.215 Y = 1.47x2 + 9.73x + 1.99 0.885 *** 0.228
MSR Y = −0.25x2 + 13.9x + 2.83 0.961 *** 0.207 Y = 0.24x2 + 9.9x + 1.99 0.897 *** 0.216
NLI Y = 1.59x2 + 13.7x + 2.83 0.952 *** 0.230 Y = 1.34x2 + 9.8x + 1.99 0.887 *** 0.226

MDD Y = −2.67x2 + 13.5x + 2.83 0.946 *** 0.244 Y = 0.268x2 + 9.9x + 1.99 0.893 *** 0.219
DVI Y = −3.25x2 + 12.8x + 2.83 0.873 *** 0.373 Y = 0.55x2 + 9.8x + 1.99 0.878 *** 0.234

GRVI Y = −0.06x2 + 13.8x + 2.83 0.958 *** 0.214 Y = −1.18x2 + 9.8x + 1.99 0.883 *** 0.230
GWDRVI Y = 1.45x2 + 13.8x + 2.83 0.957 *** 0.217 Y = −0.24x2 + 9.8x + 1.99 0.883 *** 0.230

NRI Y = 2.78x2 − 13.6x + 2.83 0.957 *** 0.218 Y = 1.37x2 − 9.7x + 1.99 0.883 *** 0.230
MNDI Y = 2.57x2 + 13.6x + 2.83 0.956 *** 0.220 Y = 1.13x2 + 9.8x + 1.99 0.885 *** 0.227
NDRE Y = 1.89x2 + 13.7x + 2.83 0.962 *** 0.204 Y = 0.34x2 + 9.8x + 1.99 0.886 *** 0.227

RESAVI Y = −1.17x2 + 13.7x + 2.83 0.949 *** 0.236 Y = 0.08x2 + 9.9x + 1.99 0.891 *** 0.222
MSAVI2 Y = −1.67x2 + 13.5x + 2.83 0.926 *** 0.285 Y = 0.85x2 + 9.8x + 1.99 0.890 *** 0.223

*** represents highly significant correlation at the level of p < 0.0001; Y represents summer maize LAI and x
represents vegetation index.

The number of parameters is another important factor affecting the performance of
machine learning models. In the model hypothesis, some unconsidered factors are often
regarded as random perturbation terms. The more explanatory variables mean the stronger
relationship between parameters and random perturbation, which leads to the unbiased
and inconsistent parameter estimation. Under-fitting and over-fitting should be avoided as
far as possible for the regression model used for prediction. Therefore, filtering variables is
an essential task when building a model. However, in our results, the correlation between
the LAI and each VI was not significantly different. Therefore, the VIs need to be further
screened by other methods.
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3.4. Stepwise Selection of Feature Variables

The stepwise regression method based on the precise AIC criterion was used to screen
the VIs. The stepwise regression analysis results are shown in Table 7. Compared with the
previous univariate regression model, the accuracy of the multiple regression model has
been improved. In the two years of results of stepwise regression equation, the performance
of each VI was slightly different. For example, MSR did not perform well in the regression
equation in 2020, while it contributed significantly to the model in 2021. Based on the
performance of VIs in the two-year model, five Vis, i.e., GWDRVI, RESAVI, MSAVI2,
NRI and NDRE, which have significant contributions for LAI estimation, were finally
selected. In addition, NDVI is the most commonly used vegetation index. Considering
the universality of the model, we artificially added NDVI to the five selected vegetation
indices. Finally, there was a total of six independent variables used to build the ensemble
learning model.

Table 7. Independent variable screening results based on stepwise regression.

lm (LAI)
2020 2021

Coefficient Std. Error p-Value AIC R2 Coefficient Std. Error p-Value AIC R2

NDVI 30.726 15.369 *

−596.250 0.969

na na na

−758.550 0.911

MSR na na na 2.620 0.636 ***
NLI na na na na na na

MDD 65.757 12.569 *** −14.729 10.336 na
DVI 18.890 13.344 na −36.214 25.000 na

GRVI na na na na na na
GWDRVI 9.136 2.442 *** −8.229 2.267 ***

NRI 164.343 54.523 ** −141.264 30.564 ***
MNDI na na na na na na
NDRE 70.953 20.833 *** −140.939 35.838 ***

RESAVI −192.208 39.528 *** 250.981 61.370 ***
MSAVI2 46.167 10.736 *** −79.593 19.450 ***
Intercept −41.590 16.902 * 41.040 9.495 ***

*** represents highly significant correlation at the level of p < 0.0001; ** represents highly significant correlation at
the level of p < 0.001; * represents significant correlation at the level of p < 0.01; na represents no correlation.

3.5. Performance Analysis of LAI Inversion Model

Based on the six selected VIs, GPR, SVR, Lasso, Cubist, MLR and RF regression
algorithms were used to estimate the maize LAI. Table 8 shows the R2, RMSE, RPD and
RPIQ values of the base model and secondary model for test set, to evaluate the estimation
ability and stability of the model. The accuracy results of five primary learners for the test
set showed that the SVR, Lasso and Cubist models were more robust in the two years than
GPR and RF models, with higher R2, RPD, RPIQ and lower RMSE. The optimal evaluation
parameters were produced by the SVR model with R2 = 0.965, RPD = 5.312, RPIQ = 8.213
and RMSE = 0.204 in 2020 and R2 = 0.897, RPD =3.135, RPIQ = 4.022 and RMSE = 0.221 in
2021. Figure 6 also shows more robust SVR, Lasso and Cubist models.

In order to integrate the estimation ability of five primary learners, two machine
learning algorithms based on linear (MLR) and nonlinear (RF) models were selected as
auxiliary learners. The results show that when MLR was used as the secondary learner, the
model achieved the highest accuracy. The R2 values of the models are 0.967 and 0.897 for
the two years, respectively. However, the accuracy in terms of R2 values did not improve
significantly. Figure 6 shows the superior performance of the StMLR model. The violin
shape of the StMLR model was better and more stable than other models. This result
reflects the important role of the ensemble learning algorithm. Due to the differences of
geographical crop location, growth environment and varieties, the model constructed by a
single algorithm may not always get good estimation results. At this time, the integrated
learning algorithm can synthesize the results of multiple base models to get the best output,
ensuring the stability of the model. For example, when predicting the LAI of Maize in
2021, the RPD of GPR and RF base model (2.866, 2.871) was lower than 3.0, which was only
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moderately evaluated according to the standard. However, after learning through the MLR
secondary learner, the RPD of the integrated model reached 3.142, which has excellent
estimation ability and stability.

Table 8. Test set accuracy statistics of different models for LAI estimation (the accuracy parameters in
this table are the average of 400 test results).

Year Metrics
Primary Learners Secondary Learners

GPR SVR RF LASSO Cubist StMLR StRF

2020

R2 0.949 0.965 0.965 0.963 0.964 0.967 0.962
RMSE 0.268 0.204 0.202 0.207 0.205 0.198 0.211
RPD 4.148 5.312 5.333 5.211 5.275 5.435 5.115
RPIQ 6.421 8.213 8.235 8.050 8.149 8.396 7.897

2021

R2 0.882 0.897 0.877 0.894 0.891 0.897 0.884
RMSE 0.242 0.221 0.241 0.223 0.226 0.220 0.233
RPD 2.866 3.135 2.871 3.097 3.055 3.142 2.962
RPIQ 3.673 4.022 3.678 3.973 3.917 4.029 3.798

Note: StMLR represents stacking regression using multivariate linear regression as a secondary learner; StRF
represents stacking regression using random forest as a secondary learner.

Figure 7 shows the distribution of the base model coefficients in the results of 400 it-
erations of the secondary model (MLR). The results show that among secondary learners,
base models with higher accuracy were always given higher weights. This also reflects
the working mechanism of the stacking algorithm. Instead of taking the output of the
well-performing base model directly as the final output, the output result closest to the true
value was obtained by combining the primary learners.

The best model of LAI achieved from the StMLR method was compared with cor-
responding observed values using scatterplots, as shown in Figure 8. It shows that the
estimation effect of the model was excellent.
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Figure 8. Estimation results of maize LAI by secondary models (MLR) in (a) 2020 and (b) 2021.

4. Discussion

The development of crop cultivation and management strategies for efficient use of
resources to enhance crop stability and yield is very important. Therefore, continuous
assessments of important traits such as LAI under different water and fertilizer conditions
can help to understand their effect on crop growth and to develop different crop man-
agement strategies. In this study, we successfully evaluated the UAV-based multispectral
phenotyping and stacking ensemble learning approach to estimate the LAI as an indicator
for the assessment of water and fertilizer stress in summer maize. Previously, several stud-
ies have reported spectral information as a good predictor of phycological characteristics of
the crops.

The relation between VIs and LAI is complex. In this study, the regression model with
the lowest AIC value was selected by the stepwise regression method. Then the VI was
selected according to the relative importance. Finally, five vegetation indexes with the best
performance were selected to use as input for predictions. There is no doubt that more VIs
with high correlation or with low correlation need to be compared before being used for
LAI model generation. Meanwhile, other feature selection methods can be introduced to
screen VIs more accurately, such as mRMR [53] and least angle regression (LARS) [54].

In this paper, five machine algorithms including GPR, SVM, RF, Lasso and Cubist
were used as basic learners to build ensemble learning models using two years of data
of maize LAI. The estimation ability of the five basic models was evaluated through four
evaluation indicators. The results showed that among the models constructed by these
five classical machine learning algorithms, the coefficient of determination (R2) between
the output value and the real LAI was high, but the RPD of GPR and RF models were
less than 3.0 when predicting maize LAI in 2021. These results indicated that the model
constructed by using a single machine learning algorithm was unstable and there was a
risk of error estimation [40]. Previously, Yuan et al. [55] found that the RF model was the
most suitable for LAI estimation during the whole growth period. However, the RF as a
basic model performed poorly in our results for the 2021 cropping season. The reasons for
the inconsistent results from previous reports may be due to the use of different datasets
and crops [56]. The RF basic model achieved better estimation results in the case of the
2020 dataset, which proves the correctness of the above analysis.

The performance of a single algorithm can be varied for different datasets, so it is
difficult to optimize a single model-based estimation of traits under different modeling
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conditions. The ensemble learning algorithm can avoid the above phenomenon by stacking
different base models. The stacking approach used in this study is an ensemble learning
method, which has strong adaptability for different datasets. The anti-noise performance
and fitting ability of the stacking algorithm has superiority over a single algorithm. The
hypothesis space considered by different types of algorithms will also be different. If the
real assumptions of some algorithms for the LAI of summer maize are not within the
hypothesis space calculated by the currently selected model, then it is meaningless to use
this algorithm for modeling. After integrating multiple regression algorithms through the
stacking method, the corresponding hypothesis space will be expanded to a certain extent,
thereby improving the universality of the model. In this study, the results state that the
performance of the ensemble learning model was optimal in both years of data. Previously,
some studies also demonstrated that the stacking method can improve the performance of
the model in plant phenotype evaluation [57,58].

In this study, the irrigation method used for summer maize was drip irrigation and
the amount of water per irrigation did not reach the field capacity. Therefore, there were
different degrees of water stress under the three irrigation treatments W0 > W1 > W2. It
was close to no deficit under W2 irrigation treatment conditions, which had little effect on
the normal growth and development of summer maize. The water deficit was the most
serious under the W0 irrigation treatment, which had a significant effect on the LAI over
the whole growth period. At the same time, the LAI of the experimental plot with the most
complete fertilizer ratio was better than that of the other fertilized plots, indicating that
the LAI of summer maize can reflect the degree of fertilizer deficiency. More experiments
with additional irrigation and fertilizer amount gradients should be set up to accurately
diagnose the degree of irrigation and nutrient deficiency in each growth period of maize
and realize intelligent and precise irrigation with integrated water and fertilizer.

5. Conclusions

This study discussed the changes in summer maize LAI under different water and
fertilizer treatments and constructed a summer maize LAI estimation model using UAV-
based phenotyping and machine learning ensemble algorithm. The main conclusions of
this study are below:

(1) We analyzed the relationship between different water and fertilizer treatments and
LAI and found that LAI responded significantly to water and fertilizer stress in the
two-year experiments. At the same time, the multispectral VIs were also signifi-
cantly correlated with maize LAI at different growth stages. The Pearson correlation
coefficient was not less than 0.639 and up to 0.89.

(2) After the fusion of multiple growth periods, LAI and UAV-based VIs conformed to
polynomial regression, and the correlation was significantly higher than that of a
single growth period. The mean values of determination coefficient R2 between LAI
and different vegetation indices reached 0.946 in 2020 and 0.887 in 2021.

(3) The ensemble learning algorithm with MLR as the secondary learner outperformed
from the single machine learning algorithm on the test set with R2 = 0.967,
RMSE = 0.198 in 2020 and R2 = 0.897, RMSE = 0.220 in 2021. The RPD of the two-year
model was greater than 3.0, indicating that the model was more stable.

These findings suggest that the LAI can characterize the effect of water and fertilizer
stress in crops, while the ensemble learning algorithm can replace a single machine learning
algorithm to build the LAI estimation model. This study provides some theoretical support
for automated water and fertilizer management.
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