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Abstract: Soil is one of the most significant natural resources in the world, and its health is closely
related to food security, ecological security, and water security. It is the basic task of soil environmental
quality assessment to monitor the temporal and spatial variation of soil properties scientifically and
reasonably. Soil moisture content (SMC) is an important soil property, which plays an important role
in agricultural practice, hydrological process, and ecological balance. In this paper, a hyperspectral
SMC estimation method for mixed soil types was proposed combining some spectral processing
technologies and principal component analysis (PCA). The original spectra were processed by
wavelet packet transform (WPT), first-order differential (FOD), and harmonic decomposition (HD)
successively, and then PCA dimensionality reduction was used to obtain two groups of characteristic
variables: WPT-FOD-PCA (WFP) and WPT-FOD-HD-PCA (WFHP). On this basis, three regression
models of principal component regression (PCR), partial least squares regression (PLSR), and back
propagation (BP) neural network were applied to compare the SMC predictive ability of different
parameters. Meanwhile, we also compared the results with the estimates of conventional spectral
indices. The results indicate that the estimation results based on spectral indices have significant
errors. Moreover, the BP models (WFP-BP and WFHP-BP) show more accurate results when the same
variables are selected. For the same regression model, the choice of variables is more important. The
three models based on WFHP (WFHP-PCR, WFHP-PLSR, and WFHP-BP) all show high accuracy
and maintain good consistency in the prediction of high and low SMC values. The optimal model
was determined to be WFHP-BP with an R2 of 0.932 and a prediction error below 2%. This study
can provide information on farm entropy before planting crops on arable land as well as a technical
reference for estimating SMC from hyperspectral images (satellite and UAV, etc.).

Keywords: soil moisture content; spectral processing technology; hyperspectral; principal component
analysis; feature parameters extraction

1. Introduction

Soil moisture content (SMC) is the carrier of material and energy cycle in the soil
system, which has an important influence on soil characteristics, vegetation growth and dis-
tribution, and the regional ecosystem [1,2]. Meanwhile, the SMC is related to soil nutrient
contents by facilitating organic matter decomposition [3], enhancing carbon sequestra-
tion [4], and resulting in an increase in crop yield [5]. In agriculture, a timely and effective
grasp of the distribution and future trend of soil moisture in the field is of great significance
to effectively save water resources, improve the utilization efficiency of agricultural water
and sustainable utilization of water and soil resources, and effectively monitor and control
farmland drought in real time [6,7].
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The traditional artificial SMC measurement method, which is based on point and
laboratory measurement, has high precision but the limited scope, a large workload, low
efficiency, and high cost, and is difficult to meet the actual needs of SMC monitoring [8,9].
Remote sensing and satellite data have been widely used in monitoring soil and crop
systems, such as soil organic matter [10], crop evapotranspiration [11], water stress [12],
and yield monitoring [13]. In the case of soil moisture, researchers have reported that
hyperspectral imagery has more advantages over regular satellite-based multi-spectral
imagery owing to the higher information level stored in the hyperspectral images [14].
Accordingly, hyperspectral remote sensing (HRS) technology has been widely used in
SMC monitoring research due to its advantages of large area, non-contact, and timeliness,
making up for the shortcomings of traditional methods [15]. HRS can be used for large-scale
non-destructive monitoring by analyzing the spectral variation characteristics of different
soil properties, which is more suitable for assessing and mapping the spatial variation of
soil properties [16]. As a robust stoichiometric means, soil spectroscopy has been proven to
be an effective alternative to wet chemistry in soil environmental quality monitoring [17].
However, there are obvious spectral noise and serious scattering phenomena in the original
soil spectral data obtained by HRS [18]. There is inevitably noise unrelated to SMC in
the soil hyperspectral, which will increase the detection difficulty of SMC. In addition,
HRS contains huge amounts of data. Therefore, more thorough denoising and variable
optimization become the key to establishing a model with higher accuracy [19].

In the aspect of hyperspectral data preprocessing, many studies have been carried
out, such as reciprocal, logarithm, and first differential studies [20–22]. Because the soil
spectral curve is the comprehensive expression of the interaction and superposition of
various substances, the determination of characteristic bands is not only difficult, but
also has a high degree of uncertainty and weak denoising. Subsequently, scholars used
spectral denoising methods to process hyperspectral data, such as Savitzky–Golay filtering,
median operation, moving average, etc. However, for white noise, especially random
and low-frequency signals, these methods are difficult to remove noise without affecting
the effective signal [23]. The wavelet packet transform (WPT) can compress the signal
while retaining the original information and has been gradually used in the estimation
of soil properties and achieved certain results. For example, Gu et al. found that the
high-frequency coefficient generated by wavelet transform and random forest algorithm
can be used to invert soil organic matter content [24]. Given the above spectral pretreatment
technologies, some new methods for estimating SMC still need to be explored.

In the study of SMC estimation, the estimation accuracy of SMC depends on the selec-
tion of characteristic variables and the estimation model. At present, there are two kinds
of models for estimating soil composition based on soil spectral properties: the physical
model based on mechanism information and the statistical model based on experience.
In the mechanism model method, the quantitative change mechanism of soil reflectance
caused by different water content is very complex, and its inversion effect and adaptability
of results are limited [8]. However, the widely used statistical model has the advantages
of being simple and direct and can obtain accurate and stable results. At present, the
estimation of soil characteristics by soil spectra mostly adopts stepwise multilinear re-
gression [25,26], principal component regression [27], neural network regression [16,28],
support vector machine regression [17,29], and partial least squares regression [30,31]. The
relationship between SMC and soil hyperspectral is complex and has great nonlinearity
and randomness. Its spectral characteristics are difficult to be explained by several bands.
Therefore, the simple regression model has certain deficiencies in dealing with nonlin-
ear, heteroscedasticity, multicollinearity, and other complex problems, and it is difficult
to obtain good estimation accuracy [32]. In SMC estimation, these methods inevitably
lead to missing or redundant information, which directly affects the results. There is a
need to explore approaches that can overcome these obstacles, such as machine learning.
The neural network model has a strong nonlinear approximation ability, can effectively
establish the global nonlinear mapping relationship between input and output [33–35], and
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has advantages in data fitting, function approximation, and other aspects [36,37]. Good
results have been achieved by using the neural network model to estimate soil composition.
For example, Pellegrini et al. obtained satisfactory results by using the artificial neural
network in estimating soil microbial biomass [16].

In this paper, the hyperspectral data of different types of soils were measured to
analyze the variation trend of reflectance with different SMC. Meanwhile, some spectral
processing technologies and PCA were employed to extract characteristics variables for
estimating SMC of mixed soils. This non-destructive estimation technique is simple, fast,
and time efficient. Finally, the PCR, PLSR, and back propagation (BP) regression models
were constructed and compared with the spectral-index models. The use of machine learn-
ing makes full use of its nonlinear learning characteristics to achieve accurate estimation of
SMC under different conditions. Our objectives are (1) to compare the role of characteristic
parameters obtained by different spectral processing techniques in estimating SMC, (2) to
compare the performance of different regression algorithms in estimating SMC, and (3) to
compare the importance of the selection of characteristic variables with the selection of
regression models and to construct the SMC high-precision prediction model suitable for
mixed soil scenarios.

2. Materials and Methods
2.1. Study Area

The study area is located in Hengshan County, Northern Shaanxi Province, China.
As shown in Figure 1, the sampling areas are located in the Loess Plateau of Northern
Shaanxi, adjacent to the Mu Us Desert in the north and the Loess hill in the south. The
region has a temperate semi-arid continental monsoon climate with a year-round average
daily temperature of 8.6◦, and the general characteristics of temperature and rainfall are
large inter-annual and inter-monthly variations. The soil types mainly include sandy and
loessial soil (SS and LS). The sampling points of different soil types are evenly distributed in
the whole study area as far as possible. The main tributaries in the area include the Wuding
River, Dali River, etc. Due to these geographical factors, the experimental area is not only
rich in soil types, but also has great differences in SMC, which is of great significance for
the study of SMC estimation.
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2.2. Soil Spectral Measurement

The collected soil samples are quickly measured for spectral data in the laboratory.
The soil spectral reflectance was measured using the ASD Field Spec FR spectrometer (Ana-
lytical Spectral Devices, Inc., Boulder, CO, USA), with a wavelength range of 350–2500 nm.
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The soil samples were placed in a black vessel (with a diameter of 8 cm and a depth of
2 cm) in turn, and their surface was scraped flat. A 50 W halogen lamp was used as the
light source, and the distance between the light source and the experimental sample is
0.5 m. The distance between the spectrometer probe and the soil sample was 0.2 m. Before
each spectral measurement, the diffuse reflection standard reference plate was used for
calibration. Four spectral curves were collected for each soil sample, and their arithmetic
mean value was taken as the spectral data of the soil sample.

2.3. Determination of SMC

To obtain more accurate and regionally representative SMC data, the destructive
sampling approach was recommended [38]. The areas with flat terrain, exposed surface,
and no shelter were selected as the sampling areas. About 20 sampling points were
determined in total in the sampling areas (Figure 1). In addition, different soil types were
considered in sampling, and a total of 84 soil samples were collected. The soil samples
were collected from the surface soil with a depth of 0.2 m. They were brought back to the
laboratory through aluminum boxes to avoid water evaporation. The soil samples placed
in the aluminum box were dried in the oven (105 ◦C) until the weight did not change, and
the SMC was measured by the drying method. The calculation formula is as follows:

SMC =
M1 −M2

M2 −M3
× 100%, (1)

where M1 is the total weight of the aluminum box and soil before drying, M2 is the total
weight of the aluminum box and soil sample after drying, and M3 is the weight of each
aluminum box after drying.

2.4. Spectral Indices Construction

Since the strong absorption of water leads to changes in reflectance, spectral indices
with some physical significance calculated from the reflectance of different bands have
been proposed for predicting SMC. Due to the unambiguous physical significance, some
spectral indices have been proposed to predict SMC. However, these parameters inevitably
remain somewhat regional and generalized. To compare with the method presented in this
study, we selected some common two- and three-band spectral indices (Table 1).

Table 1. The common spectral indices selected in this paper.

Spectral Indices Formula Reference

EVI 2.5(R1828−R630)
R1828+6R630−7.5R450+1

[39]
TVI 0.5[120(R666 − R834) − 200(R794 − R834)] [38]
DSI R1760 − R1715 [40]

NDMI R2027−R1878
R2027+R1878

[41]
SARVI 1.5(R1820−R670)

R1820+R670+0.5
[39]

2.5. Spectral Processing Technologies

Spectral preprocessing is very useful for feature extraction and noise removal [30].
For example, WPT can perform a more detailed decomposition and reconstruction of high
and low-frequency information of hyperspectral data [19]. This information processing
result has no redundancy or omission, which is more conducive to spectral information
noise reduction and original information retention, so it is widely used. In this research, the
decomposition and reconstruction of the spectral data by WPT were performed according
to the following steps.

(i) Wavelet packet analysis. The wavelet master function used in the study was Db10 [42],
by which the noise-bearing spectra were decomposed.
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(ii) Determination of the optimal wavelet packet basis. The calculation of the optimal
wavelet packet basis was based on the least-cost principle.

(iii) Wavelet packet coefficient thresholding. This process required quantization of the
wavelet packet coefficients, which was based on a soft threshold “s” of good continuation.

(iv) Spectral reconstruction. The results in (ii) and (iii) were applied to reconstruct the
spectral information, and finally, the noise-reduced spectra were obtained.

Spectral measurements are susceptible to factors, such as observation angle and
illumination, making the signal-to-noise ratio of spectral data comparatively poor. After
differential processing, not only can the influence of changes in illumination conditions on
the target spectra be reduced, but also the background can be partially eliminated, thus
better strengthening the spectral variance and highlighting the target characteristics. The
first-order differential (FOD) treatment can improve the spectral sensitivity and eliminate
the influence of the partial environmental background to reveal the spectral characteristics
of the soil interior. The FOD was calculated as follows.

Ref’(λi) = [Ref(λi+1) − Ref(λi−1)]/(λi+1 − λi−1), (2)

where λi−1, λi, and λi+1 are the wavelengths of adjacent bands and Ref is the first-order
differential value.

However, none of these traditional methods can obtain robust and noiseless character-
istic variables. Harmonic decomposition (HD) transforms hyperspectral data from the time
domain to the frequency domain in the form of sine and cosine phase superposition, and
finally obtains parameters such as residual term, amplitude, and phase. The calculation
method is shown in Figure 2. These variables can reveal the average value and variation of
the energy, and the position of the maximum value in different bands of the spectra.
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2.6. Model Construction and Validation

After the correlated characteristic variables (WF and WFH) were obtained by spectral
processing technologies (WPT, FOD, and HD), they need to be dimensionally reduced
to remove redundancy. The principal component analysis (PCA) method can recombine
original variables into a group of new comprehensive variables unrelated to each other
to achieve feature extraction and dimension reduction [43]. When performing PCA, the
components whose cumulative variance contribution rate exceeds 95% of the variable is
taken as the new characteristic variable in this study.

It is very important to determine the regression model based on the relationship
between independent and dependent variables for accurate estimation of SMC. Princi-
pal component regression (PCR) is one of the common methods to solve the problem of
collinearity in logistic regression analysis [44]. It integrates the information of variables
with high correlation into the principal component with low correlation through princi-
pal component transformation and then replaces the original variable to participate in
regression calculation. Partial least squares regression (PLSR) is more commonly used as a
linear multiple regression analysis method [45]. By analyzing the relationship between the
prediction matrix X (independent variable) and the response matrix Y (dependent variable),
the initial input data are projected into a potential space, and then many potential variables
are extracted by using orthogonal structure, and the linear relationship between these new
variables and Y is found. This method does not directly consider the regression modeling
of the dependent variable and independent variable, but comprehensively screens the
information in the variable system, and selects several new components with the best
explanatory ability for the system for regression modeling. Through such information
screening, the noise that has no explanatory effect on the dependent variable is eliminated.
Backpropagation (BP) neural network is a widely used nonlinear modeling method in the
artificial neural network, which is suitable for data prediction [46]. The learning process is
composed of forwarding propagation and backpropagation. In the forward propagation
process, input data are gradually processed from the input layer to the output layer through
the hidden layer. If the data error obtained by the output layer is not within the allowed
range, the error is backpropagated and the weight of each neuron is adjusted layer by layer
by the gradient descent method. Until the error meets the specified requirements, it has a
better estimation effect for complex nonlinear prediction. In this paper, we choose these
three methods to conduct regression modeling for spectral characteristic parameters and
SMC and compare their advantages and disadvantages.

Hyperspectral estimation of SMC based on spectral processing technologies and PCA
mainly includes the following four steps (Figure 3):

(i) Data collection: preliminary investigation, spatial layout planning of soil sampling
sites, and laboratory spectroscopy and SMC measurements were included.

(ii) Data processing: the original hyperspectral data were processed by WPT, FOD, and
HD, and the characteristic variables were obtained by PCA dimensionality reduction.

(iii) Data set partitioning: 54 groups were randomly selected from 84 groups of sample
data as training samples, and the other 30 groups were used as validation data to form
the training and validation datasets. The SMC data description is shown in Table 2.

(iv) Modeling and validation: PCR, PLSR, and BP were used to construct the estimation
models of SMC. The coefficient of determination (R2), root mean square error (RMSE),
and mean absolute error (MAE) were used to evaluate the model accuracy. Related
calculations are shown as follows.

RMSE =

√
∑n

i=1
(yi − ŷi)

2

n
, (3)

MAE =
1
n

n

∑
i=1

∣∣∣yi −
∧
yi

∣∣∣, (4)



Agriculture 2022, 12, 1188 7 of 17

where yi is the true value, ŷi is the predicted value, and n is the number of samples.

Table 2. Descriptive statistics of SMC in soils.

Soil Types Samples
SMC (%)

Min Max Mean SD CV(%)

Loessial soil 51 3.36 58.43 9.65 8.05 83.40
Sandy soil 33 0.46 38.65 12.09 11.03 91.18

Training data 54 2.09 58.43 10.99 10.02 91.14
Validation data 30 0.46 34.83 10.72 8.87 82.74

Mixed soil 84 0.46 58.43 10.89 9.62 88.34
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3. Results
3.1. Comparison of Hyperspectral Characteristics of Soils with Different SMC

Some spectral curves over the whole moisture content range were randomly selected
for comparison. Hyperspectral curves of different soil types (LS, SS, and MS) are shown in
Figure 4. The spectral curves of different soil types have similar shapes and the absorption
characteristics of water at 1450 nm and 1960 nm dominate the spectral characteristic curves
of soil. For LS, the reflectance of all observation bands generally decreases with the increase
of SMC (Figure 4a). However, for SS and MS, the variation of spectral reflectance with SMC
does not show a consistent variation law (Figure 4b,c). For these three different soil types,
the sensitivity of spectral reflectance to SMC is low in visible and near-infrared bands,
and the change is more obvious in other bands. Moreover, the characteristic of mineral
absorption at 2200 nm is obvious when SMC is low but disappears gradually with the
increase of SMC.
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3.2. Estimation of SMC by Conventional Spectral Indices

The SMC data in the calibration set were adopted as the dependent variables, and
five commonly available spectral indices (EVI, TVI, DSI, NDMI, and SARVI) were applied
as independent variables to construct the inverse models using linear regression and the
PLSR method, and the validation results were shown in Figure 5. The results showed that
the selected spectral indices had limited accuracy in predicting the SMC of mixed soil types.
Except for TVI, the remaining four indices exhibited varying degrees of overestimation
or underestimation at different SMC. Although TVI did not demonstrate overestimation
or underestimation (the regression line was close to the 1:1 line), the model errors were
large and the points deviating from the 1:1 line were more clustered. Compared with the
individual spectral indices inversion results, the PLSR model based on five indices had a
higher accuracy (R2 over 0.8 and error below 4%). In addition, the model did not exhibit
local overestimation or underestimation.

3.3. Correlation Analysis between Spectral Data and SMC

The correlation analysis between the original spectral data and the processed data
of the original spectra (including WPT, FOD, and HD) and SMC was performed. The
results are shown in Figure 6. SS, LS, and MS indicate the Pearson correlation coefficient (r)
between the original spectra of different soil types (LS, SS, and MS) and the corresponding
SMC. WO and WF represent the correlation between the WPT of original spectral data and
FOD after WPT and SMC, respectively. The original spectral reflectance of SS is highly
correlated with SMC except for the visible bands (|r| > 0.6, p < 0.01). The correlation
between LS and SMC becomes much weaker (|r| < 0.5, p < 0.01). For MS, the correlation
is between SS and LS (about 0.5, p < 0.01). Therefore, for the estimation of SMC of MS,
parameters with higher correlation need to be extracted. Compared with the original
spectra, WO does not significantly improve the correlation with SMC. Although WF cannot
improve the correlation with SMC in all bands, it can produce parameters with a strong
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correlation in many characteristic bands. Finally, 180 characteristic bands were selected
from WF data with |r| > 0.6 to estimate SMC.
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3.4. Harmonic Characteristic Parameter Acquisition

The feature parameters of harmonic spectra (WFH: remainder, amplitude, and phase)
were acquired by decomposing the selected WF data of MS. The correlation between these
extracted components and SMC was computed. To keep consistent with the number of
characteristic parameters of the selected WF data, the number of harmonic decomposi-
tions was determined to be 180. Figure 7 demonstrates the correlation between harmonic
characteristic parameters and SMC of MS.

Agriculture 2022, 12, x FOR PEER REVIEW 11 of 18 
 

 

parameters is periodic, half of the parameters (A0/2, Ah=1,2,4, Bh=1,2,3, C h=1,2,3, and φh=1) with 
high correlation with SMC (|r| > 0.7) were selected. 

 
Figure 7. The Pearson correlation coefficient between harmonic characteristic parameters and SMC. 

3.5. Dimension Reduction of Characteristic Parameters Based on PCA 
After extracting the characteristic parameters through a series of spectral processing 

techniques (including WPT, FOD, and HD), WF and WFH data were obtained. Since many 
relevant characteristic parameters are included (180 of WF and 11 of WFH), it is necessary 
to simplify these parameters. To reduce the redundancy of variables and the input of the 
models, WF and WFH were processed by the PCA method, and the first five variables of 
the PCA results (PCA1-5) were chosen as the input characteristic variables of the SMC 
estimation models. The results of PCA are shown in Table 3. 

It turns out that the contribution rates of cumulative variance of the first five princi-
pal components of WF and WFH were 95.915% and 99.147%, respectively. The PCA per-
formance of WFH data is better than that of WF data. PCA1-5 of WFH data roughly in-
cludes the harmonic characteristic variable information before processing, which not only 
retains a large amount of original data information, but also effectively compresses the 
original data. According to all PCA results, two characteristic variables were established: 
WFP (PCA of WF) and WFHP (PCA of WFH). 

Table 3. The PCA results in eigenvalue and variance contribution rate. 

PCA 
Eigenvalue Variance Contribution (%) Accumulative Contribution (%) 

WF WFH WF WFH WF WFH 
PCA1 927.6 × 10−8 0.0756 89.742 94.279 89.742 94.279 
PCA2 40.8 × 10−8 4.613 × 10−8 3.216 3.457 92.958 97.736 
PCA3 16.55 × 10−8 1.572 × 10−9 1.762 1.253 94.720 98.989 
PCA4 10.17 × 10−8 1.396 × 10−10 0.965 0.102 95.685 99.091 
PCA5 9.36 × 10−8 1.631 × 10−10 0.230 0.056 95.915 99.147 

  

Figure 7. The Pearson correlation coefficient between harmonic characteristic parameters and SMC.

The result of correlation analysis reveals that the variables at the beginning and
end of the decomposition numbers have a strong correlation with SMC (|r| close to 0.8,
p < 0.01). The figure is roughly symmetrical in the center. Furthermore, the correlation
coefficient shows a periodic change of alternating positive and negative values. Except for
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the beginning and the end, the correlation between other characteristic parameters close
to the middle and SMC is weak (|r| < 0.5, p < 0.01). Since the correlation of characteristic
parameters is periodic, half of the parameters (A0/2, Ah=1,2,4, Bh=1,2,3, C h=1,2,3, and ϕh=1)
with high correlation with SMC (|r| > 0.7) were selected.

3.5. Dimension Reduction of Characteristic Parameters Based on PCA

After extracting the characteristic parameters through a series of spectral processing
techniques (including WPT, FOD, and HD), WF and WFH data were obtained. Since many
relevant characteristic parameters are included (180 of WF and 11 of WFH), it is necessary
to simplify these parameters. To reduce the redundancy of variables and the input of the
models, WF and WFH were processed by the PCA method, and the first five variables of
the PCA results (PCA1-5) were chosen as the input characteristic variables of the SMC
estimation models. The results of PCA are shown in Table 3.

Table 3. The PCA results in eigenvalue and variance contribution rate.

PCA
Eigenvalue Variance Contribution (%) Accumulative Contribution (%)

WF WFH WF WFH WF WFH

PCA1 927.6 × 10−8 0.0756 89.742 94.279 89.742 94.279
PCA2 40.8 × 10−8 4.613 × 10−8 3.216 3.457 92.958 97.736
PCA3 16.55 × 10−8 1.572 × 10−9 1.762 1.253 94.720 98.989
PCA4 10.17 × 10−8 1.396 × 10−10 0.965 0.102 95.685 99.091
PCA5 9.36 × 10−8 1.631 × 10−10 0.230 0.056 95.915 99.147

It turns out that the contribution rates of cumulative variance of the first five principal
components of WF and WFH were 95.915% and 99.147%, respectively. The PCA perfor-
mance of WFH data is better than that of WF data. PCA1-5 of WFH data roughly includes
the harmonic characteristic variable information before processing, which not only retains
a large amount of original data information, but also effectively compresses the original
data. According to all PCA results, two characteristic variables were established: WFP
(PCA of WF) and WFHP (PCA of WFH).

3.6. SMC Estimation and Model Validation Using Spectral Processing Technologies and
Harmonic Indicators

Three regression estimation models (PCR, BP, and PLSR) were selected to explore the
validity of characteristic variables and the accuracy of the soil moisture estimation models.
Based on the modeling of WFP and WFHP, six SMC prediction models were established:
WFP-PCR, WFHP-PCR, WFP-BP, WFHP-BP, WFP-PLSR, and WFHP-PLSR. For the BP
neural network model, the topology of the model was finally determined as 5-3-1 after
several debugging. That is, the number of nodes in the input layer is 5, the number of
hidden layers is 5, and the output result layer is 1. Meanwhile, the times of iterations,
adaptive learning rate, momentum factor, and the learning error were set as 3000, 0.01, 0.9,
and 0.001, respectively. The precision and error of the modeling set and validation set are
shown in Table 4. The WFHP has better performance than WFP for the PCR, PLSR, and BP
models in calibration and validation datasets. For the same regression model, BP neural
network has the highest accuracy than PCR and PLSR. In all similar models, the accuracy
of the validation set is slightly lower than that of the modeling set.

To further observe the effect of different variables and different methods on the
estimation of different SMC, the scatter diagram of the estimated and measured value of
SMC in the validation dataset is shown in Figure 8. Each row represents different regression
models of similar characteristic variables (WFP or WFHP), and each column represents
the same regression model of different characteristic variables (PCR, PLSR, or BP). The red
dotted line indicates the 1:1 line. It can be found that the WFP-based models are prone to
underestimation when the SMC exceeds 10% (below the 1:1 line), while the WFHP-based
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models can accurately estimate SMC in the whole range (almost overlaps with the 1:1 line).
For the same characteristic variable, the effect of PLSR and BP is significantly better than
that of PCR (closer to the 1:1 line).

Table 4. Accuracy comparison of different regression models.

Model
Calibration Validation

R2 RMSE (%) MAE (%) R2 RMSE (%) MAE (%)

WFP-PCR 0.812 3.693 3.363 0.763 4.261 3.771
WFHP-PCR 0.851 3.279 2.819 0.836 3.523 2.902
WFP-PLSR 0.882 2.977 2.632 0.863 3.086 2.759

WFHP-PLSR 0.902 2.673 2.601 0.907 2.826 2.583
WFP-BP 0.917 2.504 2.132 0.909 2.626 2.286

WFHP-BP 0.945 2.115 1.653 0.932 2.311 1.834
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Compared with the traditional spectral indices prediction results (Figure 5), the valida-
tion accuracy of all models, except the WFP-PCR model, was higher with an error below 3%
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(Table 4 and Figure 8). This indicated that there was a great potential for spectral variables
based on spectral processing techniques upon SMC estimation for mixed soil types.

4. Discussion

Traditional soil moisture measurements using neutron scattering, drying method,
and resistance method have been part of many agricultural studies [47–49]. While these
measurements provide accurate results, they are tedious, time consuming, and laborious,
making it difficult to scale in large areas [50]. Compared with traditional soil moisture
monitoring methods, remote sensing has incomparable advantages such as a large area and
being a macroscopic, real-time, and dynamic method [30]. The hyperspectral sensor can
detect the subtle changes in surface characteristics, and hyperspectral quantitative inversion
provides an effective technical means for dynamic monitoring of regional SMC [9,19].
However, obtaining the best characteristic variables of SMC estimation of mixed soil
types has always been difficult in modeling. In SMC estimation, the original soil spectral
reflectance data contain much noise and a lot of redundant information, which cannot
be used directly to estimate SMC. There are many differences in spectral characteristics
of different soil types. For example, in SS spectral analysis, the reflectance of all bands
decreases with the increase of SMC overall (Figure 4), showing a strong negative correlation
(Figure 5). In LS, except for SMC, the variation rule of reflectance is not obvious due to the
difference in organic matter content, grain size distribution, mineral composition, and soil
color [51], thus reducing the correlation with SMC. However, the small content of these
substances in SS has a small impact on reflectance. Therefore, it is difficult to establish
a general SMC estimation model. In most cases, it is necessary to carry out the spectral
transformation on the original soil spectral reflection data, such as reciprocal, logarithm,
FOD, etc. to extract characteristic bands or parameters to obtain feature variables [52].
However, these methods have a low noise reduction function and cannot deal with data
background and noise well, which directly affects the accuracy of subsequent estimation.

In this paper, the results of several traditional spectral indices for estimating SMC
showed that both univariate linear regression models and multivariate PLSR models had
significant errors. Therefore, it is necessary to explore the variables and methods for SMC
estimation in mixed soil types.

Through correlation analysis, it can be found that the correlation between WF and SMC
is significantly higher than that of the original spectra and SMC (Figure 6). It shows that
the FOD spectra can eliminate some effects of background and atmosphere, but still cannot
achieve satisfactory results. In this paper, the HD method was adopted. The soil spectra
were converted to frequency spectra to obtain harmonic characteristic parameters based
on Fourier transform theory to effectively reduce the uncertainty of spectral parameter
calculation. Furthermore, harmonic parameters can better reflect soil spectral changes
caused by subtle changes in soil internal components. Compared with traditional spectral
parameters, harmonic characteristic parameters (remainder, amplitude, and phase) are
more correlated with SMC (Figure 7). Finally, 11 harmonic characteristic parameters with
high correlation (|r| > 0.7) were selected. Based on the FOD and HD, the PCA method
was applied to reduce the dimensionality of data and two kinds of feature parameters were
gained: WFP and WFHP.

In parameter estimation studies using empirical models, PLSR, BP, and PCR all showed
good effects [16,28,30]. To explore the applicability of the two types of characteristic parame-
ters extracted in this paper (WFP and WFHP), these three models were used for comparison
of estimation. The results show that WFPH is superior to WFP in SMC estimation in these
three models (Table 4 and Figure 8). When selecting the same characteristic parameters
(WFP or WFHP), the effects of PLSR and BP models are significantly better than PCR. The
advantage of the PLSR model is that it can strengthen the error convergence ability of the
model when the sample size is not particularly sufficient, while BP is a nonlinear distribu-
tion that can better reflect SMC and is mainly good at nonlinear prediction. Soil spectra
are a comprehensive reflection of various soil properties, and the selection of estimation
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model alone cannot effectively solve the problem of accurate estimation of SMC. Therefore,
it is necessary to explore some common and stable characteristic parameters to establish a
more robust and suitable SMC inversion model. The harmonic characteristic parameters
constructed in this paper can transform complex signals in the time domain into simplified
signals in the frequency domain, which can not only suppress or eliminate ground object
background noise, but also highlight the spectral characteristics of the ground object with
low order harmonic components to achieve the effect of data compression. Therefore, the
SMC prediction ability of the three models (BP, PLSR, and PCR) was effectively improved.
Moreover, the advantage of harmonic variables in predicting SMC also reflects that they can
accurately predict different SMC, including low and high values, while WFP parameters
are underestimated at high values of SMC (Figure 8).

To further check the performance of the optimal model (WFHP-BP) in this paper for
SMC estimation in different soil types, the validation models for single soil types are shown
in Figure 9. It can be found that the estimation accuracy of SMC is better than that of
mixed soil types in both SS and LS, and neither of them shows local overestimation and
underestimation. This may be because single soil types are more consistent physically or
chemically and thus receive less interference from other factors. Since the BP neural network
model has a nonlinear learning capability, the estimated values of SMC for different soil
types did not appear to be overestimated or underestimated.
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This study provided effective parameters and methods for nondestructive estimation
of SMC in mixed soil types, and future research should be devoted to using satellite imagery
as an alternative to ground-based measurements because of its large area, economy, time
savings, and high temporal resolution, which can provide a data source for real-time field
SMC mapping.

5. Conclusions

In this paper, a feature extraction method based on spectral processing technologies
(WPT, FOD, and HD) and PCA was proposed, and three regression prediction methods
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(PCR, PLSR, and BP) were combined to compare the accuracy and applicability of SMC
estimation for mixed soil. It is observed that for SS with less impurity, the variation of
spectral reflectance can well describe the difference in SMC. However, for LS and MS, the
spectral reflectance cannot be directly used to predict the SMC due to the influence of
organic matter content, grain size distribution, mineral composition, and soil color. After
WPT and FOD transformation using the original spectral data, two sets of data can be
obtained after HD: WF and WFH. Meanwhile, the PCA method was utilized to reduce the
dimensionality of these two datasets to obtain two sets of characteristic parameters: WFP
and WFHP. The results of three regression models (WFP-PCR, WFHP-PCR, WFP-PLSR,
WFHP-PLSR, WFP-BP, and WFHP-BP) indicated that the WFHP-based models showed
better performance than that of WFP-based models. Among the different regression
methods, BP neural network has the highest accuracy as a result of its nonlinear prediction
ability. The best prediction model is WFHP-BP (R2 = 0.932, RMSE = 2.311, MAE = 1.834
for the validation dataset). Moreover, harmonic variables have advantages in predicting
SMC values in a larger range. This study can provide a theoretical basis and technical
support for establishing SMC inversion models suitable for various types and a large
range of soils. Future research should focus more on the use of satellite remote sensing
data and on proposing physical or chemical indicators of soils that are more suitable for
SMC estimation.
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