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Abstract: A trunk segmentation and a diameter measurement of red jujubes are important steps in
harvesting red jujubes using vibration harvesting robots as the results directly affect the effectiveness
of the harvesting. A trunk segmentation algorithm of red jujubes, based on improved Pyramid Scene
Parsing Network (PSPNet), and a diameter measurement algorithm to realize the segmentation and
diameter measurement of the trunk are proposed in this research. To this end, MobilenetV2 was
selected as the backbone of PSPNet so that it could be adapted to embedded mobile applications.
Meanwhile, the Convolutional Block Attention Module (CBAM) was embedded in the MobilenetV2 to
enhance the feature extraction capability of the model. Furthermore, the Refinement Residual Blocks
(RRBs) were introduced into the main branch and side branch of PSPNet to enhance the segmentation
result. An algorithm to measure trunk diameter was proposed, which used the segmentation results
to determine the trunk outline and the normal of the centerline. The Euclidean distance of the
intersection point of the normal with the trunk profile was obtained and its average value was
regarded as the final trunk diameter. Compared with the original PSPNet, the Intersection-over-
Union (IoU) value, PA value and Fps of the improved model increased by 0.67%, 1.95% and 1.13,
respectively, and the number of parameters was 5.00% of that of the original model. Compared with
other segmentation networks, the improved model had fewer parameters and better segmentation
results. Compared with the original network, the trunk diameter measurement algorithm proposed
in this research reduced the average absolute error and the average relative error by 3.75 mm and
9.92%, respectively, and improved the average measurement accuracy by 9.92%. To sum up, the
improved PSPNet jujube trunk segmentation algorithm and trunk diameter measurement algorithm
can accurately segment and measure the diameter in the natural environment, which provides a
theoretical basis and technical support for the clamping of jujube harvesting robots.

Keywords: red jujube tree; PSPNet; MobilenetV2; trunk segmentation; trunk diameter measurement

1. Introduction

Harvesting of ripe fruits is one of the important parts of fruit production and it is
also the part with the largest labor demand and highest labor intensity [1]. However, with
the development of social urbanization, a large number of people who used to work in
agriculture have migrated to cities to engage in non-agricultural work. This has resulted
in the lack of a sufficient agricultural labor force, which seriously affects agricultural
production. Therefore, realizing the potential of mechanization and intelligence in the form
of machines to engage in agricultural production, instead of human beings, effectively
alleviates the labor shortage and promotes industrial development [2,3]. The extraction
of trunk information plays an important role in research concerning fruit harvesting [4].
The planting pattern of existing orchard is regular, providing an ideal environment for
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orchard robots to locate fruit trees [5]. However, there are light posts, water pipes, weeds
and other sundries in orchards, which makes it more difficult for orchard robots. In the
natural environment, it is difficult for picking robots to accurately distinguish different
types of fruit trees, plan picking paths and measure the diameter because of the layout of
the trunks and the irregular shape of branches [6,7]. These challenges to picking robots
reduce harvesting efficiency. The emergence of big data and artificial intelligence has
promoted the development of intelligent agriculture, and provided new ways of thinking
to solve problems. Big data and artificial intelligence have promoted the development of
intelligent agriculture and have provided new ideas to solve problems [8].

Tree trunk diameter measurement is an important step in the harvesting process of the
vibration harvesting robot and the result of trunk segmentation directly affects the accuracy
of trunk diameter measurement. Trunk segmentation often uses RGB images to extract the
trunk, but, thanks to the development of hardware such as laser scanners and laser radars,
many scholars have used the point cloud method to reconstruct and segment trunks [9–12].
However, this method can only extract one piece of trunk information at a time, and its
detection range is small. The fusion of RGB images and point cloud data acquired by a laser
scanner were used to improve the ability of trunk detection [13]. Nonetheless, this method
requires high-quality point cloud data, and these point cloud data are easily segmented
by light, which is easily lost in real scenes, affecting the reconstruction result. In addition,
the laser scanner gets more redundant non-relay data, which makes it difficult to identify
and match the correct relay data with the relay image. In contrast, the RGB or RGBD
images of the method based on the use of a camera to obtain the trunk information are
less affected by the environment, which is beneficial to the application of orchard picking
robots. The method of obtaining trunk information based on the use of a camera first takes
pictures of orchards with different cameras, then recognizes the trunk by its appearance,
shape, texture, color and spatial relationship, and, finally, measures the trunk diameter by
using the extracted trunk information [14–16]. The depth camera has been widely used in
tree trunk diameter detection because it can obtain color images and depth images [15,16].
Machine learning and image processing methods are used to segment the trunk. However,
it is necessary to find the model suitable for the data set by adjusting the threshold or
gray histogram. Table 1 summarizes detailed tree trunk segmentation based on different
data types.

Table 1. Summary of references regarding trunk segmentation methods based on different data types.

Reference Event Data Type Method Result

[11]
Hackenberg et al. established a

high-precision tree
segmentation method.

Terrestrial laser scan
point clouds

A statistical method of
cylinder radii was presented,
based on point clouds data.

The total relative error
was 8%.

[12]
Bargoti et al. presented a
identification method of
individual apple trees.

LiDAR point clouds data

Hidden Semi-Markov Model
and Hough Transform was

used to detect trunk, based on
LiDAR data.

The accuracy of tree
segmentation was 89%.

[13]

Shalal et al. presented a trees
segmentation algorithm to
discriminate between trees

and non-tree objects

laser point clouds and
camera images

A data fusion method of
camera and laser scanner was

proposed to detect trunk.

The detection accuracy
was 96.64%.

[14]

Chen et al. presented A trunk
detection algorithm based

on multi-sensor
integration technology

RGB images

HOG and SVM were used to
train classifier, the gray

histograms were used to
optimize the classifier and

Robert cross edge detector was
used to improve accuracy.

The recall and accuracy of
citrus trunk recognition

experiments were 92.14%
and 95.49%.
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Table 1. Cont.

Reference Event Data Type Method Result

[15]
Shen Yue et al. proposed a fast
tree trunk recognition method
based on tree trunk features.

RGBD images

Super pixel segmentation was
used for trunk segmentation

and parallel edge feature
detection was used to detect

the trunk edge.

The recognition accuracy
of trunk under normal

illumination was 91.35%.

[16] Liu Hui et al. proposed a fast
trunk segmentation algorithm. RGBD images

Super pixel algorithm was
used to segment trunk and the

color matching of the super
pixel blocks was used to

distinguish the trunk from the
non-trunk.

The detection accuracy
was 95. 0%.

In recent years, the segmentation model based on deep learning has been widely
used in production practice, and has achieved good results [17–19]. Convolutional Neural
Network (CNN) has the ability to process high resolution image data and is widely used.
Moreover, by sharing network weights among many convolution layers, a reasonable
calculation time is realized and the detection efficiency is accelerated.

The application of deep learning in agriculture is mainly divided into two types: image
semantic/instance segmentation and object detection. Object detection is widely used in
fruit harvesting [20], and image semantic/instance segmentation is widely used in fruit
quality detection and trunk detection [4,21,22]. Zhang et al. used an R-CNN-based object
detection technology to detect the visible part of apple branches in a canopy, which was
trained to capture tree structure [23]. Majeed et al. used the pre-trained SegNet framework
to segment the trunk and branches from the background. The average BFScores of the
trunk and branches were 0.93 and 0.88, respectively [24]. The research also conducted a
dormant season with young one-year-old apple trees. Gao et al. reported using Faster
R-CNN to detect various objects in apples, branches and trunks under the condition of
whole leaves [25]. However, their work has not been optimized for detecting branches with
different varieties to estimate the shaking position. In the natural environment, uneven
illumination and various sundries, such as water pipes, have a great impact on the trunk
segmentation of red jujubes.

In addition, jujube trees at different distances have a great influence on the segmen-
tation effect of jujube trees in the same field of view. The main purpose of this research
was to construct a trunk segmentation network of red jujubes suitable for mobile terminals
by using deep learning networks, and to measure the trunk diameter of red jujubes. The
research objectives were as follows:

(1) MobileNetV2 network was used as the backbone of the segmentation network to
reduce the parameters and the model size.

(2) CBAM was introduced into the backbone network to improve the feature extraction
ability of the network.

(3) RRB was introduced into the main branch and side branch to obtain more image
details and realize accurate and efficient jujube tree segmentation.

(4) A measurement method to accurately measure trunk diameter was proposed.

2. Materials and Methods

In this research, images of jujube trees in complex field environment were taken as the
research object. Trunk segmentation and diameter measurement experiments were carried
out. The jujube tree image was collected in September 2021 at the date garden of No. 13
Company in Alar City, Xinjiang Uygur Autonomous Region.

2.1. Image Data Acquisition

Two kinds of jujube, namely, Junzao and Huizao, were selected as the collection objects.
Intel RealSense D435i was used to obtain the RGB images and depth images of jujube trees.
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In order to make the image background closer to the mechanical harvesting environment
and increase the diversity of image samples, the distance between the camera lens and the
trunk of the jujube tree was 50–100 cm during the process of image acquisition.

The image acquisition environment included sunny days and cloudy days, and in-
cluded multi-targets, branches, leaves, sundries and other conditions. A total of 1038 images
of red jujubes were collected, a few of which are shown in Figure 1.
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Figure 1. Trunks of red jujubes in different scenes. (a) Sunny day, (b) Cloudy day, (c) Multiple targets,
(d) Shading by branch, (e) Shading by leaves, (f) Shading by sundries.

The main instruments used in this research were Intel RealSense D435i, camera bracket,
vernier caliper and a laptop. The depth camera was fixed on the camera bracket and
connected with the laptop. The information collection equipment is shown in Figure 2a.
Intel RealSense Viewer v2.50.0 was used to capture the image information and depth
information of the trunk of red jujube, as shown in Figure 2b. Resolution of both RGB
images and depth images was set to 640 × 480. As shown in Figure 2c, the trunk diameter
was measured by using digital vernier calipers. Each tree was measured three times, and
the average of the three trunk diameters was used as the final trunk diameter.
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Figure 2. Trunk information collection. (a) Information acquisition equipment, (b) Information
acquisition interface, (c) Digital display vernier caliper measurement.

2.2. Data Annotation and Dataset Division

In this research, the images were cropped to 480 × 480, and the trunk below the first
branch was selected as the main trunk of red jujube. Labelme was used as a point-by-point
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labeling of the tree trunk, as shown in Figure 3. After labeling, 90% of the data set was
divided into training set and validation set by 9:1, and the 10% was divided into the test
set. The final number of image samples for training set, validation set and test set were 803,
110 and 113, respectively.
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2.3. Improvement of PSPNet Segmentation Model
2.3.1. Baseline PSPNet Model

In a test on the dataset, the Fully Convolutional Network (FCN) misidentified a boat as
a car due to the similarity of the shape features of the boat and the car. To enhance the scene
perception capability of the network, and further improve the recognition of the network,
PSPNet was proposed by Zhao in 2017 [26]. The original PSPNet mainly consisted of a
backbone network (CNN) and Pyramid Pooling Module. The network structure diagram is
shown in Figure 4.

As network depth increased, the network was able to extract complex features better,
but there were also some side effects, such as gradient disappearance and network degrada-
tion. By adding a fast connection branch to ResNet, the problems were alleviated [27]. The
original PSPNet used ResNet50 as the backbone network. The Block of ResNet50 contained
three convolution layers: two 1× 1 convolution layers and one 3× 3 convolution layer. The
three convolution layers are shown in Figure 5. In this block, the dimension of the feature
map was subtly reduced or expanded by the 1 × 1 convolution layer, so that the number of
filters in the 3 × 3 convolution layer was not affected by the input of the previous layer,
and the next layer was affected. At first, the dimension of the middle 3 × 3 convolution
layer was reduced by a 1 × 1 convolution layer, which reduced the amount of calculation,
and then another 1 × 1 convolution layer was used to restore it. It not only maintained
the accuracy of the model, but also reduced the network parameters and the amount of
calculation, saving calculation time.

As the core component of PSPNet, the Pyramid pooling module divided the feature
layer into several areas with different sizes. Each region independently generated different
levels of feature maps, and finally the images were spliced, thus reducing the loss of
information among different regions. The pyramid pooling module was a four-level
module with pool cores of 1 × 1, 2 × 2, 3 × 3 and 6 × 6, respectively. The input feature
map was globally pooled by a 1 × 1 pooling core through the pyramid pooling module
and a single feature map was generated. The 2 × 2 pooling core divided the feature map
into 2 × 2 sub-regions and pooled each sub-region. Similar to the 2 × 2 pooling cores, the
3 × 3 and the 6 × 6 pooling cores divided the input feature maps into 3 × 3 sub-regions
and 6 × 6 sub-regions, respectively. Finally, the output feature map was expanded by linear
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interpolation, so that it had the same size as the first input feature map and the final output
feature map was obtained by means of concating.
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According to the characteristics of the data set, the PSPNet was improved and opti-
mized, and a semantic segmentation network of the jujube trunk, based on the improved
PSPNet model, was constructed. The following three important improvements were pro-
posed in the main feature extraction network and the enhanced feature extraction module,
based on the original PSPNet network: (1) The light weight network MobileNetV2 was
selected as the backbone network, (2) CBAM was introduced in the backbone of the im-
proved PSPNet network and (3) RRB was introduced into the pyramid pooling module.
The motivation and details of the above three improvements are summarized as follows.

2.3.2. Backbone Network Based on MobilenetV2

The main feature extraction network commonly used in the original PSPNet model
was ResNet50. In the training process of the network model, a large number of convolution
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calculations slowed down the update speed of the model parameter and the result affected
the speed of feature extraction. In the computing environment of embedded devices,
MobileNetV2 [28] was selected as the backbone network. Depth-wise separable convolution
was used in MobileNetV1 [29]. Compared with the standard convolution, when the number
of weight parameters was the same, the parameters of the model were greatly reduced
and the calculation speed of the network was improved. MobileNetV2 put forward the
inverted residual with linear bottleneck, which further reduced the memory occupation in
the process of model reasoning, and was more suitable for embedded hardware design.

MobileNetV2 used depth-wise separable convolution instead of standard convolution
to extract features from the feature map, as shown in Figure 6. Depth-wise separable con-
volution included depth convolution and point-by-point convolution. Depth convolution
was a convolution kernel with a channel number, which was responsible for only one
channel, through a convolution layer with a channel number and a convolution kernel size
of 3 × 3, the input feature map was convoluted on a single channel of the feature map.
Point-by-point convolution consisted of 1 × 1 ×M convolution kernel. The feature maps
of the previous step were weighted and combined in the depth direction to generate a new
feature map. Compared with the traditional standard convolution, the parameters and
operation cost of depth separable convolution were greatly reduced.

In the high-dimensional space, the nonlinear expression of features could be effectively
increased by performing the operation of ReLU activation function on the convolution
layer, but the feature information of the feature map would be lost when the operation of
ReLU activation function was performed on the low-dimensional convolution layer. In
order to prevent the loss of information, a linear bottleneck structure was proposed. When
calculating the low-dimensional convolution layer, the ReLU activation function was not
used for nonlinear transformation, thus reducing the information loss.

In the construction of a deep network structure, a bottleneck structure was put forward
to alleviate the problems of gradient disappearance and network degradation. Compared
with the standard convolution, MobileNetV2 had fewer channels because of the depth-
wise separable convolution. It was bottleneck channeled and then the feature map was
convoluted to extract features, resulting in the loss of feature information. Therefore, an
Inverted Residual structure was proposed. The channel of the feature map was expanded
by the convolution layer with the convolution kernel 1 × 1, then the feature was extracted
by the deep convolution layer with the convolution kernel 3 × 3, and, finally, the channel
was compressed by the point-by-point convolution with the convolution kernel 1 × 1. The
specific parameters of MobileNetV2 network are shown in Table 2.

Table 2. Specific parameter list of mobilenetv2 network.

Size of Input Operators Channel Dimension Expansion Factor Channel Dimension Stride

3 × 480 × 480 Conv2d - 32 2
32 × 240 × 240 Bottleneck × 1 1 16 1
16 × 240 × 240 Bottleneck × 2 6 24 2
24 × 240 × 240 Bottleneck × 3 6 32 2
32 × 120 × 120 Bottleneck × 4 6 64 2

64 × 60 × 60 Bottleneck × 3 6 96 1
96 × 60 × 60 Bottleneck × 3 6 160 2
160 × 30 × 30 Bottleneck × 1 6 320 1
320 × 30 × 30 Conv2d - 1280 1

1280 × 30 × 30 Avgpool - - -
1280 × 1 × 1 Conv2d - 2 1

Where: Conv2d represented the convolution operation of the feature map with the convolution kernel 1 × 1.
Bottleneck represented the feature map needing to undergo three convolution operations: one 1 × 1 convolution
layer, one 3 × 3 convolution layer and one 1 × 1 convolution layer. Avgpool represented the average pooling
operation of the feature map.
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2.3.3. Backbone Feature Extraction Network Embedding CBAM

In order to extract more jujube trunk features in a complex environment, adding
an attention mechanism to the segmented network was one of the methods to improve
the network’s ability to extract features [30]. The research object of this research was
the trunk of red jujube, which had a high similarity with the surrounding environment.
Therefore, CBAM was introduced into the improved trunk extraction network, and the
feature extraction ability regarding the jujube trunk was improved.

In this research, MobileNetV2 was used as the backbone network of the model, and
it contained different bottleneck structure modules. They were composed of the same
depth separable convolution layers and the jump structure between the layers overcame
the problems of generalization and gradient explosion in deep learning performance so
as to learn the depth feature information better. In order to improve its special extrac-
tion capability, CBAM was introduced after the fifth layer and the seventh layers of the
bottleneck structure.

Convolutional Block Attention Module (CBAM) [31] was put forward in 2018. It
uses global average pooling and maximum pooling to enhance the feature information
of the target region. This module can enhance image features over the channel, and
improve the significance of important features. The module consists of two independent
modules: Channel Attention Module (CAM), which pays attention to the channel, and
Spatial Attention Module (SAM), which pays attention to space of the feature map. The
formula for calculating the channel attention module is shown in Equation (1).

Mc(F) = σ(MLP(AvgPool(F)) + MLP(MaxPool(F)))
= σ

(
W1

(
W0

(
Fc

avg

))
+ W1(W0(Fc

max))
) (1)

where: σ represents the activation function. MLP represents the multi-layer perceptron.
W0 and W1 represent the weight parameter. The value Fc

avg represents the average pooled
feature map, Fc

max represents the maximum pooled feature map, AvgPool represents the
average pooling operation of the feature map F, and MaxPool represents the maximum
pooling operation of the feature map F.
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The formula for calculating the spatial attention module is shown in Equation (2).

Ms(F) = σ
(

f 7×7([AvgPool(F); MaxPool(F)])
)

= σ( f 7×7
([

Fs
avg; Fs

max]
)) (2)

where: σ is the activation function and f 7×7 is the convolution operation with convolution
kernel size of 7 × 7. The value Fs

avg is the feature map, indicating average pooling and Fs
max

is the feature map, indicating maximum pooling. AvgPool represents the average pooling
operation of the feature map F and MaxPool representes the maximum pooling operation
of the feature map F.

When the feature map was input to the module, the channel attention module acquired
two 1-dimensional vectors from the input feature matrix through the global maximum
pooling and global average pooling, and merged the vectors according to the channel
dimension to generate the channel compression weight matrix. The channel compression
weight matrix was multiplied with the input feature matrix to obtain the channel attention
module and output feature maps. After the output feature mapping entered the spatial
attention module, two 2-dimensional vectors were obtained by global maximum pooling
and global average pooling, respectively. Two 2-dimensional vectors were convolved in
the convolution layer by splicing to generate the weight matrix of spatial compression.
The spatially compressed weight matrix was multiplied with the input feature mapping to
obtain the output feature mapping of the spatial attention module. The CBAM structure is
shown in Figure 7.

2.3.4. Improved PSPNet Model Embedding RRB

In order to improve the ability of the network to extract backbone features in a
complex environment, Refinement Residual Block (RRB) was introduced into the main
branch and the side branch of PSPNet [32]. The module was mainly composed of 1 × 1
and 3 × 3 convolution layers, and its network structure is shown in Figure 8. In this
research, the RRB module was used in the main branch and side branch of the improved
PSPNet, which resulted in more detailed feature information and enhanced the feature
recognition capability.

2.3.5. Improved PSPNet Model

Figure 9 shows the improved PSPNet used for red jujube trunks in natural environ-
ments. The model structure was mainly composed of a backbone feature extraction network
and a pyramid pooling module. The former used MobileNetV2 as the backbone network
of the model, which reduced the model scale and improved the accuracy of the model at
the same time. The CBAM was introduced in the backbone feature extraction network to
suppress useless feature extraction, and, at the same time, enhanced the attention to impor-
tant features. RRB was introduced in the main branch and side branch of the model, so as
to obtain more detailed feature information and enhance the feature recognition capability.

2.3.6. Measurement Method of Jujube Tree Diameter Based on Centerline

In the vibration harvesting of jujube trees, the mobile equipment equipped with trunk
measurement often moves to 50 cm~100 cm of jujube trees to identify and measure the
trunk of jujube trees. In this research, the trunk segmentation network was used to segment
the trunk of fruit trees from the complex environment. Through image processing, the
center line of the trunk was detected, and then the normal of each point on the center line
was found. The coordinates of the intersection point were obtained by the intersection
point of normal lines and boundary lines. By means of the Euclidean distance formula
the distance between two points was found. This average distance was used as the pixel
distance of the final trunk. Finally, according to the relationship between the camera and
the image, the diameter of the measured trunk was obtained. The flow chart of the jujube
tree diameter measurement method, based on the centerline, is shown in Figure 10.
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The normal of center line was calculated. To extract the trunk centerline of the jujube
tree, the trunk image was extracted by dividing the network and could be binarized by the
OTSU method, and then the trunk centerline could be extracted by skeletonizing in the
scikit-image library, as shown in Figure 11d. Finally, the normal of each point on the center
line was calculated according to the tangent of each point (xi, yi) on the center line. The
normal calculation method is shown in Formula (3).

y = −1
k

x +
1
k

xi + yi (3)

where: k represents the tangent slope of the passing point (xi, yi), x represents the abscissa
of the point on normal line of the trunk centerline ajnd y represents the ordinate of the
point on the normal line of the trunk centerline.

The center of the line consisted of two types of points: the end point and other points
on the center line. The tangent values of the two points could be obtained using the method
described below.

Method for calculating the tangent at the end point: if P
(
xp, yp

)
was an end point on

the center line, there was only one point Q
(
xq, yq

)
in the eight neighborhoods of this point,

as shown in Figure 12, and the tangent line at the end point was the tangent line yPQ of the
line segment PQ, and the tangent of this point was shown in Equation (4).

yPQ =
yp − yq

xp − xq
x−

(
yp − yq

)
xq

xp − xq
+ yq (4)

where: yPQ was the tangent of line segment PQ.
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Figure 11. Trunk diameter measurement. (a) The original image of red jujube trunk. (b) The image
resulting from the improved trunk segmentation algorithm. (c) The image resulting from image
preprocessing. (d)The image resulting from centerline extraction. (e) The image resulting from edge
extraction. (f) The image resulting from Intersection point calculation.
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Calculation method of tangents at other points on the center line: if P′(xp′ , yp′) was
any point on the center line, there were two points Q′(xq′ , yq′) and R′(xr′ , yr′) in the eight
neighborhoods of that point, and the tangent of that point was the direction of the midline
of the two tangents. The tangent of this point was shown in Equations (5)–(7).

yP′Q′ = kP′Q′x− kP′Q′xp′ + yp′ (5)

yP′R′ = kP′R′x− kP′R′xp′ + yp′ (6)

y = kP′x− kP′xp′ + yp′ (7)
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where: kP′Q′ =
yq′ − yp′
xq′ − xp′

, kP′R′ =
yr′−yp′

xr′ − xp′
, kP′ =

kP′Q′ + kP′R′
2 . yP′Q′ was the tangent of a line

segment P′Q′; yP′R′ was the tangent of a line segment P′R′; y was the tangent of the point P′.
The distance between the pixels with diameter was calculated. After calculating

the normal of each point of the center line, the trunk boundary line was detected by
HoughLinesP in OpenCV. The distance between the intersection of the normal and trunk
boundary lines was the pixel distance of trunk diameter at that point. O (xo, yo) was
any point on the center line. P

(
xp, yp

)
and Q

(
xq, yq

)
were the points on the tangent of

the center line. A (xa, ya) and B (xb, yb) were the endpoints on the left boundary of the
trunk. C (xc, yc) and D (xd, yd) were the endpoints on the right boundary of the trunk. The
intersection of the normal of this point and the trunk boundary was M (xm, ym) and N
(xn, yn). The Euclidean distance of the line segment MN was the diameter pixel distance.
The distance of MN was shown in Equation (8).

d =

√
(xm − xn)

2 + (ym − yn)
2 (8)

where: d was the distance of MN.
Trunk width detection. In this research, Intel RealSense D435i was used to collect the

image of jujube trunk. The parameters of the camera are shown in Table 3.

Table 3. Specific parameter list of Intel RealSense D435i.

Project Parameter

depth field of view (FOV) 85.2◦ × 58◦ × 94◦

maximum output resolution 1280 × 720
minimum depth distance (m) 0.1

RGB sensor FOV (Before calibration) 69.4◦ × 42.5◦ × 77◦

RGB sensor FOV (After calibration) 53.4◦ × 42.5◦

According to the parameters in the table, the angle β between adjacent pixels and the
camera is shown in Equation (9). When measuring the trunk, the cross section of the trunk
was regarded as a standard circle in this research, and the camera scanning of the trunk is
shown in Figure 13.
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The diameter of the trunk could be obtained from the following equation, and the
trunk diameter from in Equation (10).

β =
53.4◦

c
(n− 1)(1 + n0) (9)

D = 2rd
sin(β/2)

1− sin(β/2)
(10)

where: c was the number of columns in the depth image; n0 was the number of invalid
pixels between the calculated valid pixels and the previous valid pixels; n was the number
of pixel points on the arc; β was the angle at which the camera scans the trunk section; rd
was the distance from the camera to the trunk; D was the diameter of the trunk.
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3. Results and Discussion

This section first introduces the hardware and software used in the jujube tree trunk
segmentation experiment and the process of data set training, then introduces the evalua-
tion indices used in the experiment, then analyzes the influence of the improved parts on
the experiment, and finally measures the trunk diameter with this model.

3.1. Experimental Platform and Model Training

The model proposed in this research was based on the improved PSPNet red jujube
trunk segmentation and diameter measurement model, coded in Python and tested by
the Pytorch deep learning framework. The test environment and hardware are shown in
Table 4.

Table 4. Experimental environment.

Configuration Parameter

CPU Intel(R) Core (TM) i7-10700K
GPU NVIDIA GeForce RTX 3070

Accelerated environment CUDA11.1 CUDNN8.2.1
Development environment Pycharm 2021.3.2

Operating system Ubuntu 18.04

Setting of network super parameters. In the test model, the batch size was 2, the
down sample factor was 16, the weight initial learning rate was 0.01, and the attenuation
coefficient was 0.01. SGD was selected as the model optimizer, where momentum was 0.9
and the weight attenuation coefficient was 0.0001 [33]. The total number of iterations of
training was 200 iterations. A model weight was saved in each iteration, and the model
with the highest accuracy was selected as the final model. The change of the training set
loss value with the number of iterations is shown in Figure 14. It can be seen from the
figure that in the range of 0-50 iterations, the loss value of the improved model gradually
decreased with increase of iterations, and the loss value of the model decreased fastest
in this range. When the number of iterations was in the range of 50-200 iterations, the
loss value of the model changed little and gradually tended to be stable and the network
reached the convergence state.

3.2. Metrics for Model Performance Evaluation

In this research, the trunk of the jujube tree was regarded as one category, and the
background as another category. In order to measure the effect of the model on jujube
trunk segmentation, pixel accuracy (PA), IoU, Fps, network parameters, diameter relative
error (P) and diameter measurement accuracy (E) were used as evaluation indices of
model performance, and their calculation formulae were shown in Equations (11)–(14).
Pixel Accuracy (PA), IoU, Fps and network parameters were used as evaluation indices of
jujube tree trunk segmentation model. The higher the index value was, the more effective
the model was. Relative diameter error and diameter measurement accuracy were the
evaluation indices of trunk diameter measurement. The smaller the relative diameter
error was, the more effective the model was, while the diameter measurement accuracy
behaved opposite.

PA =
k

∑
i=0

pii

∑k
j=0 pji

× 100% (11)

IoU =
k

∑
i=0

pii

∑k
j=0 pij + ∑k

j=0 pji − pii
× 100% (12)

E =
|C−V|

C
× 100% (13)
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P = 1− E (14)

where: pii was the pixel point, the recognition result of which in class i was class i; pij
was the pixel point, the recognition result of which in class i was class j; pji was the pixel
point, the recognition result of which in class j was class i; k was the number of different
categories of data sets, k = 2; E was the relative error of the diameter of the trunk of jujube;
C was the measured value of jujube diameter measurement algorithm; V was vernier
caliper measurement of the trunk; P was the measurement accuracy of trunk diameter.
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3.3. Experimental Results and Analysis of Trunk Segmentation

In order to verify the trunk segmentation performance of the improved model, based
on PSPNet, different structures of PSPNet models were tested on the jujube trunk data sets
in a natural environment, and the effectiveness of different structures on the segmentation
model performance were verified. The result is shown in Table 5.

As a classic segmentation network model, PSPNet can effectively segment the target in
complex environments, but it is difficult to segment jujube trunks with limited computation.
In the original PSPNet, ResNet50 was used as the main extraction network. The IoU
and PA of the jujube trunk segmentation model were 81.21% and 89.44%, respectively,
in the original PSPNet. Adding CBAM in the 13th convolution residual layer, meant the
improved model increased the parameters and reduced the IoU of the model, used for
trunk segmentation. Introducing RRB into the main branch and side branch of the network,
the parameters of the improved model were basically unchanged, but the IOU improved.
Introducing CBAM and RRB at the same time, resulted in improved IoU, compared with
the original PSPNet, but the parameters of the two models were also increased. This could
not meet the demand of embedded mobile devices. Compared with the original PSPNet,
the IoU, PA and Fps of the jujube trunk segmentation model increased by 0.15%, 0.53% and
54.02, respectively, and the model parameter decreased by 20 times when MobileNetV2
was used as the backbone of the extraction network. Compared with the original PSPNet,
the improved PSPNet, which took MobileNetV2 as the backbone extraction network and
introduced the CBAM network after the 5th and 7th bottleneck structures, had some
improvement in IoU, which verified the effectiveness of introducing the CBAM network.
Compared with the original PSPNet and the improved PSPNet based on MobileNetV2, the
improved PSPNet, which took MobileNetV2 as the backbone to extract the network and
introduced RRB into the main branch and side branch of the network, increased by 0.61%
and 0.46% in the IoU, respectively. PA increased by 0.95% and 0.42%, and the Fps increased
by 5.07 and 0.82, respectively. Compared with the other algorithms based on PSPNet, the
improved PSPNet, which took MobileNetV2 as the backbone network and introduced the
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CBAM and RRB, was 0.67% higher in IoU, 1.95% higher in PA and 1.13 higher in Fps, and
the algorithms parameter was only 5.00% of the original PSPNet.

Table 5. Comparison results of each module on model performance.

Model IoU/% PA/% Fps Parameters

ResNet50 81.21 89.44 49.77 4.91 × 107

ResNet50 + CBAM 80.82 89.44 48.57 5.04 × 107

ResNet50 + RRB 81.41 90.86 51.02 4.91 × 107

ResNet50 + CBAM + RRB 81.80 90.56 48.76 5.04 × 107

MobileNetV2 81.36 89.97 54.02 2.45 × 106

MobileNetV2 + CBAM 81.37 89.13 51.76 2.48 × 106

MobileNetV2 + RRB 81.82 90.39 54.84 2.45 × 106

Ours model 81.88 91.39 50.90 2.48 × 106

The Jujube trunk data set contained single target, multi-target, sundries, occlusion and
non-occlusion, etc. Compared with the label image, the original PSPNet had segmentation
defects when segmenting the trunk with branches, as shown in Image 1 of Figure 15,
while the improved PSPNet could better segment the trunk. When segmenting the trunk
with leaves, the original PSPNet easily caused segmentation defects for the occluded part,
as shown in Image 2 of Figure 15. The main reason was that the network mistakenly
segmented this part as the background due to the characteristics of leaves and trunks
being so different. The improved PSPNet enhanced the ability of feature extraction, and
could segment the trunk with leaves better than the original PSPNet. Compared with the
original PSPNet, the improved model was more accurate and complete in multi-target
segmentation, as shown in Image 3 and Image 4 in Figure 15, which further verified the
effectiveness of the improved model in jujube trunk segmentation. When segmenting
the trunk of jujube with sundries, PSPNet could effectively identify the sundries as the
background, so as to avoid the influence of sundries on the segmentation results, as shown
in Image 2 and Image 4 in Figure 15.

Image 1 was a single-target jujube tree trunk image with branches. Image 2 was a
single-target jujube tree trunk image with leaves and sundries. Image 3 was a multi-target
jujube tree trunk image. Image 4 was a multi-target jujube tree trunk image with sundries,
in which the yellow box was manually marked.

3.4. Different Model Segmentation Results and Analysis

In this research, five commonly used segmentation networks were used to test the
data set of jujube tree trunks, and the test results are shown in Table 6. As can be seen
from the table, the IoU value and PA value of the improved model were the highest among
the experimental models, reaching 81.88% and 91.39%, respectively. The results show
that the segmentation effect of the improved PSPNet model was better than other models.
Compared with other models, the parameters of the model were the least among the
experimental models, so the improved model had more advantages when it was applied
to embedded mobile devices. However, the Fps value of the improved model was 50.90.
The detection speed of this model was slightly lower than that of BiseNet, FCN and Unet,
but better than Unet++ and DeepLab v3+. Therefore, the model could satisfy real-time
detection of jujube trunks.
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Table 6. Comparison of test results of different segmentation networks on data sets.

Model IoU/% PA/% Fps Parameters

BiseNet 74.86 80.74 122.58 2.31 × 107

DeepLab v3+ 71.22 77.87 37.96 5.46 × 107

FCN 79.31 88.15 55.92 2.01 × 107

Unet 78.54 86.91 56.44 7.77 × 106

Unet++ 78.99 87.13 21.29 9.16 × 106

Ours model 81.88 91.39 50.90 2.48 × 106

Figure 16 shows the partial segmentation results of five common segmentation net-
works in the experiment regarding the jujube trunk data set. The improved PSPNet network
and other experimental networks could complete the task of segmenting the trunk of jujube
in different scenarios, such as on sunny or cloudy days, and could cope with multi-targets,
tree branch occlusion, leaf occlusion and sundries. Compared with the other segmentation
networks, the improved PSPNet network was superior to other experimental segmentation
models in the segmentation of jujube trunks in different scenes, but there were still some
problems of missing segmentation and wrong segmentation, as shown in Figure 16. As



Agriculture 2022, 12, 1140 18 of 22

an advanced segmentation network, DeepLab v3+ had a poor segmentation effect when
segmenting the jujube trunk, as shown in DeepLab v3+ in Figure 16. The result of tree trunk
segmentation by the network in the figure was not complete, and there were large areas
of tree trunk missing and wrongly imaged. As a relatively new network, Bisenet missed
points in different scenes. In the scene containing sundries, Bisenet mistakenly classified
sundries into jujube trunks, as shown in Bisenet of Figure 16. FCN, Unet and Unet++, as
the classical networks in segmentation tasks, had good segmentation performance, but
there were also mistakes and omissions in the segmentation of jujube trunks in different
scenes. On cloudy days, FCN, Unet and Unet++ mistakenly classified the background into
jujube trunks, such as FCN, Unet and Unet++ of Figure 16. Compared with the other two
kinds of segmentation networks, Unet had a poor segmentation result and there were many
missing points in the scene covered by trees. In the environment containing clutter, all three
segmentation networks segmented the clutter into red jujube trunks. When segmenting
multi-targets, the three networks easily missed points for smaller and larger segmentation
targets. However, in the scene of shading leaves, the three networks had better segmenta-
tion effects. The improved PSPNet network incorporated more feature extraction modules,
so it had a strong segmentation effect, as shown in our model of Figure 16. Although there
were some mistakes and omissions, the overall segmentation result was still better than
other segmentation networks in the experiment.

3.5. Diameter Detection Results Based on Improved PSPNet

The diameter measurement method was proposed in this research. This method used
the segmentation network to segment the trunk from the complex background, extracted
the centerline of the trunk and calculated the normal of each point on the centerline. Then,
the trunk edge was extracted and the intersection of the trunk edge and the normal was cal-
culated. Finally, the Euclidean distance formula was used to calculate the distance between
two points, and the average of the distances was calculated as the final trunk diameter. In
this research, the diameter of 10 jujube trees was measured and the measurement results
are shown in Table 7.
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m_dis
/mm

t_dia
/mm

PSPNet Improved PSPNet

p_dis
/Pixel

m_dia
/mm

a_err
/mm

r_err
/%

m_acc
/%

p_dis
/Pixel

m_dia
/mm

a_err
/mm

r_err
/%

m_acc
/%

450.32 32.86 44.08 29.86 3.00 9.13 90.87 51.52 35.09 2.23 6.80 93.20
480.02 33.23 43.05 31.06 2.17 6.52 93.48 47.50 34.39 1.16 3.48 96.52
480.36 33.23 38.23 27.50 5.73 17.24 82.76 47.43 34.36 1.13 3.40 96.60
500.52 35.32 39.54 29.67 5.65 15.99 84.01 46.58 35.14 0.18 0.52 99.48
500.65 23.09 26.16 19.44 3.65 15.80 84.20 32.26 24.08 0.99 4.30 95.70
510.36 38.98 38.77 29.65 9.33 23.95 76.05 48.16 37.09 1.89 4.86 95.14
511.32 42.23 47.43 36.58 5.65 13.39 86.61 52.00 40.23 2.00 4.73 95.27
514.56 31.25 37.94 29.24 2.01 6.44 93.56 39.20 30.23 1.02 3.26 96.74
520.23 32.13 37.63 29.31 2.82 8.78 91.22 42.64 33.33 1.20 3.74 96.26
520.53 54.23 55.81 44.08 10.15 18.71 81.29 66.96 53.34 0.89 1.65 98.35

average value 5.02 13.59 86.41 - - 1.27 3.67 96.33

Where: m_dis was measuring distance, t_dia was true diameter, p_dis was pixel distance, m_dia was measuring
diameter, a_err was absolute error, r_err was relative error and m_acc was measuring accuracy.
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Compared with the actual diameter, the average absolute error of the trunk diameter
measured by the original PSPNet was 5.02 mm. The average relative error was 13.59%. The
average measurement accuracy was 86.41%. However, the accuracy of the trunk diameters
measured by the improved PSPNet was above 90%. The average absolute error of the trunk
diameter measured by the improved PSPNet was 1.27 mm, the average relative error was
3.67% and the average measurement accuracy was 96.33%. Compared with the original net-
work, the average absolute error and average relative error of the improve PSPNet reduced
by 3.75 mm and 9.92%, respectively, and the average measurement accuracy increased by
9.92%. The improved network can meet the requirements of forest resources investigation.
The improved segmentation network, combined with the diameter measurement algorithm,
can measure the diameter of the trunk well, and the average measurement accuracy of the
trunk was 96.33%.

4. Conclusions

In the field environment, trunk segmentation and diameter measurement are greatly in-
fluenced by the orchard environment, such as sunny and cloudy, multi-target, tree branches,
leaves, sundries and other orchard environments. An improved PSPNet network algorithm
and a trunk diameter measurement algorithm were proposed to realize trunk segmentation
and diameter measurement. Firstly, the improved trunk segmentation algorithm of the
jujube tree, based on PSPNet, was improved. MobilenetV2 was selected as the backbone
extraction network of PSPNet in this research, and CBAM was introduced after the fifth and
the seventh layers of the bottleneck structure to improve the feature extraction capability of
the model. RRB was introduced in the main branch and side branch of the model to obtain
more detailed feature information and to enhance the feature recognition capability. Then,
a trunk diameter measurement algorithm, based on image processing technology, was
proposed. The algorithm used the segmentation result of the red jujube trunk segmentation
model, based on the improved PSPNet, to calculate the trunk contour and the normal of
the centerline, and, then, calculated the intersection of the normal and the trunk contour.
The Euclidean distance of the intersection point was taken as its average value as the final
trunk diameter result. The experimental results of the improved PSPNet jujube trunk
segmentation algorithm showed that the IoU value, PA value and Fps value were 81.88%,
91.39% and 50.9, respectively and the parameter was only 2.48 × 106. The results of a
trunk diameter measurement method showed that the average absolute error and average
relative error were reduced to 1.27 and 3.67, respectively, and the average accuracy rate
reached 96.33%. Therefore, the measurement result was good, meeting actual needs.

In summary, a diameter measurement method for the truck of red jujubes, based on
improved PSPNet, was proposed in this research, and the feasibility and effectiveness of
the measurement method were verified by experiments. Future work on the measurement
method of red jujube trunk diameter will be as follows:

(1) Expand the types of data sets and increase the robustness of the model. There are only
two kinds of jujube trees in the data set used in this research, so it is necessary to add
more kinds of jujube trunk data to enhance the robustness of the model.

(2) Enhance the segmentation ability of the model for small objects. The background of
jujube tree is complex, and there are many similar features between the background
and jujube tree, which easily leads to false segmentation and missing segmentation.
Therefore, the feature fusion ability should be strengthened in the follow-up work to
reduce data loss and improve detection accuracy.

(3) In order to further serve intelligent agriculture, this method can be applied to the
robot picking operation, providing guidance for the robot to accurately pick fruits.
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