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Abstract: In light of climate change and the ever-increasing population, salt stress has become a
critical issue for agriculture and food security. The use of nano-fertilizers in agriculture is a promising
application for salt stress management. Therefore, we investigated a hydroponic experiment to
evaluate the effect of different nano-fertilizers: macro-nutrient (K2SO4) and micro-nutrient (ZnO
and SiO2) on two alfalfa (Medicago sativa L.) genotypes: (Susceptible: Bulldog 505, and tolerant:
Mesa-Sirsa) grown with different salt concentrations (6 and 10 dS m−1) in split-split design. The
results demonstrated that nano-K2SO4 enhanced shoot dry weight, plant height, number of flowers,
number of tillers, root length, root fresh weight, and root dry weight under both salt levels. Addition
of nano-K2SO4 enhanced plant relative water contents and electrolyte leakage with both genotypes
under different salt levels. Nano-SiO2 promoted proline and SOD production with high salinity with
values of (0.78 and 1.06 µmol g−1 FW) and 191.15 and 143.46 U. g−1 FW under Bulldog and Mesa-
Sirsa, respectively. The application of nano-ZnO promoted plant micro-elements under 6 dS m−1

with both genotypes. The incorporation of nano-fertilizers into hydroponic systems provides a
promising strategy, especially in regions with low water quality.

Keywords: nano-fertilizers; hydroponic system; salt stress; alfalfa genotypes

1. Introduction

The population will reach about 10 billion by 2050, which requires increased nutritional
needs [1]. About 63 million hectares worldwide suffer from salinization due to poor
irrigation practices, pollution, and irrigation with untreated water [2]. Salt stress reduces
productivity by up to 50% globally [2]. Freshwater deficit is prevalent in most regions
of the world, particularly in arid and semiarid regions [3]. Saline water is considered a
substitutional source to freshwater [4], which is deemed as poor quality [5]. Salinity affects
the biological, chemical, and physical characteristics of soils and reduces the sustainable
improvement of local agriculture [6]. Plants cultivated under salt stress suffer from various
impacts like drought, photosynthetic performance, and ion imbalance [7]. Therefore,
to face these circumstances, plants embrace various strategies comprising physiological,
biochemical, and molecular mechanisms [8].
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Alfalfa (Medicago sativa L.) is a warm-season legume, which is spreading worldwide on
30 mega hectares. Alfalfa production is rated around 454 million tons per year globally [9].
Alfalfa could be grown in saline conditions and as a good pasturage crop resource, it could
conform well with the saline-alkali environment [10]. Alfalfa is considered moderately
sensitive to salts, whilst exposure to salt stress of 0.05–0.2 M L−1 shortens the growth and
productivity level of alfalfa [11,12]. Emam et al. [13] investigated that salt stress affected
two genotypes of alfalfa and found that dry matter production reduction was observed
with high salinity levels as a result of salt accumulation followed by the toxic effect.

Hydroponics, the ‘nutrient solution cultures’ of plants, has been anticipated in both
research and commercial status since the 18th century [14]. Hydroponics is used now suc-
cessfully on a large scale by trade farmers of fast-growing gardener crops, as it appropriates
a more use efficiency of fertilizers and water, as well as a good dominance of climate and
pest factors. Moreover, hydroponic outputs in increasing of crop yield and quality, which
causes higher competitiveness and economic income [15]. A nutrient solution for hydro-
ponics is an aquatic solution composed of inorganics ions from soluble salts of essential
elements for higher plants [16]. All nutrient solutions used for hydroponics culture are
essentially derived from the original protocol developed by Hoagland and Arnon [17].

The development of new kinds of fertilizers using modernistic nanotechnology in-
troduces the opportunities to potentially enhance the performance of fertilizers and to
significantly improve crop production needed to face the future needs of the growing global
population [18]. Nano-fertilizers are sustainable alternatives to conventional chemical fertil-
izers for sustainable and environmentally clean production. Liu and Lal [19] demonstrated
that some engineered nanomaterials (NM) can enhance plant productivity in various con-
centrations values and could be used as nano-fertilizers in agriculture to boost crop yields
and reduce environmental contamination or enhance the efficacy of the conventional fer-
tilizer without providing crops with nutrients [20,21]. Moreover, nano-fertilizers could
be assorted as macronutrient and micronutrient nano-fertilizers. Laware and Raskar [22]
reported that the period of keeping Zn in the plant system is low and hence, the bioavail-
ability of Zn for a long time is not confirmed with the use of conventional ZnSO4 fertilizer,
while nanoparticles with minimized particle size and increased surface area are expected to
be the ideal material for use as Zn amendment in plants. Liu et al. [18] illustrated that the
dry weight of maize plants did not change significantly from 100 to 400 mg kg−1 nano-ZnO,
while decreased gradually from 800 to 3200 mg kg−1. Lin and Xing [23] declared that
nano-ZnO at a rate of 2 g L−1 suppressed the germination of ryegrass seeds and frustrated
root protraction of all species tested. In contrast, [24] investigated that application of ZnO
in nano or bulk forms at a rate of 1 g L−1 in a hydroponic solution caused no effects on
seed germination, root prolongation, and biomass of zucchini. Silicon presents as SiO2
has a physiological role in depositing the form of hydrated amorphous silica (SiO2.nH2O)
mainly in the endoplasmic reticulum, cell wall, and intercellular spaces. Suriyaprabha
et al. [25] showed that a concentration of 6 g L−1 of nano-SiO2 addition in maize plants
significantly increased the plant dry weight and proved to be the best in alleviating salt
stress. In tomato, application of N-SiO2 (8 g L−1, size: 12 nm) increased seed germination,
mean germination time, seed germination index, and seed vigor index [26]. Potassium has
a critical function in plant metabolism and growth, and it participates significantly in the
subsistence of plants under several abiotic stresses [27]. The amendment of K+ mitigates the
adverse effects of salinity through its roles in osmotic adjustment, stomatal regulation, and
maintenance of the balance of membrane ion-charge, cellular-energy status, and protein
synthesis [28]. Thus, potassium fertilizer is very fundamental for crop production and
quality. As a consequence, potassium consumption has developed dramatically in most
regions of the world [29]. A significant positive relevance between K fertilizer input and
grain yield was manifested by Dong et al. [30]. Other studies demonstrated several impacts
of using nano-fertilizers on plant growth. Li et al. [31] reported the positive effects of using
nano-zero valent iron on rice growth such as increased root growth, photosynthesis, several
antioxidant enzymes, and phytohormones. Under salt stress, Wang et al. [32] suggested
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that using Nano-CeO2 with rice plants grown in hydroponic conditions and exposed to
either NaCl or CdCl2 could mitigate their effects and increase the plant defense mechanism
via chlorophyll contents and antioxidant liberation.

The objective of this work is to study the effect of using nano-fertilizers
(Macro/Micronutrients) in alleviating salt stress for alfalfa under a hydroponic system.

2. Materials and Methods

Seeds of both alfalfa genotypes (Medicago sativa L.) germinated for three weeks in Rock-
wool blocks and were watered regularly, occasionally with one-half strength Hoagland’s
nutrient solution under different levels of salt levels. The genotype Bulldog 505 was sus-
ceptible, and Mesa-Sirsa was salt tolerant. Seeds from the two genotypes were planted on
1 September 2016, until the seedlings were transplanted into the hydroponic system. The
Nutrient Film Technique “N.F.T” is used to establish the experiment using the “Continuous
Aeration System” to pump the nutrient solutions from the reservoir usually into a manifold
that connects the larger tubing to several smaller ones. Each one of these smaller tubes
runs nutrient solution to one side of each one of the growing channels (PVC tubes) with
the seedlings holding with the Rockwool in suitably sized holes. A thin layer (film) of the
nutrient solution flows through each of the channels with the plants in it to the other side,
passing by each plant and wetting the roots on the bottom of the channel as it does. The
nutrient solution flows from one side to the other because the channel is sloped slightly and
pumped. The excess nutrient solution flowing out of the low end of each of the channels
drains into another channel or tube and is guided back to the reservoir where it is recircu-
lated through the system again. Each tube has 16 holes and the distance between each hole
is 20 cm. The experimental design comprised a split-plot replicated three times. The main
plots were salt concentrations of 0, 6, and 10 dSm−1 (0, 0.5%, 1.0%), and the subplots were
rates of different nano-fertilizers. Two alfalfa genotypes (Bulldog and Mesa-Sirsa) plants
were gradually subjected to two salt levels. Calcium chloride (CaCl2.2H2O) and sodium
chloride (NaCl) were mixed in a 2:1 proportion (CaCl2: NaCl) and added to Hoagland
solution to make two nutrient solutions of electrical conductivity 6 and 10 dSm−1.

The experiment consisted of nine treatments as follows: a control with Hoagland
solution (235 ppm K), a control with Hoagland solution at EC 6 dSm−1, a control with
Hoagland solution at EC 10 dSm−1, Hoagland solution with potassium source of potassium
sulfate nanoparticles (nano-K2SO4) at 1/4 K+ level of the control (based on a previous
experiment by [33] under salt level of 6 dS m−1, Hoagland solution with potassium source
of nano-K2SO4 at 1/4 K+ level of the control under a salt level of 10 dS m−1, Hoagland
solution with Nano-ZnO at 200 mg.L−1 (according to Liu et al., [18]) under 6 dS m−1,
Hoagland solution with Nano-ZnO at 200 mg.L−1 under 10 dS m−1, Hoagland solution
with Nano-SiO2 at 6 dS m−1 (according to Siddiqui et al. [26]) under 6 dS m−1, Hoagland
solution with Nano-SiO2 at 10 dS m−1. Hoagland solution with non-Nano elements with
minor modification used with the following salts: 1.0 M of NH4H2PO4, KNO3, Ca(NO3)2,
MgSO4, H3BO3, MnCl2. 4H2O, ZnSO4.7H2O, CuSO4.5H2O, EDTA-FeSO4.7H2O, and SiO2.

The plants were harvested twice, the former was 70 days after transplanted to deter-
mine vegetative parameters, and the latter cut was harvested 40 days after the first cut.
Plant biomass was determined by measuring the shoot and root dry weights using a digital
scale with 0.001 g sensitivity. Shoot and root length were measured in centimeters. The
number of tillers and flowers was counted at harvest time. The relative water content of
shoots was measured according to Turner [34] using the equation:

RWC= (FW − DW)/(TW − DW) (1)

where, FW = fresh weight, TW = turgor weight, DW = dry weight.
The relative yield was counted according to Isla and Aragüés [35] by dividing the

actual yield in each saline treatment by the highest yield observed.
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2.1. Salt Stress Response
2.1.1. Proline

Free proline content was determined according to the method of Bates et al. [36].
Briefly,100 mg of plant materials were homogenized in 2 mL aqueous sulfosalicylic acid
(3%), centrifuged at 13,000× g for 10 min, then 1 mL of filtrate was placed in a test tube
and reacted with 1 mL glacial acetic acid and1 mL of acid–ninhydrin. The test tubes
were heated in boiling water in a water bath for 1 h and the reaction was completed by
placing the test tubes in an ice bath. The reaction mixture was extracted with 2 mL of
toluene and mixed vigorously by vortex. The toluene layer separated at room temperature
and the absorbance of chromophore containing toluene was measured at 520 nm using a
spectrophotometer (Varian Cary 50 UV-Vis spectrophotometer, Agilent Technologies, Santa
Clara, CA, USA), using pure toluene as the blank. Standard curves were prepared for each
trial using standard proline in 3% sulfosalicylic acid solution. The proline content was
expressed as micromoles per gram of fresh weight of plant materials.

2.1.2. Electrolyte Leakage

Electrolyte leakage was determined as described by [37]. 0.2 g of alfalfa fresh leaves
were placed in test tubes containing 10 mL of distilled deionized water, incubated at 25 ◦C
on a rotary shaker for 24 h, and subsequently, the electrical conductivity of the solution (Lt)
was determined. Samples were then autoclaved at 120 ◦C for 20 min and the final electrical
conductivity (L0) was obtained after equilibration at 25 ◦C. Measurements of electrical
conductivity were made using the H1993310 conducti-meter (HANA Instruments, DJ110E,
457260, Cluj-Napoca, Romania). The electrolyte leakage (EL) was expressed as:

EL (%) = (Lt/L0) ×100 (2)

2.2. Antioxidant Enzymes

Then, 200 mg of leaf samples were homogenized with 50 mM sodium phosphate
buffer (pH 7.0) containing 1 mM ethylenediaminetetraacetic acid (EDTA) and 2% (w/v)
polyvinylpyrrolidone (PVP). The whole extraction transaction was carried out at 4 ◦C. The
homogenate was centrifuged at 10,000× g for 15 min at 4 ◦C and the supernatant was
collected and used for assaying enzyme activity.

2.2.1. Catalase (CAT, EC 1.11.1.6)

Catalase (CAT, EC 1.11.1.6) activity was measured according to [38] as the rate of
H2O2 disappearance at 240 nm by adding 100 µL leaf crude extract to the solution mixture
containing 50 mM sodium phosphate buffer (pH 7.0) and 2% H2O2. The activity was
calculated as units (µmol H2O2 consumed per min) per gram of fresh weight.

2.2.2. Superoxide Dismutase (SOD, EC 1.15.1.1)

Superoxide dismutase (SOD, EC 1.15.1.1) assay was performed spectrophotometrically
as the inhibition of photochemical reduction of nitro-blue tetrazolium (NBT) at 560 nm
according to the method in [39]. Three milliliters of reaction mixture consisting of 50 mM
Na-phosphate buffer (pH 7.8), 13 mM L-methionine, 75 µM NBT, 10 µM EDTA, 2.0 µM
riboflavin, and 0.3 mL enzyme extract were weighed for 10 min under 4000 RPM at 35 ◦C.
One-unit SOD activity was determined as the amount of enzyme required to cause a 50%
inhibition of the rate of NBT reduction measured at 560 nm.

2.3. Statistical Analysis

Analysis of variance (ANOVA) was performed on the data from the seed germination
study and the hydroponic experiment using PROC GLM of SAS 9.4 (SAS Institute Inc.,
Cary, NC, USA). Each treatment was performed in triplicate and data were analyzed by
comparing treatments to control at p < 0.05. A three-way ANOVA analysis was performed
to examine the interaction between the factors: The alfalfa two genotypes (Buldog 505
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and Mesa-sersa), Nano- fertilizers (K2SO4, ZnO and SiO2) and salt concentrations (0, 6
and 10 dSm−1 ). Replications were considered non-numeric, and all other variables were
considered fixed effects. Means of all variables were separated using Fisher’s protected
LSD test. The averages were compared by the Duncan Multi-Range tests.

3. Results
3.1. Plant Biomass

A difference in shoot dry weight, plant height, number of flowers, number of tillers,
roots length, root fresh, and dry weight of alfalfa plants in the treatments exposed to
nano-fertilizers are statistically significant (p < 0.01) (Table 1). The plant shoots dry weight,
plant height, and root length in both genotypes decreased significantly with the increase
in the salt levels. Under both salt concentrations, the application of nano-K2SO4 gave the
highest significant increase in the shoot dry weight, plant height, number of flowers, and
root fresh weight of the alfalfa in both genotypes under 6 and 10 dSm−1 compared to other
treatments. With the sensitive genotype (Bulldog 505), the highest value of the number of
tillers was observed in the nano-K2SO4 treatment under the level of 10 dSm−1 with the
value of 6.0, while in the Mesa-sirsa genotype, the highest number of tillers was observed
with the nano-SiO2 addition under 10 dSm−1 levels with the value of 5.7. Application of
nano-SiO2 resulted in high root length with Bulldog 505 under both salt concentrations,
and under 10 dS m−1 with Mesa-sirsa recording 33.09, 55.42, and 58.85 cm, respectively.
While nano-ZnO treatment recorded the highest root length with the Mesa-sirsa genotype
under 6 dS m−1 with a value of 37.92 cm.

3.2. Physiological Effect

ANOVA analysis in Table 2 illustrated that there were significant effects (p < 0.01)
with genotypes, salt levels, different treatments, and their combinations on relative water
content (RWC), electrolyte leakage (EL), and proline content (PC). Proline content, RWC,
and El of alfalfa genotypes were significantly affected by salinity levels and supplementary
addition of Si, K, and Zn nanoparticles. Under salt stress, the addition of nano-K2SO4
fulfilled enhancement of RWC and EL, while proline contents were affected by different
amendments under different salt levels. Relative water content, EL, and proline contents
significantly increased with the addition of Si, K, and Zn nanoparticles.

3.2.1. Relative Water Content (RWC)

Relative water content in Table 2 was affected significantly (p < 0.01) by the application
of different nano-fertilizers with both alfalfa genotypes under different salt levels. Increas-
ing salt rate resulted in decreasing RWC in both genotypes, regardless of the application of
growth-stimulant compounds. It has been noticed that the susceptible genotype (Bulldog
505) has lower RWC in comparison with the tolerant genotype (Mesa-Sirsa) with both salt
levels. Application of nano-ZnO fertilizer ameliorated the RWC in both genotypes under
both salt concentrations, except with Bulldog 505 with 10 dS m−1 recording 61.61%, 63.39,
and 50.36 with Bulldog under 6 and 10 dS m−1 and Mesa-Sirsa with 10 dS m−1 respectively.
Application of nano-SiO2 recorded the lowest RWC compared to other treatments under
both salt levels, but more than the control.
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Table 1. Different traits of alfalfa genotypes as affected by three salt levels and different nano-fertilizers.

Genotype Salt Conc. Treatments Shoot Dry Weight
(gm) Plant Height (cm) No. of Flowers No. of Tillers Root Length

(cm)
Root Fresh

Weight (gm)
Root Dry

Weight (gm)

Bulldog

2.5 dS m−1 Control (Hoagland) 2.68 ± 0.31 b 44.69 ± 4.82 b 12.0 ± 0.01 cd 3.67 ± 0.6 cd 35.08 ± 14.38 f 16.65 ± 1.34 f 1.69 ± 0.11 bc

6 dS m−1

Control 1.20 ± 0.1 cde 40.23 ± 2.56 d 12.3 ± 4.16 c 4.0 ± 1.0 bc 33.48 ± 1.96 g 12.25 ± 6.97 g 1.31 ± 0.6 bcdef

Nano-K2SO4 2.55 ± 0.5 b 22.89 ± 2.34 i 1.0 ± 0.0 ij 3.0 ± 0.0 cdef 26.66 ± 1.04 k 33.84 ± 14.6 a 3.73 ± 1.51 a

Nano-ZnO 0.54 ± 0.13 de 10.97 ± 1.95 n 0.0 ± 0.0 j 2.00 ± 0.0 f 26.1 ± 6.26 k 20.2 ± 0.12 d 3.65 ± 0.59 a

Nano-SiO2 0.20 ± 0.08 e 17.31 ± 2.14 k 0.0 ± 0.0 j 3.3 ± 0.57 cde 33.09 ± 9.96 gh 10.36 ± 2.1 h 1.65 ± 0.3 bcd

10 dS m−1

Control 1.2 ± 0.1 cde 35.74 ± 3.89 f 5.3 ± 1.15 h 4.0 ± 0.0 bc 34.79 ± 8.06 f 16.68 ± 5.74 f 1.45 ± 0.43 bcde

Nano-K2SO4 6.30 ± 0.3 a 48.06 ± 2.97 a 20.0 ± 8.89 a 6.0 ± 1.0 a 40.17 ± 12.09 d 28.00 ± 0.34 b 0.38 ± 0.04 def

Nano-ZnO 0.36 ± 0.04 de 18.15 ± 5.17 k 2.0 ± 0.0 i 2.7 ± 0.6 def 30.47 ± 1.85 i 10.7 ± 0.04 h 0.12 ± 0.04 f

Nano-SiO2 2.3 ± 0.07 bc 43.36 ± 1.55 c 10.3 ± 4.5 e 4.0 ± 0.0 bc 55.42 ± 8.87 b 18.9 ± 0.195 e 0.24 ± 0.02 ef

Mesa-Sirsa

2.5 dS m−1 Control (Hoagland) 2.16 ± 0.08 bc 32.13 ± 4.07 g 12.0 ± 0.0 cd 3.3 ± 0.6 cde 51.67 ± 5.93 c 16.7 ± 4.2 f 1.34 ± 0.01 bcdef

6 dS m−1

Control 0.49 ± 0.08 de 9.12 ± 0.55 o 0.0 ± 0.0 j 2.3 ± 0.6 ef 20.36 ± 8.46 m 10.4 ± 0.09 h 0.14 ± 0.01 f

Nano-K2SO4 2.23 ± 0.12 bc 38.79 ± 0.78 e 1.0 ± 0.0 ij 5.0 ± 0.0 ab 32.19 ± 1.29 h 21.04 ± 3.97 d 2.26 ± 0.09 b

Nano-ZnO 1.43 ± 0.13 bcde 28.64 ± 5.44 h 6.7 ± 2.5 g 4.0 ± 1.0 bc 37.92 ± 5.54 e 13.44 ± 1.03 g 1.06 ± 0.02 bcdef

Nano-SiO2 1.5 ± 0.13 bcd 33.07 ± 5.01 g 0.0 ± 0.0 j 5.7 ± 0.6 a 27.21 ± 1.94 jk 9.55 ± 0.15 h 0.28 ± 0.07 ef

10 dS m−1

Control 0.25 ± 0.00 de 12.96 ± 3.76 m 8.0 ± 3.0 f 2.0 ± 0.0 f 28.31 ± 5.0 j 6.34 ± 0.43 i 0.9 ± 0.2 cdef

Nano-K2SO4 0.36 ± 0.04 de 29.93 ± 2.45 j 16.7 ± 9.8 b 4.0 ± 0.0 bc 29.71 ± 6.73 i 18.2 ± 0.08 e 0.21 ± 0.01 ef

Nano-ZnO 0.87 ± 0.15 de 21.05 ± 3.52 j 0.0 ± 0.0 j 2.3 ± 0.6 ef 23.07 ± 9.64 l 24.0 ± 0.28 c 0.37 ± 0.03 ef

Nano-SiO2 0.41 ± 0.08 de 14.33 ± 1.8 i 10.7 ± 3.1 de 2.0 ± 0.0 f 58.85 ± 16.75 a 12.86 ± 4.79 g 1.71 ± 0.08 bc

LSD 0.098 1.86 2.02 0.30 4.56 2.66 0.82

The column values with the same letters are statistical similar according to Duncan Multiple Range Test (DMRT) at p < 0.05.
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Table 2. Effect of different nano-fertilizers (K2SO4, ZnO, and SiO2) on Relative Water Content (RWC),
Electrolyte Leakage (EL), and Proline content to Alfalfa genotypes grown under three salt levels
(control “Hoagland”, 6 and 10 dSm−1).

Genotype Salt Conc. Treatments RWC (%) EL (%) Proline (µmol g−1 FW)

Bulldog

2.5 dS m−1 Control
(Hoagland) 72.86 ± 10.57 62.9 ± 2.8 NS

6 dS m−1

Control 44.57 ± 1.77 63.5 ± 0.01 0.19 ± 0.01
Nano-K2SO4 61.61 ± 4.92 89.5 ± 2.6 0.4 ± 0.08
Nano-ZnO 54.69 ± 0.62 ns * ns
Nano-SiO2 49.17 ± 11.64 82.3 ± 7.6 0.28 ± 0.01

10 dS m−1

Control 37.97 ± 8.06 68.5 ± 1.1 0.29 ± 0.37
Nano-K2SO4 42.89 ± 4.15 96.8 ± 0.5 0.31 ± 0.01
Nano-ZnO 46.02 ± 0.39 94.7 ± 2.7 0.43 ± 0.o1
Nano-SiO2 39.42 ± 0.63 82.5 ± 0.95 0.78 ± 0.071

Mesa-Sirsa

2.5 dS m−1 Control
(Hoagland) 72.01 ± 2.5 64.7 ± 10.4 0.21 ± 0.03

6 dS m−1

Control 36.44 ± 1.78 74.1 ± 8.6 0.32 ± 0.01
Nano-K2SO4 63.39 ± 2.93 88.0 ± 4.0 0.36 ± 0.02
Nano-ZnO 60.71 ± 3.31 84.2 ± 3.3 0.53 ± 0.22
Nano-SiO2 50.65 ± 1.02 ns ns

10 dS m−1

Control 37.4 ± 6.24 74.4 ± 2.4 0.94 ± 0.01
Nano-K2SO4 50.36 ± 5.78 96.8 ± 2.2 1.02 ± 0.04
Nano-ZnO 46.16 ± 0.71 77.0 ± 1.5 ns
Nano-SiO2 41.29 ± 1.75 84.5 ± 8.0 1.06 ± 0.06

Genotype * Salt conc. 173.17 * 4.79 0.007

Genotype * Treatments 374.33 ** 943.72 0.19 *

Salt Conc. * Treatment 900.53 ** 551.83 ** 0.52 **

Genotype * Salt Conc. * Treatments 228.27 ** 6920.94 ** 0.52 **

LSD 2.03 2.50 0.005
Ns *: no samples, *: significantly at 0.05, **: significantly at 0.01.

3.2.2. Electrolyte Leakage (EL)

Salt levels and different nano-fertilizers significantly (p < 0.01) affected plant EL.
Increasing salt concentration resulted in increasing electrolyte leakage in both genotypes
and the increment with the tolerant genotype was much higher (12.7% and 13.04%) than
in the susceptible genotype (0.9% and 8.1%) compared to control (Table 2). Data revealed
that the addition of nano-amendments caused a better effect on plant EL. Application
of nano-K2SO4 resulted in enhancing electrolyte leakage under both salt concentrations
recording 89.5 % and 96.8% in susceptible genotype and 88.00% and 96.8% in tolerant
genotype under 6 and 10 dS m−1 respectively. Application of nano-ZnO with Bulldog
505 with increasing salt levels encouraged the EL, recording 94.7%, while nano-SiO2 with
Mesa-Sirsa with increasing salt levels encourage the EL, recording 84.5%.

3.2.3. Proline

There was a significant effect (p < 0.01) between salt concentrations and plant proline
content resulting in increasing plant proline with rising salt levels (Table 2). While the
proline values increased in the alfalfa tolerant genotype compared to the susceptible
genotype. The nano-fertilizers treatments significantly (p < 0.01) raised plant proline content.
With a moderate increase of salinity (6 dS m−1), nano-K2SO4 and nano-ZnO had superior
effects on increasing proline content, recording 0.4 µmol g−1 FW and 0.53 µmol g−1 FW
with Bulldog and Mesa-Sirsa genotypes, respectively. Application of nano-SiO2 had a
synergistic enhancement effect on proline production with high salinity levels with both
genotypes recording 0.78 µmol g−1 FW and 1.06 µmol g−1 FW with Bulldog and Mesa-Sirsa
genotypes, respectively.
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3.3. Antioxidant Enzymes

The results concerning the effect of different treatments on catalase (CAT in mmol
H2O2 min−1 g−1 FW) and super oxide dismutase (SOD in U. g−1FW) of Alfalfa genotypes
are given in Table 3. ANOVA analysis in Table 3 revealed that there were significant effects
(p < 0.01) between genotypes, salt rates, treatments, and their combination on CAT and
SOD. Catalase activity in alfalfa leaves increased with increased salt concentration by 16.8%
and 31.6% and 33.3% and 50.2% at 6 and 10 dS m−1 with Bulldog 505 and Mesa-Sirsa
genotypes, respectively. Application of nano-SiO2 resulted in boosted alfalfa plant enzymes
recording the highest values under both genotypes. nano-SiO2 consolidated catalase
production recording with Bulldog genotype 114.14 and 105.14 mmol H2O2 min−1 g−1 FW
under 6 and 10 dS m−1, respectively, and recording 108.56 mmol H2O2 min−1 g−1 FW
under 10 dS m−1 with Mesa-Sirsa genotype. With regard to SOD enzyme activity, nano-
SiO2 application recorded the best effect on reproduction of SOD in both genotypes under
different salt levels except for Bulldog under 6 dS m−1, application of Nano-K2SO4 recorded
the highest magnitude of SOD with values of 129.62 U. g−1 FW.

Table 3. Effect of different nano-fertilizers (K2SO4, ZnO, and SiO2) on catalase (mmol H2O2 min−1 g−1 FW)
and SOD (Super oxide dismutase in U. g−1FW) of Alfalfa genotypes grown under three salt levels (control
“Hoagland”, 10 and 15 dSm−1 electrical conductivity).

Genotype Salt Conc. Treatments CAT SOD

Bulldog 505

2.5 dS m−1 Control (Hoagland) 29.70 ± 2.39 94.19 ± 3.67

6 dS m−1

Control 35.68 ± 0.12 102.37 ± 15.54
Nano-K2SO4 49.21 ± 2.75 129.62 ± 4.03
Nano-ZnO NS * NS
Nano-SiO2 114.14 ± 12.27 122.75 ± 6.87

10 dS m−1

Control 43.4 ± 9.9 102.13 ± 11.14
Nano-K2SO4 56.94 ± 4.11 186.21 ± 4.79
Nano-ZnO 88.58 ± 11.76 144.08 ± 9.32
Nano-SiO2 105.14 ± 5.34 191.15 ± 13.71

Mesa-Sirsa

2.5 dS m−1 Control (Hoagland) 25.49 ± 3.66 98.80 ± 6.64

6 dS m−1

Control 38.24 ± 0.04 102.20 ± 18.31
Nano-K2SO4 60.66 ± 7.93 130.49 ± 6.81
Nano-ZnO 99.76 ± 4.1 134.12 ± 15.17
Nano-SiO2 NS NS

10 dS m−1

Control 51.47 ± 0.82 117.54 ± 9.48
Nano-K2SO4 94.32 ± 2.46 136.18 ± 10.77
Nano-ZnO NS NS
Nano-SiO2 108.56 ± 9.83 143.46 ± 0.71

Genotype * Salt conc. 303.81 ** 657.93 **

Genotype * Treatments 2114.10 ** 315.66 *

Salt Conc.* Treatment 1146.44 ** 11,946.77 **

Genotype * Salt Conc.* Treatments 10,719.01 ** 8393.59 **

LSD 10.46 7.73
Ns *: no samples, *: significantly at 0.05, **: significantly at 0.01.

3.4. Plant Tissue Chemical Characteristics

Data in Table 4 show that increasing salt levels resulted in increased plant chemical
nutrients. Application of potassium in nano-form resulted in increased plant absorption
of K and hence decreasing Na/K values under different salt concentrations with both
genotypes. Also, it is noticed from Table 4 that nano-K2SO4 was more effective in preferable
K absorption than Na absorption with susceptible germplasm (Bulldog 505) compared to
tolerant one (Mesa-Sirsa) recording 7.6%, 20.8%, and 6.9% and 15.7% under 6 and 10 dS m−1

in both germplasms respectively. While the application of nano-ZnO caused increasing
in Mg, P, and S in Bulldog 505 plants under 6 dS m−1 but the application of nano-K2SO4
gave rise to increased P and S under 10 dS m−1 recording 2.7% and 2.6%, respectively. With
alfalfa tolerant genotype (Mesa-Sirsa), application of nano-ZnO recorded the highest Ca
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and Mg values under 6 dS m−1 recording 3.9% and 3.4%, while nano-SiO2 recorded the
highest P and S values (0.66 and 0.83%) under 6 dS m−1 and highest Ca and Mg values
under 10 dS m−1 recording 3.7% and 0.2% respectively.

Table 4. Macro-elements in plant tissue of two alfalfa genotypes as affected by three salt levels (0 and
6 dS m−1 Electrical Conductivity) and different nano-fertilizers (K2SO4, ZnO, and SiO2).

Genotype Salt Conc. Treatments
Na/K Ca Mg P S

% mg. Kg−1

Bulldog

2.5 dS m−1 Control (Hoagland) 12.0 ± 1.5 i 10,550.0 ± 2350.0 q 2700.0 ± 100.0 f 2250.0 ± 750.0 k 2133.3 ± 122.2 o

6 dS m−1

Control 13.8 ± 1.8 h 42,233.3 ± 2442.0 f 2533.3 ± 115.5 i 1600.0 ± 173.2 p 2500.0 ± 458.3 h

Nano-K2SO4 7.6 ± 1.3 j 28,600.0 ± 100.0 l 2100.0 ± 100.0 k 1800.0 ± 100.0 n 2300.0 ± 100.0 l

Nano-ZnO 18.13 ± 3.5 f 19,350.0 ± 450.0 n 7600.0 ± 10.0 a 4600 ± 0.0 c 7600.0 ± 15.0 b

Nano-SiO2 7.7 ± 1.6 j 75,800.0 ± 0.0 a 4200.0 ± 50.0 c 2633.3 ± 155.0 h 3233.3 ± 105.0 e

10 dS m−1

Control 36.4 ± 3.5 b 48,166.7 ± 405.1 c 2566.7 ± 57.7 h 1633.3 ± 152.8 o 2366.7 ± 57.73 k

Nano-K2SO4 20.8 ± 12.4 e 36,300.0 ± 264.6 i 1666.7 ± 152.8 n 2733.3 ± 251.7 f 2566.7 ± 115.5 g

Nano-ZnO 30.1 ± 0.0 d 43,950.0 ± 315.0 e 2733.3 ± 351.2 e 2400.0 ± 264.6 j 2100 ± 624.5 p

Nano-SiO2 32.8 ± 8.4 c 31,400.0 ± 1609.3 k 1850.0 ± 50.0 m 2000.0 ± 100.0 l 2266.6 ± 115.4 m

Mesa-Sirsa

2.5 dS m−1 Control (Hoagland) 13.03 ± 1.1 hi 18,950.0 ± 6850.0 o 6366.7 ± 1097.0 b 4633.3 ± 251.4 b 4566.7 ± 201.1 c

6 dS m−1

Control 15.3 ± 1.1 g 48,733.3 ± 850.5 b 2266.7 ± 57.7 j 2700 ± 173.2 g 2466.7 ± 208.2 i

Nano-K2SO4 6.9 ± 4.2 j 32,116.7 ± 1675.1 j 650.0 ± 35.0 q 4250.0 ± 550.0 d 3300.0 ± 900.0 d

Nano-ZnO 7.09 ± 1.4 j 39,050.0 ± 1550.0 g 3450.0 ± 1250.0 d 1833.3 ± 107.8 m 1766.7 ± 101.1 q

Nano-SiO2 7.04 ± 1.6 j 16,350.0 ± 5150.0 p 2633.3 ± 251.7 g 6633.3 ± 109.0 a 8266.7 ± 134.5 a

10 dS m−1

Control 21.3 ± 3.4 e 46,891.4 ± 1370.8 d 1909.1 ± 101.2 l 2474.7 ± 198.7 i 2151.2 ± 50.04 n

Nano-K2SO4 15.7 ± 3.2 g 37,066.7 ± 1285.8 h 1500 ± 0.0 p 3100 ± 100.0 e 2633.3 ± 231.0 f

Nano-ZnO 43.8 ± 0.0 a 21,800.0 ± 0.0 m 1600.0 ± 100.0 o 900.0 ± 0.0 q 1600.0 ± 0.0 r

Nano-SiO2 18.4 ± 4.1 f 37,066.7 ± 1850.2 h 2100.0 ± 200.0 k 900.0 ± 100.0 q 2400 ± 435.9 j

LSD 16.8 4446.8 717.94 4335.4 5345.3

The column values with the same letters are statistical similar according to Duncan Multiple Range Test (DMRT)
at p < 0.05.

Data in Table 5 illustrate that addition of nano-fertilizers magnificently enhanced
micro-element absorbance with increasing salt levels under both genotypes. The data
elucidate that the application of Nano-ZnO promoted plant micro-elements under 6 dS m−1

with both genotypes, while Nano-K2SO4 treatment elevated most plant micro-elements
under 10 dS m−1 with both alfalfa genotypes.
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Table 5. Micro-elements in plant tissue of two alfalfa genotypes as affected by three salt levels (0, 6, and10 dS m−1) and different nano-fertilizers (K2SO4, ZnO, and
SiO2).

Genotype Salt Conc. Treatments
Al B Cd Cr Cu Fe Mn Ni Si Zn

mg. Kg−1

Bulldog

2.5 dS m−1 Control
(Hoagland) 12.9 ± 1.7 37.4 ± 2.8 1.6 ± 0.4 2.1 ± 0.8 8.2 ± 2.2 24.2 ± 2.4 74.2 ± 4.8 1.6 ± 0.4 31.03 ± 5.2 85.2 ± 8.7

6 dS m−1

Control 20.0 ± 0.0 53.6 ± 6.4 2.0 ± 0.0 2.0 ± 0.0 10.0 ± 0.0 132.3 ± 7.1 140.6 ± 4.3 2.0 ± 0.0 164.9 ± 8.1 174.66 ± 24.7
Nano-K2SO4 12.9 ± 0.06 26.4 ± 0.1 1.3 ± 0.1 1.3 ± 0.1 10.6 ± 0.1 34.2 ± 0.2 87.0 ± 0.1 1.3 ± 0.1 131.4 ± 0.2 28.9 ± 0.1
Nano-ZnO 40.0 ± 0.0 84.7 ± 0.0 3.1 ± 0.0 3.1 ± 0.0 15.5 ± 0.0 360.7 ± 0.0 188.2 ± 0.0 3.1 ± 0.0 160.7 ± 0.0 323.5 ± 75.1
Nano-SiO2 31.7 ± 1.8 47.8 ± 3.3 2.7 ± 0.2 2.7 ± 1.0 13.7 ± 6.2 137.2 ± 6.3 105.2 ± 27.2 2.7 ± 1.2 399.5 ± 2.4 113.7 ± 6.8

10 dS m−1

Control 36.7 ± 2.8 68.0 ± 6.6 2.0 ± 0.0 2.0 ± 0.0 10.0 ± 0.0 46.5 ± 2.6 156.0 ± 24.3 2.0 ± 0.0 47.0 ± 18.3 205.9 ± 1.9
Nano-K2SO4 20.0 ± 0.0 57.07 ± 8.2 2.0 ± 0.0 2.0 ± 0.0 10.0 ± 0.0 73.7 ± 4.1 126.3 ± 6.1 2.0 ± 0.0 28.03 ± 9.8 159.2 ± 6.8
Nano-ZnO 17.8 ± 3.9 54.6 ± 13.6 1.8 ± 0.4 1.8 ± 0.4 8.9 ± 2.0 22.3 ± 2.6 102.9 ± 33.2 1.8 ± 0.4 47.6 ± 20.6 221.4 ± 56.3
Nano-SiO2 20.0 ± 0.0 48.5 ± 4.8 2.0 ± 0.0 2.0 ± 0.0 10.0 ± 0.0 35.2 ± 2.7 60.0 ± 5.3 2.0 ± 0.0 55.9 ± 16.1 87.0 ± 1.2

Mesa-Sirsa

2.5 dS m−1 Control
(Hoagland) 80.8 ± 13.6 92.8 ± 4.2 2.0 ± 0.05 8.2 ± 1.1 15.9 ± 1.1 511.2 ± 76.7 162.8 ± 54.7 2.0 ± 0.07 428.7 ± 4.2 213.0 ± 13.2

6 dS m−1

Control 20.2 ± 0.3 50.1 ± 5.9 2.0 ± 0.0 2.0 ± 0.0 10.0 ± 0.0 46.0 ± 2.6 114.8 ± 8.1 2.0 ± 0.0 49.0 ± 14.1 155.7 ± 8.5
Nano-K2SO4 18.7 ± 2.3 84.7 ± 4.1 1.9 ± 0.2 1.9 ± 0.2 9.7 ± 0.5 107.8 ± 6.2 127.0 ± 40.7 1.9 ± 0.2 176.0 ± 10.9 55.7 ± 1.6
Nano-ZnO 19.7 ± 0.6 42.3 ± 2.2 2.0 ± 0.06 2.0 ± 0.06 9.8 ± 0.3 19.7 ± 0.577 85.5 ± 25.1 2.0 ± 0.06 50.7 ± 17.3 189.0 ± 9.3
Nano-SiO2 37.3 ± 14.8 112.2 ± 18.4 3.7 ± 1.4 3.7 ± 1.4 29.8 ± 2.6 160.4 ± 22.5 177.5 ± 25.6 3.7 ± 1.4 372.0 ± 50.7 138.8 ± 18.7

10 dS m−1

Control 20.0 ± 0.0 46.4 ± 1.3 2.0 ± 0.0 2.0 ± 0.0 10.0 ± 0.0 35.5 ± 5.9 81.0 ± 10.6 2.0 ± 0.0 30.2 ± 11.0 163.3 ± 4.2
Nano-K2SO4 20.0 ± 0.0 60.4 ± 12.1 2.0 ± 0.0 2.0 ± 0..0 10.0 ± 0.0 70.0 ± 8.4 122.7 ± 25.3 2.0 ± 0.0 29.0 ± 1.8 160.0 ± 33.8
Nano-ZnO 17.8 ± 0.0 15.5 ± 0.0 1.7 ± 0.0 1.7 ± 0.0 8.9 ± 0.1 39.6 ± 0.0 12.2 ± 0.0 1.7 ± 0.0 102.6 ± 0.0 13.0 ± 0.0
Nano-SiO2 35.0 ± 2.6 50.4 ± 3.2 2.0 ± 0.0 2.0 ± 0.0 10.0 ± 0.0 51.1 ± 2.3 56.6 ± 5.6 0.2 ± 0.0 65.7 ± 11.7 88.6 ± 7.7

LSD 5.33 7.68 0.8 4.3 1.14 3.06 11.1 4.0 2.74 11.42
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4. Discussion
4.1. Plant Biomass

The results showed that salinity stress had a negative effect on the parameters of
vegetative growth and relative water content, which is consistent with the results recorded
by Rahneshan et al. [40]. Decreased growth under saline conditions has been associated
with inhibition of cell division and expansion and disruption of plant physiological and
biochemical processes. According to Karimi and Maleki-Kuhbanani [41], the dry and fresh
weight of the roots and shoots and the height of the shoots and the leaf area have been
significantly reduced. The inhibiting effect of salinity can be caused by its effects on cell
division, also enlargement at the point of growth [42]. In this study, the application of Nano-
K2SO4 improved alfalfa plant biomass under salt stress. Similar results to those in [43]
found that potassium supplementation increases leaf area, improves stomata resistance
under water stress conditions, and accelerates flowering and maturation. Shivay et al. [44]
reported that the application of potassium in barley significantly affected the number of
tillers per plant. With regard to root fresh and dry weight, application of Nano- K2SO4
resulted in enhancing alfalfa plant root fresh and dry weight in both genotypes under salt
stress. This could be explained as an addition to its role in mitigating the adverse effects
of salinity through its roles in stomatal regulation, osmotic adjustment, maintenance of
the membrane ion-charge balance, cellular-energy status, and protein synthesis [28]. In
hydroponic systems, the root biomass considers one of the most important parameters.
Application of nano-SiO2 increased root length with increasing salt concentrations under
both genotypes recording with Bulldog and Mesa-sirsa average increments of 59.29% and
107.87%, respectively more than the control. It has been reported by [45] that application of
SiO2 to the seeds resulted in early growth and was followed by increasing the root length.
Regarding zinc, the authors of [46] indicated that nano-ZnO had significantly improved
the biomass and root and shoot growth of cluster bean. Also, the authors of [47] revealed
that nano-ZnO had beneficial effects on stem height and root values of mung bean. Peanut
yield increased with the application of nano-Zn fertilizer (30 ppm) due to the increased
efficiency of nutrient use, which improves pigment formation and photosynthesis rate [48].
Under salinity pressure, treatment of pots with nano-ZnO resulted in root infiltration and
nutrient uptake [49], fresh and dry weight of the rice plants [50], grain yield of the wheat
plants [51], and biomass production for sunflower [52].

4.2. Physiological Effect
4.2.1. Relative Water Content

Relative water content represents a useful indicator of the state of the water balance
of the plant, essentially because it expresses the absolute amount of water that the plant
requires to reach artificial full saturation [53]. The reverse relation between salt concen-
tration and RWC in plants has been reported by Saeed et al. [54]. In this study, RWC
decreased under salt concentrations in both genotypes (Table 2). A similar decrease in
RWC was found in the leaves of different plants that were affected by salinity [55]. This
reduction can be associated with reduced Plat vigor. The addition of Nano-K2SO4 fostered
the ability of plants to absorb water from high salt concentration media with both alfalfa
genotypes (Table 2 or Figure 1). Marschner [56] reported that K plays a critical role in
turgor regulation within the guard cells during stomatal movement and has a major role
in osmotic adjustment [57]. The vacuole and the cytosol are the two major pools of K in
plant cells. Cytosolic K+ concentrations are essential for plant metabolism and always need
to be at a constant level, while vacuolar K+ concentrations may vary dramatically [58,59].
Under K+ deficient conditions, a constant cytosolic K+ concentration was attributed to the
consumption of vacuolar potassium [60]. Additionally, the effect of potassium in Nano-size
may be more penetrated from root cells and more accumulated in both vacuole and the
cytosol cells. Kalteh et al. [61] showed that Nano-Si could reduce the negative impacts of
high salinity on the development and growth of basil. In addition, silicon appears to play a
role in enhancing the water state of plants under salt stress.
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Figure 1. Effect of different Nano-fertilizers (K2SO4, ZnO, and SiO2) on Relative Water Content
(RWC), Electrolyte Leakage (EL), and Proline content to Alfalfa genotypes grown under three salt
levels (control “Hoagland”, 6 and 10 dSm−1). NS: no sample. The column values with the same
letters are statistical similar according to Duncan Multiple Range Test (DMRT) at p < 0.05.

4.2.2. Electrolyte Leakage (EL)

When RWC is considered as one aspect to examine the water balance in the plants,
electrolyte leakage (EL) is another aspect of the identification of salt-tolerant plants [62,63]
through its role in examining the condition of plasma membranes in cells [64]. Applica-
tion of both Nano-SiO2 and Nano-K2SO4 to the susceptible genotype (Bulldog 505) and
tolerant genotype (Mesa-Sirsa) respectively, promoted electrolyte leakage under both salt
concentrations. It has been published that Si-treated plants acquire tolerance to salt stress
suggests that silicon plays a significant role in the maintenance of the integrity of cell
membranes [65,66]. Furthermore, [67] showed that 2 mM Na2SiO3 reduced electrolyte
leakage by 18.3% in water-stressed corn (50% of FC). On the other side, it has been reported
that the application of silicon enhances leaf water potential [68–70]. The addition of silicon
to salt-stressed plants improves the plant’s water condition by resisting water loss [71].
Potassium plays an important role in plant cells as an osmo-regulator [28] and plays a
crucial function in turgor regulation within the guard cells during stomatal movement [57].

4.2.3. Proline

Proline has a critical job in diminishing the deterioration effects of salt and accelerating
the repair processes following stresses [72]. Proline, a common osmotic antioxidant, plays as
an antioxidant and vitality source, and it regulates gene expression, leading to osmotic mod-
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ification [73]. Excessive accumulation of proline increases water absorption by increasing
the osmotic pressure, leading to enhanced salt stress tolerance in plants [26]. Application
of nano-SiO2 increased proline content in comparison with control. With salt susceptible
genotype (Bulldog 505), nano-SiO2 application augmented proline contents under both
slat concentrations (6 and 10 dS m−1), while application of nano-ZnO under 6 dS m−1

with Mesa-Sirsa recorded the highest proline content with a value of 0.53 µmol g−1 FW
(Table 2 or Figure 1). Studies have shown that proline acts as an osmo-protectant and
is associated with the mechanism of tolerance under salt stress [74]. Besides being an
osmolyte, proline confers enzyme protection and increases membrane stability [75]. The
nano-fertilizers increased the contents of total soluble sugars, total starch, and protein in
the peanut plants [76]. Zinc plays an important role in protein synthesis in plants [77]. The
improvement of carbohydrate and protein content in potato crops of treated plants may be
due to the contribution of Zn, Si, and B nanoparticles to the activation of several enzymes
related to carbohydrate metabolism and protein synthesis [78].

4.3. Antioxidant Enzymes

Catalase activity in alfalfa leaves increased with increased salt concentration by 16.8%
and 31.6% and 33.3% and 50.2% at 6 and 10 dS m−1 with Bulldog 505 and Mesa-Sirsa
genotypes, respectively. These results agree with those from the authors of [79] who clarify
the activity of catalase, which increased in leaf tissues of soybean under salinity stress.
Application of nano-fertilizer treatments had significant effects (p < 0.01) on catalase (CAT)
and sodium oxide dismutase (SOD) contents in both alfalfa genotypes under different salt
levels (Table 3 or Figure 2). As a result, the motivation of the active antioxidant enzymes
considers an acclimation strategy that plants use to vanquish oxidative stress [80]. The
response of alfalfa plants for CAT and SOD activity was assimilated with the application
of nano-SiO2 with both genotypes (Table 3 or Figure 2). These results agreed with those
in [26,61,81]. Nano-SiO2 has been shown to increase the activity of antioxidant enzymes,
which has improved the plant’s tolerance to salinity stress. [26,82]. Regarding zinc, when
wheat plants were treated with 500 ppm non-ZnO, a marked increase in POD activity
and root cell lignification was observed [83]. Similarly, an increase in activities of SOD
and POD activities using non-ZnO (25–200 mg L−1) in cotton plants was reported in
comparison to control plants [84]. The improvement of salt tolerance resulting from the
nano-SiO2 treatment was accompanied by the improvement of membrane stability, sugar
accumulation, and chloroplast formation. It was concluded that silicon Nano treatments
can reduce the harmful effects of salinity on V. faba plants by enhancing the activity of
antioxidant enzymes [85].

4.4. Plant Tissue Chemical Characteristics

Application of Nano-ZnO had superior effects on susceptible alfalfa plants’ chemical
components. These results are in line with the finding of Bala et al. [86] who find that the
application of Nano-ZnO enhanced plant micronutrients (Fe, Mn, and Cu) and caused a
significant variation in the macronutrients. Giordano et al. [87] reported that when Zn is
present at 2000-fold excess in the absence of Ca2+, Mn2+ depressed the rate of Zn absorption
by about 50%. Malvi [88] reported that Zn supply led to an increase in Mg content in
plants. Concerning Nano-SiO2, it enhanced most plant micro-elements with alfalfa tolerant
genotype under both salt concentrations and recorded the highest values in most plant
tissue macro/micro-elements. Sabir et al. [89] demonstrated that the application of N-SiO2
(4%), MgO (1%), and Fe2O3 (1%) not only improved the uptake of Ca, Mg, and Fe but also
notably enhanced the intake of P with micronutrients Zn and Mn. Siddiqui [26] found that
the application of SiO2 Nano-fertilizer under saline conditions improved plant growth and
productivity, improved nitrogen (N) and phosphorous (P) uptake, and reduced sodium Na
accumulation in cucumber plants.
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(mmol H2O2 min−1 g−1 FW) and SOD (Super oxide dismutase in U. g−1 FW) of Alfalfa genotypes
grown under three salt levels (control “Hoagland”, 10 and 15 dS m−1 electrical conductivity). NS: no
sample. The column values with the same letters are statistical similar according to Duncan Multiple
Range Test (DMRT) at p < 0.05.

4.5. Correlation between Physiological and Phenotypic Responses

A cross genotype and treatments, there was a highly significant correlation (p < 0.01)
between shoot dry weight and plant height (r = 0.83) (Table 6). This correlation reflected on
all plant biomass traits to get also a high correlation (p < 0.01) with shoot dry weight such
as number of tillers (r = 0.81), number of flowers (r = 0.79), electrolyte leakage (r = 0.37),
root length (r = 0.47), root fresh and dry weight (r = 0.81 and r = 0.77). and proline
(r = 0.52). Proline is known as an osmolyte that plays a critical role in plant response to
stress conditions by maintaining cell turgor and stabilizing membranes as well as a source
of energy [90,91], which is correlated with plant biomass and catalase activity (r = 0.43,
p < 0.01). Table 6 shows a positive correlation between relative water content (RWC) and
root length (r = 0.53, p < 0.01) as a result of salt stress as reported by Lynch and Ho [92] that
under stress, plants specified more resources to root growth relative to shoot growth, which
can enhance water procuration. This explains the positive correlation (p < 0.01) between
plant root length and shoot dry weight, shoot height, number of tillers and flowers, and
negative correlation between RWC and electrolyte leakage (p < 0.01, r = −0.07), while there
was no correlation between root length and electrolyte leakage, but there was a positive
correlation (p < 0.01) between electrolyte leakage and shoot and root biomass. Catalase
(CAT) activity showed a positive correlation with root dry weight (p < 0.01, r = 0.4) and
shoot biomass. SOD activity showed a positive correlation with plant height (p < 0.01,
r = 0.43) and root dry weight (p < 0.01, r = 0.37). SOD and CAT activity had been reported
that these enzymes had a greater role in scavenging H2O2 in both leaves and roots [93].
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Table 6. Correlation among different traits of two alfalfa genotypes as affected by three salt levels
(control “Hoagland”, 6, and 10 dSm−1) and three treatments of nano-fertilizers (K2SO4, ZnO, SiO2).

Shoot
Dry

Weight

Plant
Height

No. of
Flowers

No. of
Tiller

Root
Length

Root
Fresh

Weight

Root
Dry

Weight
RWC Electrolyte

Leakage CAT SOD Proline

Shoot dry
weight 1.00 0.83 ** 0.79 ** 0.81 ** 0.47 ** 0.81 ** 0.77 ** 0.36 ** 0.37 ** 0.17 0.18 0.52 **

Plant height - 1.00 0.79 ** 0.7 ** 0.48 ** 0.85 ** 0.81 ** 0.26 0.34 * 0.32 * 0.43 ** 0.45 **
No. of Flower - - 1.00 0.82 ** 0.39 ** 0.8 ** 0.85 ** 0.44 ** 0.55 ** 0.34 * 0.34 * 0.58 **
No. of Tiller - - - 1.00 0.41 ** 0.7 ** 0.78 ** 0.35 ** 0.45 ** 0.36 ** 0.30 * 0.58 **
Root length - - - - 1.00 0.48 ** 0.53 ** 0.53 ** 0.2 0.32 * 0.29 * 0.34 *
Root fresh

weight - - - - - 1.00 0.86 ** 0.06 0.43 ** 0.16 0.35 * 0.53 **

Root dry
weight - - - - - - 1.00 0.36 ** 0.53 ** 0.4 ** 0.37 ** 0.34 **

RWC - - - - - - - 1.00 -0.07 0.32 * 0.01 0.23
Electrolyte

Leakage - - - - - - - - 1.00 0.21 0.12 0.39

CAT - - - - - - - - - 1.00 0.38 0.43 **
SOD - - - - - - - - - - 1.00 0.21

Proline - - - - - - - - - - - 1.00

* and **: Significant at probability (0.05) and (0.01) respectively.

5. Conclusions

Two alfalfa genotypes were planted in rock wall blocks and transferred after three weeks
to a hydroponic system established using the nutrient film technique using a continuous
aeration system. The plants were exposed to three salt levels (0, 6, and 10 dS m−1) and
exposed to different Nano-fertilizers (K2SO4, ZnO, SiO2). The results showed a signifi-
cant difference (p < 0.01) in plant biomass parameters in their response to salt levels and
nano-fertilizers treatments. Application of Nano-K2SO4 improved plant relative water,
catalase activity content in both genotypes and both salt concentration, while application
of Nano-SiO2 to the susceptible genotype (Bulldog 505) resulted in enhanced electrolyte
leakage and proline under both salt concentrations, however, application of Nano-K2SO4
with tolerant genotype (Mesa-Sirsa) under both salt concentration (6 and 10 dS m−1) re-
sulted in the lowest electrolyte leakage. Application of Nano-ZnO increased plant Ca, Mg
and microelements under both salt concentrations. From the above results, it could be sum-
marized that using nano-fertilizers with microelements or macro-elements via potassium
addition, in the hydroponic system with brackish water sources could be a new technique
to economically profit from both good plant production and saline water sources.
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