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Abstract: Recently, annual agricultural data have been highly volatile as a result of climate change
and national economic trends. Therefore, such data might not be enough to develop good agricultural
policies for stabilizing agricultural output. A good agricultural output prediction model to assist
agricultural policymaking has thus become essential. However, the highly volatile data would affect
the prediction model’s performance. For this reason, this study proposes a marriage in honey bees
optimization/support vector regression (MBO/SVR) model to minimize the effects of highly volatile
data (outliers) and enhance prediction accuracy. We verified the performance of the MBO/SVR
model by using the annual total agricultural output collected from the official Agricultural Statistics
Yearbook of the Council of Agriculture, Taiwan. Taiwan’s annual total agricultural output integrates
agricultural, livestock and poultry, fishery, and forest products. The results indicated that the
MBO/SVR model had a lower mean absolute percentage error (MAPE), root mean square percentage
error (RMSPE), and relative root mean squared error (r-RMSE) than those of the models it was
compared to. Furthermore, the MBO/SVR model predicted long-term agricultural output more
accurately and achieved higher directional symmetry (DS) than the other models. Accordingly, the
MBO/SVR model is a robust, high-prediction-accuracy model for predicting long-term agricultural
output to assist agricultural policymaking.

Keywords: agricultural output; marriage in honey bees optimization; support vector regression;
long-term; prediction model; robust

1. Introduction

The food crisis has become a topic of concern with the changes in climate and in the
international situation. Moreover, as the United Nations’ Food and Agriculture Organi-
zation (FAO) reports, many food indices (e.g., the global prices of wheat and rice) have
substantially increased since 2001 [1]. For example, the FAO Food Price Index and the
Cereal Price Index increased by approximately 200% in 2021. Furthermore, according to the
FAO’s report, the average value of the FAO Food Price Index was 95.2 from 2016 to 2019
(Figure 1). It was stable during this time. However, during the period of COVID-19 and
the Russian–Ukrainian war, from 2020 to 2022, the FAO Food Price Index faced a wave
of peaks, increasing by approximately 150% between 2020 and April 2022. Therefore, the
Food Price Index is vulnerable to climate and the international situation. Accordingly,
developing new precision agriculture technologies, government policies, and even regional
unions has become increasingly important in agriculture fields [2–4].

Recently, many countries have developed new or more suitable agricultural policies
to avoid the effects of the food crisis [2,5–8]. Generally, most agricultural policies are
developed from experience. However, annual agricultural output data have been highly
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volatile in many countries as a result of climate change and national economic trends.
Therefore, traditional experience might not facilitate good decisions regarding agricultural
policymaking to stabilize agricultural production.

Agriculture 2022, 12, x FOR PEER REVIEW 2 of 15 
 

 

 
Figure 1. FAO Food Price Index from 2016 to 2022 April. 

Recently, many countries have developed new or more suitable agricultural policies 
to avoid the effects of the food crisis [2,5–8]. Generally, most agricultural policies are 
developed from experience. However, annual agricultural output data have been highly 
volatile in many countries as a result of climate change and national economic trends. 
Therefore, traditional experience might not facilitate good decisions regarding agricul-
tural policymaking to stabilize agricultural production. 

Many estimated models with accurate performance are applied in agricultural fields 
to develop good agricultural policies. An excellent agricultural prediction model could 
be used to construct good agricultural business plans through sound agricultural poli-
cymaking [5,6]. Furthermore, a precise prediction model would enable more objective 
and scientific decisions by reducing the unnecessary external factors [5–7]. Consequently, 
how to enhance the prediction accuracy in the agricultural field has become an important 
research issue. 

Traditionally, many researchers have used economic models to analyze the trends in 
agricultural fields [9]. For example, to explore the relationship between agricultural pol-
icy and the adjustment process for agricultural labor in Taiwan, Chang [9] used the mi-
gration model, which is a classical economic model of labor movement. As the results 
indicated, many policies could affect agricultural adjustments, such as incentives for 
production or obstruction of off-farm labor migration. The literature also indicates the 
importance of agricultural policy for the development of agriculture. 

The statistical regression model is also widely applied in agricultural fields. Sun et 
al. [5] pointed out that predicting crop yield is critical for food trade and policymaking. 
They compared the performance of the multiple linear regression (MLR) model with that 
of the random forest (RF) model. The results indicated that the proposed model achieved 
better yield prediction two months in advance. The results of Sun et al.’s research are 
consistent with the aim of this study. An excellent agricultural prediction model can as-
sist in sound agricultural policymaking. Furthermore, because most agricultural data are 
time-series data, statistical time-series models are also widely used. Darekar and Reddy 
[10] used the autoregressive integrated moving average (ARIMA) model to predict cot-
ton prices in India. Assis et al. [11] successfully applied the generalized autoregressive 
conditional heteroscedastic (GARCH) model to predict cocoa bean prices. 

Although many statistical models are applied in agricultural fields, this work is still 
a challenge because such statistical models should be based on linear assumptions 
[12,13]. Therefore, many researchers have also used data mining, machine learning, arti-
ficial intelligence, and hybrid models to predict agricultural data [14–17]. For example, 
Jheng et al. [14] collected climate and rice yield data from 1995 to 2015 in Taiwan to 
compare the performance of traditional support vector regression (SVR) models and 

Figure 1. FAO Food Price Index from 2016 to 2022 April.

Many estimated models with accurate performance are applied in agricultural fields
to develop good agricultural policies. An excellent agricultural prediction model could
be used to construct good agricultural business plans through sound agricultural poli-
cymaking [5,6]. Furthermore, a precise prediction model would enable more objective
and scientific decisions by reducing the unnecessary external factors [5–7]. Consequently,
how to enhance the prediction accuracy in the agricultural field has become an important
research issue.

Traditionally, many researchers have used economic models to analyze the trends in
agricultural fields [9]. For example, to explore the relationship between agricultural policy
and the adjustment process for agricultural labor in Taiwan, Chang [9] used the migration
model, which is a classical economic model of labor movement. As the results indicated,
many policies could affect agricultural adjustments, such as incentives for production or
obstruction of off-farm labor migration. The literature also indicates the importance of
agricultural policy for the development of agriculture.

The statistical regression model is also widely applied in agricultural fields. Sun et al. [5]
pointed out that predicting crop yield is critical for food trade and policymaking. They
compared the performance of the multiple linear regression (MLR) model with that of the
random forest (RF) model. The results indicated that the proposed model achieved better
yield prediction two months in advance. The results of Sun et al.’s research are consistent
with the aim of this study. An excellent agricultural prediction model can assist in sound
agricultural policymaking. Furthermore, because most agricultural data are time-series
data, statistical time-series models are also widely used. Darekar and Reddy [10] used
the autoregressive integrated moving average (ARIMA) model to predict cotton prices
in India. Assis et al. [11] successfully applied the generalized autoregressive conditional
heteroscedastic (GARCH) model to predict cocoa bean prices.

Although many statistical models are applied in agricultural fields, this work is still a
challenge because such statistical models should be based on linear assumptions [12,13].
Therefore, many researchers have also used data mining, machine learning, artificial intelli-
gence, and hybrid models to predict agricultural data [14–17]. For example, Jheng et al. [14]
collected climate and rice yield data from 1995 to 2015 in Taiwan to compare the perfor-
mance of traditional support vector regression (SVR) models and hybrid SVR models
for rice yield prediction. As the authors [14] considered that not all climate factors have
the same importance in prediction models, they wanted to select the primary climate
factors from the collected climate data for rice yield before building the prediction model.
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According to the results, the performance of the hybrid SVR model was better than the
traditional SVR model in terms of the root mean square error (RMSE) and the correlation
coefficient (CC). The hybrid SVR model brought better performance because it integrated a
genetic algorithm (GA) to select the major factors of climate data and a bootstrap method
to enhance the stability of the model.

Moreover, Liu et al. [15] used and compared four machine-learning models, includ-
ing multilayer perceptron (MLP), support vector machine (SVM), Elman recurrent neural
network (Elman RNN), and probabilistic neural network (PNN) models, to predict the
occurrence of rice blast in short-term environment data and reduce the appreciable losses.
The machine-learning models for rice blast prediction were constructed using environmen-
tal data with corresponding rice blast events in the area. As indicated by Liu et al. [8],
warnings concerning rice blasts could be issued by the PNN model 10 days in advance
with excellent prediction accuracy, greater than 90%.

Recently, long short-term memory (LSTM) models have also become famous as agri-
cultural prediction models [18]. For example, Gu et al. [12] considered that an accurate
agricultural prediction model would reduce the risk of price fluctuations. They proposed
a dual-input attention-based LSTM model to predict the monthly prices of cabbage and
radish. According to the results, Gu’s model achieved a 1.41% to 5.5% lower mean abso-
lute percentage error (MAPE) than the models it was compared to. Tian et al. [19] and
Haider et al. [20] both believe that an accurate and timely yield prediction model is essen-
tial for regional food security. Hence, they used the LSTM model to propose a prediction
model for wheat yield. The analysis results showed that the performance of the LSTM
model was significantly better than the back propagation neural network (BPNN) model in
terms of R2, mean absolute error (MAE), and root mean square error (RMSE).

Although many models have been successfully applied in agricultural fields, some
problems still exist; for example, (a) agricultural output data might not satisfy statistical
assumptions [12,13,21,22] because annual agricultural output data are highly volatile; and
(b) prediction models have to be frequently retrained to satisfy different conditions and
enhance the prediction performance [23,24]. This study proposes a robust machine-learning
model for long-term agricultural output prediction to avoid these problems. The proposed
model (the MBO/SVR model) can minimize the effect of highly volatile data (outliers) and
enhance prediction accuracy by integrating two main models: the support vector regression
(SVR) model and the marriage in honey bees optimization (MBO) algorithm. Although the
SVR model is a robust prediction model [14,25–27], the parameter settings usually affect
its prediction accuracy. For this reason, the MBO algorithm was integrated in this study
to select suitable parameter settings for the SVR model because the MBO algorithm is a
well-known optimization algorithm [28–30].

The contributions of this study are as follows: (a) as the MBO/SVR model is a hybrid
machine-learning prediction model, it is not able to consider whether statistical assump-
tions are satisfied or not; (b) the MBO/SVR model can detect outliers automatically and
reduce the effects of the training model; and (c) the MBO/SVR model can successfully
predict accurate agricultural output, especially long-term predictions, without retraining
the training model.

2. Materials and Methods
2.1. Dataset

The data collected from the Agricultural Statistics Yearbook Annual Report of the
Council of Agriculture, Executive Yuan of Taiwan [31], for the annual total agricultural
output was used in this study. Taiwan’s annual total agricultural output integrates agricul-
tural, livestock and poultry, fishery, and forest products. The trend of the dataset is shown
in Figure 2. The average annual agricultural output from 1998 to 2020 was 430.66 billion.
Figure 2 also clearly shows two directly observable problems in the data. Firstly, the annual
total agricultural output was drastically reduced in 2008 because of a typhoon causing
severe flooding in Taiwan. Secondly, the annual total agricultural output was clearly en-
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hanced after 2010 because of the development of organic agriculture and manufactured
food [31]. These two situations could affect the training model’s prediction performance,
especially for long-term predictions. Therefore, these data are suitable to validate whether
the model is robust for long-term agricultural output prediction. This study’s training and
test datasets included the annual total agricultural output data from 1998 to 2008 and from
2009 to 2020, respectively.
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2.2. Marriage in Honey Bees Optimization Algorithm

Since honey bees are the most well-known social insects, they exhibit many features
that make them seem like models for intelligent behavior [32]. Therefore, the reproductive
behavior of honey bees was used to propose an optimization algorithm in 2001 [32–35].
The algorithm is called the marriage in honey bees optimization (MBO) algorithm and it
has been successfully applied for many optimization issues [33–35]. Generally, a typical
honey bee colony consists of the queen, drones, workers, and brood. The queen is the
leading reproductive individual among the honey bees. Drones propagate one of their
mother’s gametes and function to enable the female to act genetically as a male. Workers
are specialized in brood care and in laying eggs. Broods arise either from fertilized or
unfertilized eggs [32]. The queen takes off on a mating flight and then the drones follow her.
Moreover, the speed and energy of the queen affect the mating flight. The queen’s speed
affects the probability of success in mating with a large drone swarm, and the queen’s
energy affects the end of fertilization [35]. After fertilization, the queen returns to the nest.
Then, broods are generated and improved by the workers’ crossovers and mutations [34].

During the mating flight, the probability of a drone mating with the queen can be
represented by Equation (1):

P(Q, D) = e
−di f f erence

speed , (1)

where P (Q, D) denotes the probability of adding the sperm of drone D to the spermatheca of
queen Q (i.e., the probability of successful mating); difference denotes the absolute difference
between the fitness of drone D and queen Q; and speed denotes the speed of queen Q.
Moreover, the mating flight is also affected by the flying time of the queen and the energy
of the queen, as shown by the following equations:

speed(t + 1) = α× speed(t), (2)
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energy(t + 1) = energy(t)− step. (3)

In Equation (2), α is a factor between 0 and 1. Generally, α is set to be 0.9. The step
in Equation (3) denotes the degree of energy reduction after each transition. The detailed
procedure for the MBO algorithm can be found in the literature [32–35].

2.3. Support Vector Regression

Drucker et al. [25] extended the support vector machine (SVM) model to solve nonlin-
ear prediction problems in 1996. The extended SVM model is also called the SVR model.
The SVR model has been successfully applied in agricultural research [13,14,26,27,36–38].
The algorithm of the SVR model can be summarized as follows. First, xi and yi are assumed
to be the input (independent) variables and the corresponding target (dependent) variables,
respectively, of a dataset (xi, yi) (i = 1, 2, . . . , l; xi ∈ Rd; yi ∈ R). Second, the function f (x) that
exhibits a deviation ε from the actual yi for all training datasets is as flat as possible [26,39].
Subsequently, the function f (x) = wx + b is assumed, where w ∈ X, b ∈ R. The function
f (x) can then be solved using the following equations:

min{1
2
‖ w ‖2 + C ∑l

i=1(ξi + ξ∗i )} s.t.


yi − wxi − b ≤ ε
wxi + b− yi ≤ ε

ξi, ξ∗i ≥ 0
, (4)

|ξ|ε =
{
|ξ| − ε, i f |ξ| > ε

0 , i f |ξ| ≤ ε
. (5)

In Equations (4) and (5), C determines the tradeoff between the flatness of function
f (x) and the value up to which deviations more significant than ε are tolerated; ξi and ξ∗i
are positive slack variables; and |ξ|ε is the ε-insensitive loss function [14,26]. The detailed
procedure for the SVR model can be found in the literature [25,36,40]. The SVR model
has three main kernel functions: the Gaussian radial basis function (RBF), the polynomial
function, and the sigmoid function. Consequently, searching for a fitted kernel function
and parameter setting is essential before using the SVR model. The RBF kernel function can
perform better than other functions [41]. Thus, this study used the RBF kernel function to
construct the SVR model as the primary kernel function. Note that the RBF kernel function
includes two parameters (Cost and Gamma).

2.4. The MBO/SVR Model

The MBO/SVR model comprises two main stages. Stage 1 is the data pre-processing
stage for the training model, and Stage 2 is the prediction stage for agricultural output data
prediction. Figure 3 shows the flowchart of the MOB/SVR model. The detailed algorithm
of the MBO/SVR model can be introduced as follows.

• Stage 1

As described in Section 2.1, the annual total agricultural output data have been highly
volatile in recent years. Therefore, predictions must detect and smooth outlier data [42].
Accordingly, the main goal of Stage 1 is detecting outlier data and reducing their effects
when building the prediction model. There are two major steps in Stage 1.

Step 1: Detect outliers
First, we standardize the data based on Equation (6), where xi denotes the ith datum;

x and SD denote the mean and the standard deviation of the dataset, respectively; and
zi denotes the z-score of the ith datum of the training dataset. This study used a critical
value for the outlier of ±2; i.e., when the ith z-score is greater than 2 or less than −2, the ith
datum is an outlier. Subsequently, when there are no outliers in the training dataset, go
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to Step 2 to construct the training database without outliers; otherwise, go to Step 2.1 to
construct the training database with outliers.

zi =
xi − x

SD
. (6)

Step 2: Construct the training database without outliers
When there are no outliers in the dataset, the training database can be constructed

without outliers the MBO/SVR training model can be built in Step 3. Data volatility affects
the training model’s performance regardless of whether outliers are detected. Accordingly,
the actual data must be transformed based on Equation (7) before constructing the training
database. In Equation (7), Tt denotes the tth transformed datum, and At and At−1 are the
actual tth and (t − 1)th data, respectively.

Tt = (At − At−1)/At−1, where t > 1. (7)
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We can provide a simple example to describe the process of constructing the training
database. Suppose a dataset includes ten years’ annual total agricultural output data;
Table 1 shows the actual and transformed data according to Equation (7). The training
database can be constructed as shown in Table 2. In Table 2, each training ID denotes a
sample, and the input variable (X) and output variable (Y) are fed into the MBO/SVR
model to build the training model. When constructing the training database, go to Step 3 to
build the MBO/SVR training model.

Table 1. An example of actual and transformed data.

Year1 Year2 Year3 Year4 . . . Year9 Year10

Actual data A1 A2 A3 A4 . . . A9 A10
Transformed data T2 T3 T4 . . . T9 T10
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Table 2. An example of a training database without outliers.

Training ID Input Variable (X) Output Variable (Y)

1 T2 T3
2 T3 T4
3 T4 T5
4 T5 T6
5 T6 T7
6 T7 T8
7 T8 T9
8 T9 T10

Step 2.1: Construct the training database with outliers
As described in Step 2, the actual annual total agricultural output data must be

transformed using Equation (7) to reduce the effect of data volatility whether outliers are
detected or not. Therefore, when outliers are detected, Table 1 must still be constructed.
As the agricultural output data are presented in a time-series dataset, prediction of future
values should be based on previously observed values [40,41,43,44]. Accordingly, parts
of the data should be removed to construct the training database for the training model.
For example, suppose the Year3 data in Table 1 is detected as outlier data. Then, T3 and T4
will be removed because they were caused by Year3 data. Therefore, the data with training
IDs 1 to 3 in Table 2 are also released. Table 3 shows the constructed training database
with outliers.

Table 3. An example of a training database with outliers.

Training ID Input Variable (X) Output Variable (Y)

4 T5 T6
5 T6 T7
6 T7 T8
7 T8 T9
8 T9 T10

Step 2.2: Build the MBO/SVR training model for outlier prediction
Step 2.2 involves building the MBO/SVR training model for outlier prediction using

the training database with outliers. As the central concept of the MBO/SVR model is
searching for the best and most suitable parameter setting in the SVR model by using the
MBO algorithm to enhance the performance, the procedures of the MBO/SVR model for
outlier prediction include two steps, as described in Step 2.2.1 and Step 2.2.2.

Step 2.2.1: Set the initial queen of the MBO
The queen of the MBO refers to a candidate parameter setting in the MBO/SVR

model. A queen is coded as an integer sequence with six spermathecae. The first three
spermathecae indicate a candidate solution for the Cost parameter of the SVR model; the
remainders are candidate solutions for the Gamma parameter of the SVR model. Figure 4
shows an example of a queen. As the Cost parameter is set between 0 and 10, the first three
spermathecae (321) in Figure 4 indicate that the Cost parameter is set to 3.21. Similarly,
because the Gamma parameter is set between 0 and 1, the remaining spermatheca (315) in
Figure 4 indicate that the Gamma parameter is set to 0.315. Subsequently, the parameter
settings build the training MBO/SVR model. The fitness function of the MBO/SVR model
is defined by Equations (8) and (9). In Equations (8) and (9), T̂t and Ât denote the tth

predicted transformed agricultural output datum and the tth predicted agricultural output
datum, respectively; At denotes the tth actual agricultural output data; and n denotes the
number of predictions.

Ât = T̂t×At−1+At−1. (8)
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f itness f unction =

(
1
n ∑n

t=1

∣∣At − Ât
∣∣

At

)
. (9)
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Step 2.2.2: Complete the mating flight of the MBO
To search for the optimization solution, the MBO algorithm generates the next gener-

ation of broods through a mating flight. After completing the mating flight of the MBO
algorithm, many broods will have been generated. We then calculate the fitness values of
the broods. When a brood’s fitness value is better than the queen’s fitness value, the queen
will be replaced with the brood.

There are two termination conditions in the MBO/SVR model: (a) when the last
50 generations’ fitness values are the same, the best queen is selected as the best parameter
setting in the MBO/SVR model; (b) when the number of generations is greater than 500,
the best queen is selected as the best parameter setting in the MBO/SVR model.

Step 2.3: Build the MBO/SVR training model for outlier prediction
When terminating the algorithm, the best queen is selected as the best parameter

setting in the MBO/SVR model. Subsequently, the input variables (X) and output variables
(Y) in the training database with outliers are fed into the MBO/SVR model to build the
training model for outlier prediction. As the example in Step 2.1 shows, the Year3 in Table 1
is detected as outlier data. T2 is fed into the training MBO/SVR model to predict the
output value T̂3 and to replace T3 with T̂3. Subsequently, Â3 and T̂4 can be calculated by T̂3
according to Equations (7) and (8).

Step 2.4: Construct the training database with outlier predictions
After Step 2.3, we use the outlier predictions to construct the training database with

outlier predictions according to the same approach as in Step 2. Table 4 shows the results
for the training database with outlier predictions according to the example in Step 2.1.

Table 4. An example of a training database with outlier predictions.

Training ID Input Variable (X) Output Variable (Y)

1 T2 T̂3
2 T̂3 T̂4
3 T̂4 T5
4 T5 T6
5 T6 T7
6 T7 T8
7 T8 T9
8 T9 T10

• Stage 2

Step 3: Build the MBO/SVR training model
After constructing the training database, we then use it to build the MBO/SVR training

model. The procedure for building the MBO/SVR training model is the same as in Step 2.2.
The MBO/SVR training model also needs to search for the best and most suitable parameter
setting in the SVR model with the MBO algorithm.

Step 4: Predict agricultural outputs
Once the MBO/SVR training model has been built, we predict the agricultural outputs

by feeding the test data into the MBO/SVR model. The procedure for prediction is the
same as in Step 2.3.
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2.5. Performance Measures

Three performance measures were used to verify prediction accuracy: the mean
absolute percentage error (MAPE), the root mean square percentage error (RMSPE), and
the relative root mean squared error (r-RMSE). Ahlburg [45] indicates that the MAPE
and the RMSPE can help in comparing various prediction models, and they have been
widely used for measuring prediction accuracy [21,44]. The MAPE and RMSPE are defined
in Equations (10) and (11), where t denotes the tth data point (t = 1, 2, 3, . . . , and n), n
represents the number of predicted values, and At and Ât denote the tth actual and the tth
predicted value, respectively.

MAPE =

(
1
n ∑n

t=1

∣∣At − Ât
∣∣

At

)
× 100, (10)

RMSPE =

√√√√ 1
n ∑n

t=1

(
At − Ât

At

)2

× 100. (11)

Furthermore, the r-RMSE is also widely applied in many fields [16,46,47] because it
can be used to compare the performances of different models. The calculations for the
r-RMSE are defined in Equation (12), where A denotes the average of the actual data.
A lower MAPE, RMSPE, or r-RMSE value indicates that a model has a more accurate
prediction performance.

r− RMSE =
1
A
×
√

1
n
×∑n

t=1 (At − Ât)
2 × 100. (12)

As well as using MAPE, RMSPE, and r-RMSE to verify the prediction accuracy of the
models, this study also used directional symmetry (DS) to measure the coincidence in the
prediction direction trends between the predicted and the actual values [48]. The DS is
defined by Equation (13):

DS =
1

n− 1 ∑n
t=2 dt × 100%, where dt =

{
1, if (At − At−1)×

(
Ât − Ât−1

)
> 0

0, otherwise
. (13)

2.6. Performance Testing

Traditionally performance measures are used to evaluate prediction models’ accuracy.
However, the traditional prediction evaluation criteria have limitations in their applications
to some cases [49]. Moreover, most research has only used the results of performance
measures to compare which model is better without statistical testing.

The Diebold–Mariano test was first proposed in 1995 [50]. The Diebold–Mariano test
is used to test the prediction performance of different models [44,49]. The procedure for
the Diebold–Mariano test is described in the following.

Suppose yt and ŷi,t denote the tth actual time-series data point and the tth predicted
time-series data point of the ith competing prediction model, respectively. Subsequently,
ei,t (i = 1, 2, 3, . . . , m) denotes the tth prediction error of the ith competing prediction model,
where m denotes the number of competing models. The tth prediction error ei,t is defined
by Equation (14):

ei,t = yt − ŷi,t, where i = 1, 2, 3, ..., m (14)

The accuracy of each prediction model can be measured according to the loss function,
as shown in Equation (15):

L(yt, ŷi,t) = L(ei,t). (15)
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Generally, the most widely used loss functions are the squared-error and absolute-error
functions. Their equations are shown in Equations (16) and (17), respectively:

L(yt, ŷi,t) = L(ei,t) = ∑T
t=1 (ei,t)

2, (16)

L(yt, ŷi,t) = L(ei,t) = ∑T
t=1|ei,t|2. (17)

Finally, the hypothesis of the Diebold–Mariano test can be used to test the accuracy of
prediction models. The hypothesis is given as follows:

H0 : E[L(e1,t)] = E[L(e2,t)] vs. H1 : E[L(e1,t)] 6= E[L(e2,t)]

3. Results
3.1. Comparison Models

Four prediction models, including the linear regression model (LM), the GA-based
improved GM(1,1) (GAIGM(1, 1)) model, the artificial neural network (ANN) model, and
the long short-term memory (LSTM) model, were evaluated and their performances to that
of the MBO/SVR model. The LM and the ANN model are well-known models in statistics
and artificial intelligence, respectively. The GAIGM(1, 1) model was proposed to enhance
the performance of the improved GM(1,1) model for agricultural output prediction [21].
The LSTM model has been a popular deep-learning model in recent years.

The LM is implemented with R language in this study, and the GAIGM(1, 1) model
parameters were set according to the literature [21]. Therefore, this study estimated the
GAIGM(1, 1) model parameters as a = −0.006727 and b = 358.1945; the ANN model was
implemented with the default parameter setting from the “RSNNS” package of the R
language; the LSTM model was implemented with the default parameter setting from the
“keras” package of the Python language.

3.2. Experimental Results

In this study, the parameters of the MBO algorithm were set as in Table 5. We first
performed outlier detection in Step 1 of the MBO/SVR model. As the z-score of the actual
data in 2008 was less than −2, the data were regarded as outlier data. In accordance with
the MBO/SVR model’s algorithm, the data from 2008 had to be removed and the predicted
data used to construct the training database. Subsequently, the MBO/SVR model predicted
the data value in 2008 as 387.9. Therefore, this value (387.9) was used to replace the data in
2008 to build the MBO/SVR model.

Table 5. Parameters of the MBO algorithm.

Parameters Settings

Number of workers 10
Number of broods 10

Initial energy of queen 100
Initial speed of queen 100

Table 6 shows the experiment results. The MAPE was used for the training models’
performance comparison because the MBO/SVR model uses the MAPE as the fitness
function. The other performance measures in Table 6 were used to compare the performance
with the test dataset. According to Table 6, the training MAPE ranged from 3.72 to 4.35. The
training performances of the models were similar according to the training MAPE. However,
the training performance of the ANN and the MBO/SVR models should be better than the
other models because only their training MAPEs were less than 4. For the test dataset, the
MAPE ranged from 3.77 to 22.81; the RMAE ranged from 4.90 to 24.28; and the r-RMSE
ranged from 4.85 to 25.61. Furthermore, only the MBO/SVR and GAIGM(1, 1) models’ DS
values were greater than 60%. According to the results, the models’ performances were
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similar in terms of MAPE, RMAE, r-RMSE, and DS, whether they were statistical, machine-
learning, or artificial-intelligence models. Only the MBO/SVR model demonstrated a
robust performance, and it also had the best performance.

Table 6. Comparison of the models’ performances.

LM GAIGM(1, 1) ANN LSTM MBO/SVR

Training MAPE(%) 4.31 4.35 3.85 4.28 3.72 *
MAPE(%) 18.96 18.15 22.81 19.82 3.77 *
RMAE(%) 19.68 19.67 24.28 20.60 4.90 *
r-RMSE(%) 20.60 20.80 25.61 21.58 4.85 *

DS(%) 52.38 61.90 47.62 52.38 65.00 *
* denotes the best value among all models.

4. Discussion

In accordance with a definition from the literature [51], the MBO/SVR model was the
only model with highly accurate predictive power because only this model had a MAPE
was lower than 10%. Hence, the MBO/SVR model demonstrated the optimal performance
according to the MAPE, RMSPE, r-RMSE, and DS results, as shown in Table 6. The MAPE,
RMSPE, and r-RMSE for the MBO/SVR model were approximately 75% lower than the
other models. However, the results still had to be verified with statistical testing. Therefore,
this study used the Diebold–Mariano test to provide statistical verification. The results
for the Diebold–Mariano test are shown in Table 7. Obviously, the MBO/SVR model
was significantly better than the other models; the LM and GAIGM(1, 1) model were
insignificantly different, but the LM was significantly better than the LSTM and ANN
models. The LSTM model was significantly better than the ANN model. Accordingly,
based on the results of the Diebold–Mariano test and the DS, the rank for the performances
for the agricultural output data was as shown in the following:

MBO/SVR > GAIGM(1, 1) > LSTM ≥ LM > ANN.

Table 7. The Diebold–Mariano test for the models.

LM GAIGM(1, 1) ANN LSTM

LM
GAIGM(1, 1) −1.66 (p-value = 0.12)

ANN −3.82 (p-value < 0.01 *) −3.97 (p-value < 0.01 *)
LSTM −4.04 (p-value < 0.01 *) −1.83 (p-value = 0.09) 3.77 (p-value < 0.01 *)

MBO/SVR 3.82 (p-value < 0.01 *) 3.67 (p-value < 0.01 *) 3.88 (p-value < 0.01 *) 3.87 (p-value < 0.01 *)

Note: the numbers in the table are the statistics from the Diebold–Mariano test; * denotes significance at α = 0.05.

Although the Diebold–Mariano test could test the models’ performances differently,
the models’ prediction trends also had to be confirmed. Figure 5 and Table S1 show the
actual agricultural output data and the prediction results from the models. For the training
dataset, the trends for the prediction results for all models were close to the actual training
data. However, the MBO/SVR model prediction trend was the only one consistent with
the test dataset. The other models could not predict the volatility of the agricultural output.
Accordingly, the MBO/SVR is a robust long-term agricultural output prediction model.

The model performance results from this study are similar to those from the litera-
ture [5,14,52–54]: (a) the performance of the SVR-based model was better than the tradi-
tional linear model (i.e., linear regression model), and (b) the models must frequently be
retrained to enhance the prediction performance when the range of the test dataset exceeds
the training dataset, especially if the dataset is a data stream or time series. Therefore, the
MBO/SVR model can be successfully and suitably applied to agricultural output prediction
issues because it demonstrates the best performance, especially for predicting long-term
agricultural output without retraining the prediction model. Furthermore, compared to
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results from studies [21] using similar agricultural output data, the MBO/SVR model is
more effective in avoiding the influence of outliers in agricultural output as it uses the
robustness model for long-term agricultural output prediction.
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5. Conclusions
5.1. Research Contributions

Implementing an effective agricultural output prediction model is essential in agri-
cultural policymaking and could potentially solve food crises. This study proposed the
MBO/SVR model to solve two major problems relating to agricultural output data. More-
over, the performance of the MBO/SVR model was compared with the performances of
four models by using the agricultural output data from 1998 to 2020 from Taiwan. The
experimental results for the MAPE, RMSPE, r-RMSE, and DS indicated that the prediction
performance of the MBO/SVR model was more favorable than that of the other models. The
MAPE, RMSPE, and r-RMSE of the MBO/SVR model were approximately 75% lower than
for the other models. Furthermore, by using the Diebold–Mariano test, the performance of
the MBO/SVR model was found to be significantly better than the other models at α = 0.05.
Additionally, only the MBO/SVR model achieved a DS value of 60%; i.e., the MBO/SVR
model could predict coincidences in the prediction direction trends between the predicted
and the actual values. Moreover, only the MBO/SVR model had a prediction trend that
was consistent with the actual agricultural output data for the test dataset, especially for
the prediction of the long-term agricultural output.

According to the results, the MBO/SVR model can directly apply agricultural out-
put data to avoid statistical assumptions and reduce the frequency of model retraining.
Furthermore, the MBO/SVR model offers two advantages: (a) it can automatically locate
outlier data and minimize the effects of outlier data for the training model, and (b) it is a
robust model for predicting long-term agricultural output without retraining the model
because it can satisfy different conditions. Accordingly, the MBO/SVR model is suitable
for agricultural output prediction. Therefore, the MBO/SVR model should also be used to
assist governments in developing good agricultural policies.

5.2. Research Limitations and Future Research

In this study, the annual total agricultural output from 1998 to 2020 was collected
from the Agricultural Statistics Yearbook Annual Report of the Council of Agriculture,
Executive Yuan of Taiwan. As the dataset only includes 23 years, this might have affected
and limited the performances of the machine-learning or AI models. Therefore, we provide
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the following suggestions for future research: (a) the data collection period should be
extended because it might affect the training models’ prediction performances; (b) the
MBO/SVR model should be integrated with precision agriculture technologies [3,4], such
as the Internet of Things (IoT), because this would help in obtaining various real-time data;
and (c) by integrating precision agriculture technologies, the MBO/SVR model could be
made to include more variables, such as climate data, since many external factors can affect
agricultural data.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/agriculture12081075/s1, Table S1: The actual and predicted data of models.

Author Contributions: Conceptualization, C.-H.K., Y.L., W.-S.L., and C.-P.L.; Methodology, C.-H.K.,
Y.L., W.-S.L., and C.-P.L.; Software, C.-H.K. and C.-P.L.; Writing, C.-H.K., W.-S.L., and C.-P.L.; Writing—
Review and Editing, Y.L., W.-S.L., and C.-P.L. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We thank the editor and anonymous peer reviewers who significantly helped
improve this manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. FAO. FAO Food Price Index. Available online: https://www.fao.org/worldfoodsituation/foodpricesindex/en/ (accessed on

1 July 2022).
2. European Council Council of the European Union. Food Security and Affordability. Available online: https://www.consilium.

europa.eu/en/policies/food-security-and-affordability/ (accessed on 1 July 2022).
3. Scuderi, A.; La Via, G.; Timpanaro, G.; Sturiale, L. The Digital Applications of “Agriculture 4.0”: Strategic Opportunity for the

Development of the Italian Citrus Chain. Agriculture 2022, 12, 400. [CrossRef]
4. Cheng, Z.; Lu, Z. Regression-Based Correction and I-PSO-Based Optimization of HMCVT’s Speed Regulating Characteristics for

Agricultural Machinery. Agriculture 2022, 12, 580. [CrossRef]
5. Sun, Y.; Zhang, S.; Tao, F.; Aboelenein, R.; Amer, A. Improving Winter Wheat Yield Forecasting Based on Multi-Source Data and

Machine Learning. Agriculture 2022, 12, 571. [CrossRef]
6. Priyadarshini, P.; Abhilash, P.C. Agri-food systems in India: Concerns and policy recommendations for building resilience in post

COVID-19 pandemic times. Glob. Food Secur. 2021, 29, 100537. [CrossRef]
7. Marengo, J.A.; Galdos, M.V.; Challinor, A.; Cunha, A.P.; Marin, F.R.; Vianna, M.d.S.; Alvala, R.C.S.; Alves, L.M.; Moraes, O.L.;

Bender, F. Drought in Northeast Brazil: A review of agricultural and policy adaptation options for food security. Clim. Resil.
Sustain. 2022, 1, e17. [CrossRef]

8. Pang, J.; Li, X.; Li, X.; Yang, T.; Li, Y.; Chen, X. Analysis of Regional Differences and Factors Influencing the Intensity of Agricultural
Water in China. Agriculture 2022, 12, 546. [CrossRef]

9. Chang, T.Y. The influence of agricultural policies on agriculture structure adjustment in Taiwan. China Agric. Econ. Rev. 2011, 3,
67–79. [CrossRef]

10. Darekar, A.; Reddy, A.A. Cotton price forecasting in major producing states. Econ. Aff. 2017, 62, 373–378. [CrossRef]
11. Assis, K.; Amran, A.; Remali, Y. Forecasting cocoa bean prices using univariate time series models. Res. World 2010, 1, 71.
12. Gu, Y.H.; Jin, D.; Yin, H.; Zheng, R.; Piao, X.; Yoo, S.J. Forecasting Agricultural Commodity Prices Using Dual Input Attention

LSTM. Agriculture 2022, 12, 256. [CrossRef]
13. Lee, C.-P.; Shieh, G.-J.; Yiu, T.-J.; Kuo, B.-J. The strategy to simulate the cross-pollination rate for the co-existence of genetically

modified (GM) and non-GM crops by using FPSOSVR. Chemom. Intell. Lab. Syst. 2013, 122, 50–57. [CrossRef]
14. Jheng, T.; Li, T.; Lee, C. Using Hybrid Support Vector Regression to Predict Agricultural Output. In Proceedings of the

27th Wireless and Optical Communication Conference (WOCC), Hualien, Taiwan, 30 April–1 May 2018; pp. 1–3.
15. Liu, L.-W.; Hsieh, S.-H.; Lin, S.-J.; Wang, Y.-M.; Lin, W.-S. Rice Blast (Magnaporthe oryzae) Occurrence Prediction and the Key

Factor Sensitivity Analysis by Machine Learning. Agronomy 2021, 11, 771. [CrossRef]
16. Liu, L.-W.; Lu, C.-T.; Wang, Y.-M.; Lin, K.-H.; Ma, X.; Lin, W.-S. Rice (Oryza sativa L.) Growth Modeling Based on Growth Degree

Day (GDD) and Artificial Intelligence Algorithms. Agriculture 2022, 12, 59. [CrossRef]

https://www.mdpi.com/article/10.3390/agriculture12081075/s1
https://www.mdpi.com/article/10.3390/agriculture12081075/s1
https://www.fao.org/worldfoodsituation/foodpricesindex/en/
https://www.consilium.europa.eu/en/policies/food-security-and-affordability/
https://www.consilium.europa.eu/en/policies/food-security-and-affordability/
http://doi.org/10.3390/agriculture12030400
http://doi.org/10.3390/agriculture12050580
http://doi.org/10.3390/agriculture12050571
http://doi.org/10.1016/j.gfs.2021.100537
http://doi.org/10.1002/cli2.17
http://doi.org/10.3390/agriculture12040546
http://doi.org/10.1108/17561371111103552
http://doi.org/10.5958/0976-4666.2017.00047.X
http://doi.org/10.3390/agriculture12020256
http://doi.org/10.1016/j.chemolab.2013.01.002
http://doi.org/10.3390/agronomy11040771
http://doi.org/10.3390/agriculture12010059


Agriculture 2022, 12, 1075 14 of 15

17. Castro, C.A.d.O.; Resende, R.T.; Kuki, K.N.; Carneiro, V.Q.; Marcatti, G.E.; Cruz, C.D.; Motoike, S.Y. High-performance prediction
of macauba fruit biomass for agricultural and industrial purposes using Artificial Neural Networks. Ind. Crops Prod. 2017, 108,
806–813. [CrossRef]

18. Shen, Y.; Mercatoris, B.; Cao, Z.; Kwan, P.; Guo, L.; Yao, H.; Cheng, Q. Improving Wheat Yield Prediction Accuracy Using
LSTM-RF Framework Based on UAV Thermal Infrared and Multispectral Imagery. Agriculture 2022, 12, 892. [CrossRef]

19. Tian, H.; Wang, P.; Tansey, K.; Zhang, J.; Zhang, S.; Li, H. An LSTM neural network for improving wheat yield estimates by
integrating remote sensing data and meteorological data in the Guanzhong Plain, PR China. Agric. For. Meteorol. 2021, 310, 108629.
[CrossRef]

20. Haider, S.A.; Naqvi, S.R.; Akram, T.; Umar, G.A.; Shahzad, A.; Sial, M.R.; Khaliq, S.; Kamran, M. LSTM Neural Network Based
Forecasting Model for Wheat Production in Pakistan. Agronomy 2019, 9, 72. [CrossRef]

21. Ou, S.-L. Forecasting agricultural output with an improved grey forecasting model based on the genetic algorithm. Comput.
Electron. Agric. 2012, 85, 33–39. [CrossRef]

22. Rajula, H.S.R.; Verlato, G.; Manchia, M.; Antonucci, N.; Fanos, V. Comparison of Conventional Statistical Methods with Machine
Learning in Medicine: Diagnosis, Drug Development, and Treatment. Medicina 2020, 56, 455. [CrossRef]

23. Chen, X.-Z.; Chang, C.-M.; Yu, C.-W.; Chen, Y.-L. A Real-Time Vehicle Detection System under Various Bad Weather Conditions
Based on a Deep Learning Model without Retraining. Sensors 2020, 20, 5731. [CrossRef]

24. Klabjan, D.; Zhu, X. Neural Network Retraining for Model Serving. arXiv 2020, arXiv:2004.14203.
25. Drucker, H.; Burges, C.J.C.; Kaufman, L.; Smola, A.; Vapnik, V. Support Vector Regression Machines. In Proceedings of the

9th International Conference on Neural Information Processing Systems, Denver, CO, USA, 3–5 December 1996; pp. 155–161.
26. Lee, C.-P. Reduced the Risk in Agriculture Management for Government Using Support Vector Regression with Dynamic

Optimization Parameters. Lex Localis 2017, 15, 243–261. [CrossRef]
27. Tian, Y.; Xu, Y.-P.; Wang, G. Agricultural drought prediction using climate indices based on Support Vector Regression in

Xiangjiang River basin. Sci. Total Environ. 2018, 622–623, 710–720. [CrossRef] [PubMed]
28. Alotaibi, M. Hybrid metaheuristic technique for optimal container resource allocation in cloud. Comput. Commun. 2022, 191,

477–485. [CrossRef]
29. Li, L.; Vyth, J. Effects of Different Worker Heuristics in Marriage in Honey Bees Optimization: As Applied to the Graph Coloring

Problem. Bachelor’s Thesis, KTH Royal Institute of Technology, Stockholm, Sweden, June 2018.
30. Prabhakar, S.K.; Lee, S. Transformation Based Tri-Level Feature Selection Approach Using Wavelets and Swarm Computing for

Prostate Cancer Classification. IEEE Access 2020, 8, 127462–127476. [CrossRef]
31. COA. Agricultural Statistics Yearbook. Available online: https://agrstat.coa.gov.tw/sdweb/public/book/Book.aspx

(accessed on 1 July 2022).
32. Abbass, H.A. MBO: Marriage in Honey Bees Optimization—A Haplometrosis Polygynous Swarming Approach. In Proceedings

of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546), Seoul, Korea, 27–30 May 2001; Volume 201,
pp. 207–214.

33. Curkovic, P.; Jerbic, B. Honey-Bees Optimization Algorithm Applied to Path Planning Problem. Int. J. Simul. Model. 2007, 6,
154–164. [CrossRef]

34. Celik, Y.; Ulker, E. An Improved Marriage in Honey Bees Optimization Algorithm for Single Objective Unconstrained Optimiza-
tion. Sci. World J. 2013, 2013, 370172. [CrossRef]

35. Celik, Y.; Ülker, E. A marriage in honey bee Ooptimisation approach to the asymmetric Travelling salesman problem. Int. J. Innov.
Comput. Inf. Control. 2012, 8, 4123–4132.

36. Fung, K.F.; Huang, Y.F.; Koo, C.H.; Mirzaei, M. Improved SVR machine learning models for agricultural drought prediction at
downstream of Langat River Basin, Malaysia. J. Water Clim. Change 2019, 11, 1383–1398. [CrossRef]

37. Ceylan, Z. Assessment of agricultural energy consumption of Turkey by MLR and Bayesian optimized SVR and GPR models.
J. Forecast. 2020, 39, 944–956. [CrossRef]

38. Shengwei, W.; Yanni, L.; Jiayu, Z.; Jiajia, L. Agricultural price Fluctuation Model Based on SVR. In Proceedings of the 2017
9th International Conference on Modelling, Identification and Control (ICMIC), Kunming, China, 10–12 July 2017; pp. 545–550.

39. Niu, P.; Zhang, W. Model of turbine optimal initial pressure under off-design operation based on SVR and GA. Neurocomputing
2012, 78, 64–71. [CrossRef]

40. Huang, C.-H.; Yang, F.-H.; Lee, C.-P. The strategy of investment in the stock market using modified support vector regression
model. Sci. Iran. 2018, 25, 1629–1640. [CrossRef]

41. Liu, J.; Hu, Y.X. Support Vector Regression with Kernel Mahalanobis Measure for Financial Forecast. Intell. Syst. Ref. Libr. 2013,
47, 215–227. [CrossRef]

42. Kordos, M.; Rusiecki, A. Reducing noise impact on MLP training. Soft Comput. 2016, 20, 49–65. [CrossRef]
43. Lee, C.-P.; Lin, W.-C.; Yang, C.-C. A strategy for forecasting option price using fuzzy time series and least square support vector

regression with a bootstrap model. Sci. Iran. 2014, 21, 815–825.
44. Yang, C.-C.; Leu, Y.; Lee, C.-P. A Dynamic Weighted Distancedbased Fuzzy Time Series Neural Network with Bootstrap Model

for Option Price Forecasting. Rom. J. Econ. Forecast. 2014, 2014, 115–129.
45. Ahlburg, D.A. How Accurate are the U.S. Bureau of the Census Projections of Total Live Births? J. Forecast. 1982, 1, 365–374.

[CrossRef]

http://doi.org/10.1016/j.indcrop.2017.07.031
http://doi.org/10.3390/agriculture12060892
http://doi.org/10.1016/j.agrformet.2021.108629
http://doi.org/10.3390/agronomy9020072
http://doi.org/10.1016/j.compag.2012.03.007
http://doi.org/10.3390/medicina56090455
http://doi.org/10.3390/s20205731
http://doi.org/10.4335/15.2.243-261(2017)
http://doi.org/10.1016/j.scitotenv.2017.12.025
http://www.ncbi.nlm.nih.gov/pubmed/29223897
http://doi.org/10.1016/j.comcom.2022.04.012
http://doi.org/10.1109/ACCESS.2020.3006197
https://agrstat.coa.gov.tw/sdweb/public/book/Book.aspx
http://doi.org/10.2507/IJSIMM06(3)2.087
http://doi.org/10.1155/2013/370172
http://doi.org/10.2166/wcc.2019.295
http://doi.org/10.1002/for.2673
http://doi.org/10.1016/j.neucom.2011.06.032
http://doi.org/10.24200/sci.2017.4440
http://doi.org/10.1007/1007/978-3-642-33439-9_10
http://doi.org/10.1007/s00500-015-1690-9
http://doi.org/10.1002/for.3980010404


Agriculture 2022, 12, 1075 15 of 15

46. Cao, L.; Liu, H.; Fu, X.; Zhang, Z.; Shen, X.; Ruan, H. Comparison of UAV LiDAR and Digital Aerial Photogrammetry Point
Clouds for Estimating Forest Structural Attributes in Subtropical Planted Forests. Forests 2019, 10, 145. [CrossRef]

47. Liu, L.-W.; Wang, Y.-M. Modelling Reservoir Turbidity Using Landsat 8 Satellite Imagery by Gene Expression Programming.
Water 2019, 11, 1479. [CrossRef]

48. Leu, Y.; Lee, C.-P.; Jou, Y.-Z. A distance-based fuzzy time series model for exchange rates forecasting. Expert Syst. Appl. 2009, 36,
8107–8114. [CrossRef]

49. Chen, H.; Wan, Q.; Wang, Y. Refined Diebold-Mariano Test Methods for the Evaluation of Wind Power Forecasting Models.
Energies 2014, 7, 4185–4198. [CrossRef]

50. Diebold, F.X.; Mariano, R.S. Comparing Predictive Accuracy. J. Bus. Econ. Stat. 1995, 13, 253–263. [CrossRef]
51. DeLurgio, S.A. Forecasting Principles and Applications, 1st ed.; Irwin/McGraw-Hill: New York, NY, USA, 1998.
52. Aworka, R.; Cedric, L.S.; Adoni, W.Y.H.; Zoueu, J.T.; Mutombo, F.K.; Kimpolo, C.L.M.; Nahhal, T.; Krichen, M. Agricultural

decision system based on advanced machine learning models for yield prediction: Case of East African countries. Smart Agric.
Technol. 2022, 2, 100048. [CrossRef]

53. Parviz, L. Assessing accuracy of barley yield forecasting with integration of climate variables and support vector regression. Ann.
Univ. Mariae Curie-Sklodowska Sect. C Biol. 2019, 73, 19–30. [CrossRef]
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