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Abstract: Glutaredoxins (Grxs) are a class of small, heat-stable, acidic proteins which have been
implied in various biological activities in cells, including the defense against oxidative stress induced
by various biotic and abiotic factors. In this paper, the effects of RNAi targeting SeGrx1 on the cyto-
toxicity and insecticide susceptibility of camptothecin (CPT) in Spodoptera exigua were investigated.
Results showed that the cytotoxicity of CPT to the cells of S. exigua is heightened significantly by the
silencing of SeGrx1. In the larvae of S. exigua, the mortality was significantly increased compared
to CPT-alone treatment group at 120 h after knocking down the SeGrx1 gene. Taken together, our
results confirmed that SeGrx1 in S. exigua played an important role in protecting the cells from the
cytotoxicity induced by CPT, and the sensitivity of S. exigua larvae to CPT was increased by the
silencing of SeGrx1. Our findings might provide basic information for understanding the function of
Grxs and a strategy in insect pest control of RNAi technology combined with pesticides.
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1. Introduction

Glutaredoxins (Grxs) are a class of small and heat-stable oxidoreductases conserved
in viruses, eukaryotes, and prokaryotes [1]. They belong to the thioredoxin superfamily
and have been proved to play essential functions in cellular redox homeostasis [2]. Until
now, eight members of Grxs were found in Saccharomyces cerevisiae and five in Homo sapiens,
and they are divided into three major categories based on the structure and catalytic
properties [3,4]. The first group, referred to as class I, consists of Grx1 and Grx2, which are
the typical Grxs with a characteristic Cys-X-X-Cys (CXXC) active site motif and a thiore-
doxin/glutaredoxin fold [3]. Grx1 exists widely in the mitochondrial inner membrane space,
nucleus, and cytoplasm, and plays a role in oxidative stress and redox homeostasis [1,5].
It has been implicated in the regulation of many cellular processes including apoptosis,
oxidation, and inflammation, and is related closely to aging and the pathogenesis of di-
abetes and cardiovascular diseases caused by oxidative stress in humans [6]. Grx1 can
play the regulatory roles through both its enzymatic redox activity and protein–protein
interactions with specific proteins, such as Ask1, Ras, Fas, and procaspase-3, which are
involved in the apoptosis signal transduction pathway [7]. It has been proved by a growing
body of evidence that there is potential clinical and therapeutic application of Grx1 in
atherosclerosis, and neurodegenerative disease, and aging-related diseases [8].

In insects, several studies were focused on the identification and classification of Grxs,
and few studies investigated the role of Grxs in oxidative stress induced by exposure to
biotic and abiotic factors. In order to identify the major components of the antioxidant
system in Apis mellifera, three members of Grxs, Grx1, Grx2 and Grx-like-1 were identified by
using genome sequence and comparative analysis [9]. In A. cerana cerana, two glutaredoxin
genes, AccGrx1 and AccGrx2, were identified and then investigated for their response
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to abiotic environmental stress such as temperature, H2O2, and pesticides [10]. This
study demonstrated that AccGrx1 and AccGrx2 play important roles in antioxidant defense
when A. cerana cerana is subjected to oxidative stress [10]. Until now, four genes HaGrx,
HaGrx3, HaGrx5, and HaGdccr were identified in Helicoverpa armigera and their role in
protecting insects against oxidative stress induced by temperature and H2O2 treatments
were confirmed successively [11,12]. In Ostrinia furnacalis, adverse environments (including
starvation, ultraviolet light, mechanical injury, Escherichia coli exposure, and high and low
temperatures) dramatically induced the transcript expression of OfurGRXGRX2 [13]. These
results confirmed that Grxs play important roles in antioxidant defense in insects, as well
as highlighted the need and importance for further indepth research in the physiological
function of the insect Grxs.

Camptothecin (CPT), an indole alkaloid isolated from Camptotheca acuminate De-
caisnean, showed significant biological activities against several insect pests including
Brevicoryne brassicae, Empoasca vitis, Nilaparvata lugens, Chilo suppressalis, and Heliothis virescens,
which suggested its potential use as a pesticide in the field [14,15]. CPT strongly inhibits
the growth, development, and reproduction of S. exigua Hübner larvae [14]. Moreover, it
can induce cytotoxic effects against IOZCAS-Spex-II cells derived from S. exigua by promot-
ing the increase of intracellular oxidative stress due to the accumulation of intracellular
ROS [16,17]. In our previous study, the full-length cDNA of SeGrx1 was cloned (GenBank
accession no.: MK318813) and expressed successfully in vitro, and its enzymatic kinetic
parameters were obtained, which provided a foundation for further exploring the biological
function of SeGrx1 [18]. In this study, we conducted RNA interference (RNAi) experiments
to investigate the role of SeGrx1 on the cytotoxicity and insecticide susceptibility of CPT in
S. exigua.

2. Materials and Methods
2.1. Cell Lines and Insects

The IOZCAS-Spex-II cells used in this present study were cultured in Grace’s insect
culture medium (Invitrogen Life Technologies, New York, NY, USA) supplemented with
10% fetal bovine serum (Invitrogen Life Technologies, New York, NY, USA) in T25 cm2

tissue culture flasks (Corning, New York, NY, USA) at 27 ◦C, and were acquired from the
Institute of Zoology, Chinese Academy of Sciences (Beijing, China) [13]. The third-instar
larvae of S. exigua laboratory strain were obtained from Dr. Cui at the Institute of Plant
Protection Chinese Academy of Agricultural Sciences.

2.2. Total RNA Extraction and cDNA Synthesis

Total RNA was extracted from the IOZCAS-Spex-II cells on logarithmic phase using
RNasy Mini Kit (QIAGEN, Duesseldorf, Germany) following the manufacturer’s protocol,
and the quantity and quality of RNA were assessed by using Infinite M200 Pro NanoQuant
(Tecan Trading, Männedorf, Switzerland) and agarose gel electrophoresis. According to
the manufacturer’s protocol, 1 µg total RNA was used to synthesize the first-strand cDNA
with an EasyScript cDNA Synthesis Supermix Kit (Transgen, Beijing, China).

2.3. Double-Stranded RNA (dsRNA) Synthesis

Primers for dsRNA synthesis corresponding to SeGrx1 and SeGFP were designed
using the Primer-BLAST online tool (http://www.ncbi.nlm.nih.gov/tools/primer-blast/
(accessed on 22 November 2018), Table 1) and then synthesized by BGI genomics Co., Ltd.
(Beijing, China). The synthesis and purification of dsSeGrx1 and dsSeGFP were performed
according to the instructions of the T7 RiboMAXTM Express RNAi System kit (Promega,
Madison, WI, USA), after which the quantity and quality of dsRNA were analyzed by
Infinite M200 PRO (Tecan, Männedorf, Switzerland) and 1.5% agarose gel electrophoresis,
respectively [19,20].

http://www.ncbi.nlm.nih.gov/tools/primer-blast/
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Table 1. Primers used for dsRNA synthesis and RT-qPCR.

Purpose Name Sequences (5′-3′) Size (bp)

dsRNA syntheses

dsSeGrx1 F TAATACGACTCACTATAGGGAGAGGGCTCTCTGGCAAGCAAAA
198dsSeGrx1 R TAATACGACTCACTATAGGGAGAGTCGCGCTCATCCAGTTCAT

dsGFP F TAATACGACTCACTATAGGGAAGTTCAGCGTGTCC
520dsGFP R TAATACGACTCACTATAGGGACTTCTCGTTGGGGTC

RT-qPCR

SeGrx1 F GCGATTCAAGAAAACCTGGCT
130SeGrx1 R AGCATGGGCTCTAGTTTGCC

α-Tubulin F GGAAGGAGAGTTCTCCGAGG
152

α-Tubulin R GGGGAATGTATTACGGTGCG
GAPDH F GAAAACACCGGTGGACTCAA

134GAPDH R GGCACCGTTGATATGCAAGA

Note: The underlined sequence added at the 5′end of the primer is the T7 promoter sequence.

2.4. Effect of RNAi on the Cytotoxicity of CPT
2.4.1. Cell Transfection with dsSeGrx1

For cell transfection [21], the normal cells on logarithmic phase were harvested at
a density of 105 cells/mL, which were incubated overnight in 6-well transparent plates
(1800 µL/well) without fetal bovine serum and antibiotics. The transfection of 10 µg
dsSeGrx1 and dsGFP was conducted using Lipofectamine® 2000 (Thermo Fisher Scientific,
Waltham, MA, USA) according to the manufacturer’s instructions, respectively. Each RNAi
treatment was replicated at least three times. The transfection efficiency was detected
by RT-qPCR.

2.4.2. CPT Exposure

An amount of 10 µM CPT was added into each group after the cells were treated with
dsGFP or dsSeGrx1, respectively. Cells treated with 0.1% DMSO were conducted as the
control group [13]. Subsequently, cells of different treatment were collected at 2, 4, 6, 12,
24, and 48 h for the following morphological observation immediately or stored at −80 ◦C.
The morphological changes of IOZCAS-Spex-II cell were recorded by an inverted phase
contrast microscope (IX53, Olympus, Japan).

2.4.3. Cell Viability Assay

The proliferative activity of cells was detected with a Cell Titer 96 Aqueous One
Solution Cell Proliferation Assay Kit (Promega, Madison, WI, USA). According to the
manufacturer’s instruction, IOZCAS-Spex-II cells were collected at the certain time in
96-well plates (170 µL/well) at a density of 1.00 × 105 cells/ mL. An amount of 30 µL
CellTiter 96®AQueous One solution was added to each well and then incubated for 2 h
at 27 ◦C. The formazan product was measured at 490 nm using an Infinite M200 PRO
microplate reader (Tecan, Männedorf, Switzerland) [13].

2.5. CPT Sensitivity against S. exigua after RNAi
2.5.1. dsRNA Injection

The method of injection was used to introduce dsRNA into the third-instar larvae
of S. exigua with a nanoliter injector (WPI, Beijing, China). A total of 2.5 µL dsSeGrx1,
dsGFP or diethylpyrocarbonate (DEPC)-treated water was injected into the third-instar
larvae. Each treatment was replicated three times, and for each replication, 20 larvae were
injected [22]. RNA was extracted after 24 h to check the efficiency of RNAi by RT-qPCR.

2.5.2. Bioassays

The third-instar larvae of S. exigua were subjected to bioassays after 24 h postinjection
by using leaf-dipping method [23]. Briefly, the cabbage leaf discs (7 cm diameter) were cut
and dipped in 3.48 mg/L CPT distilled water solutions containing 0.1% DMSO for 30 s
and then air dried for 1 h at room temperature. Leaf discs were placed in petri dish (9 cm
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diameter) and a total of 20 third-instar larvae were introduced into each dish. The control
group larvae were fed with leaf discs treated with 0.1% DMSO. Each group was replicated
three times. All bioassays were conducted at 25 ± 1 ◦C, 50–60% RH and under a 16:8 h
(light/dark) photoperiod. The mortalities were recorded at 96 and 120 h, and the leaf discs
were replaced every day during the bioassays. Additionally, weights of the survivors were
measured at 120 h.

2.6. Gene Expression with RT-qPCR

Primers used for the RT-qPCR analysis were designed with Primer Premier 6.0 and
synthesized by BGI genomics Co., Ltd. (Beijing, China) (Table 1). Real-time PCR was
conducted using a QuanStudio 3 ABI system (Thermo Fisher Scientific, Waltham, MA, USA)
with the TransStart Top Green qPCR SuperMix kit (Transgen, Beijing, China). According to
the manufacturer’s instructions, a total volume of 20 µL reaction mixture containing 1 µL of
cDNA template, 1 µL of each primer, 10 µL of 2 × TransStart® Top Green qPCR SuperMix,
and 7.0 µL of distilled ddH2O. The RT-qPCR conditions were 30 s at 94 ◦C, followed by
40 cycles at 94 ◦C for 30 s, and then annealing at 72 ◦C for 30 s. The relative expression
was calculated with α-tubulin and GADPH as reference genes according to the methods
developed by Vandesompele et al. [24].

2.7. Statistical Analysis

All results were confirmed in at least three independent experiments. Data are pre-
sented as mean ± standard error. The SPSS 26.0 Software Package (SPSS Inc., Chicago, IL,
USA) was used to perform statistical analyses. Independent samples t-test and one-way
ANOVA followed by the Duncan’s multiple range test were performed. Means with the
different letters are significantly different at p < 0.05.

3. Results and Discussion
3.1. RNAi Targeting SeGrx1 Increased the Cytotoxicity of CPT in IOZCAS-Spex-II Cells

The effect of dsRNA on the mRNA level of SeGrx1 expression change in IOZCAS-
Spex-II cells after transfection with dsSeGrx1 was detected using RT-qPCR. The expression
level of SeGrx1 in the treatment group decreased 6.33, 56.0, 98.3, and 74.7% compared to
the control group transfected with Lipofectamine 2000 Reagent, respectively. Moreover,
the relative expression levels of SeGrx1 were changed from 0.99 to 1.20 compared to the
control group. This result suggests that transfection of specific dsSeGrx1 is an effective way
to silence the expression of SeGrx1 in IOZCAS-Spex-II cells (Figure 1). Therefore, the CPT
was added into the cells transfected with dsSeGrx1 or dsGPF for 24 h to ensure the RNAi
efficiency. As shown in Figure 2, there was no significant difference in cell morphologies
between cells treated with 0.1% DMSO and disrupted with dsGFP. The cell treated with
dsSeGrx1 showed some certain morphological changes with apoptotic bodies at 24 and
48 h [13]. In contrast, the cells treated with CPT and dsSeGrx1 + CPT showed typical
characteristics of apoptosis in their morphological changes, such as cell shrinkage, gap
generation, membrane blebbing, and apoptotic bodies. The inhibition rate of cell viability
induced by dsGFP fluctuated between 1.69% and 17.8% (Figure 3). The efficacy of dsSeGrx1
on the cell viability increased gradually with time and reached to 29.6% at 48 h. Consistent
with previous reports, CPT showed cytotoxic effects to IOZCAS-Spex-II cells in a time-
dependent manner with the inhibition rate increasing from 4.64% at 2 h to 48.1% at 48 h
(Figure 3). It was noteworthy that the inhibition of cell viability is heightened significantly
by the disruption of SeGrx1 together with the treatment of 10 µM CPT in IOZCAS-Spex-II
cells at 6, 12, 24, and 48 h (Figure 3). These results suggest that SeGrx1 may function to
protect IOZCAS-Spex-II cells from CPT-induced apoptosis, which confirms previous reports
that SeGrx1 plays important roles in antioxidant defense in insects [16,25]. In our previous
studies, a significant increase in the level of intracellular ROS was observed, accompanied
by markedly increased DNA damage, lipid peroxidation, and protein carbonylation after
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exposure to CPT in IOZCAS-Spex-II cells [16]. It could be proposed that oxidative stress is
more intense in SeGrx1-silenced IOZCAS-Spex-II cells.
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Previous studies demonstrated that Grx1 is highly sensitive to oxidants and specifi-
cally catalyzes the reduction of specific target proteins, which have important functions
of cell protection and antioxidation [6,7,26]. In A. cerana cerana, it has been showed that
AccGrx1 may play critical roles in antioxidant defense against lower temperature (4 ◦C),
H2O2, HgCl2, and pesticide cyhalothrin and phoxime treatments [10]. Our previous
studies showed that CPT treatment can induce the overproduction of ROS accompanied
by markedly increased DNA damage, lipid peroxidation, and protein carbonylation in
IOZCAS-Spex-II cells [16]. These results indicated that oxidative stress induced by CPT
played an essential role in the toxicity and mode of action of CPT at the cellular level. In
this study, the cytotoxicity of CPT was heightened significantly by the disruption of SeGrx1
together with the treatment of 10 µM CPT in IOZCAS-Spex-II cells. These results suggest
that SeGrx1 may function to protect IOZCAS-Spex-II cells from CPT-induced oxidative
stress, which confirms previous reports that Grx1 plays important roles in antioxidant
defense in insects [26]. A similar result was reported that the levels of ROS are controlled
by the activities of Grx2 in mitochondria, which can help to modulate the susceptibility of a
cell to apoptosis [27]. Prior studies have noted the importance of Grx2 in mitochondrial
redox status, when Grx2 knock-down resulted in increasing the sensitivity to cell death
induced by doxorubicin/adriamycin and phenylarsin [28]. Taken with the above studies,
Grxs as the major antioxidant enzyme families were involved in regulating cellular redox
homeostasis and in defense of enhanced oxidative stress induced by adverse factors includ-
ing temperatures, ultraviolet light, pesticides, and so on. In this study, we confirmed that
SeGrx1 is involved in the defense of CPT-induced oxidative stress in IOZCAS-Spex-II cells.
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Figure 2. Morphology observation of IOZCAS-Spex-II cells treated with dsGFP, dsSeGrx1, 10 µM
CPT, and deSeGrx1 + 10 µM CPT. 0.1% DMSO was used as a control. The scale bar is 50 µm.
The morphological changes of IOZCAS-Spex-II cell were recorded by an inverted phase contrast
microscope with 400×magnification (IX53, Olympus, Tokyo, Japan).
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3.2. RNAi Targeting SeGrx1 Increased the Sensitivity of CPT against S. exigua

The RT-qPCR results showed that the expression levels of SeGrx1 were significantly
downregulated at 24 h after silencing with 1.50, 3.00, and 6.00 µg/larvae dsSeGrx1, re-
spectively (Figure 4). The highest RNAi efficiency was 72.1% at the concentration of
1.5 µg/larvae dsSeGrx1. This result suggested that RNAi of specific dsSeGrx1 is also an
effective way to silence the expression of SeGrx1 in the larvae of S. exigua. Furthermore, the
bioassays test was conducted to examine the effect of RNAi on the survival and weight of
CPT-treated S. exigua larvae. The cumulative mortality of S. exigua larvae was 6.32, 32.6,
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50.6, and 72.9% in the dsGFP, dsSeGrx1, CPT, and dsSeGrx1 + CPT group, respectively
(Figure 5) The results showed that after knocking down the SeGrx1 for 24 h, the mortality
was significantly increased compared to the CPT-alone treatment group at 96 h, which
suggested that RNAi targeting SeGrx1 increased the sensitivity of CPT against S. exigua. In
addition, the weight of the survivors was measured (Figure 5). Interestingly, the weight
of the surviving larvae treated with dsSeGrx1 alone was increased significantly. However,
after feeding with leaves treated with CPT, the weight of the S. exigua larvae decreased
compared to that treated with CPT alone, although there was no significant difference
(p > 0.05) (Figure 6). These observations are consistent with previous findings in other
insects, including Spodoptera frugiperda [29,30]. CPT diets induced weight loss of the larvae
of S. frugiperda and the molecular basis for the impact of CPT on S. frugiperda was explored
by comparative transcriptomic analyses among midgut samples. Our results suggested
that the inhibition effect on the growth of CPT can be increased by the knocking down of
SeGrx1, which showed that CPT as an insecticide may be used with other insecticides for
enhanced efficiency in controlling important insect pests in the field. In Homo sapiens, Grxs
have been implicated in various physiological and pathological conditions, from immune
defense to neurodegeneration and cancer development, which makes Grxs a possible drug
target [8,31]. The RNAi-mediated gene knockdown has shown promising results in dif-
ferent insect groups, pointing it to be the upcoming technique for insect control [32–36].
According to the reports of Yoon [37], the inhibitor of apoptosis (IAP) protein, a negative
regulator of apoptosis in insects, provides opportunities for developing targets for RNAi-
based insect pest control. In this study, RNAi targeting SeGrx1 increased the sensitivity
of CPT against S. exigua. According to the reports of Liu et al. (2021), after GmGrx is si-
lenced by RNAi, the percentage of larval survival to emamectin benzoate was significantly
decreased, demonstrating that GmGrx contributes to the defense of oxidative damage
induced by emamectin benzoate in Grapholita molesta (Busck) [38]. These results provided
insights for an innovative strategy in insect control of RNAi technology with the silencing
of Grxs combined with pesticides.
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Figure 5. Mortality of S. exigua larvae treated by dsRNA and/or CPT at 96 h and 120 h. Values are
shown as mean± SEM. Data followed by the same lowercase letters among different treatments at
the same time indicate no significant difference at 0.05 level.
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In conclusion, our results confirmed that SeGrx1 played an important role in defending
against the oxidative stress induced by CPT in S. exigua, and the sensitivity of larvae to
CPT was increased by the silencing of SeGrx1. It could be proposed that oxidative stress
is more intense in insects. These results provide a strategy in insect pest control of RNAi
technology combined with pesticides.
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