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Abstract: The core of saline-alkali land improvement is planting suitable plants. Planting rice in
saline-alkali land can not only effectively improve saline-alkali soil, but also increase grain yield.
However, traditional identification methods for saline-alkali-tolerant rice varieties require tedious
and time-consuming field investigations based on growth indicators by rice breeders. In this study,
the visualization method of Python data processing was used to analyze the Raman spectroscopy of
japonica rice in order to study a simple and efficient identification method of saline-alkali-tolerant
japonica rice varieties. Three saline-alkali-tolerant japonica varieties and three saline-alkali-sensitive
japonica varieties were collected from control and saline-alkali-treated fields, respectively, and the
Raman spectra of 432 samples were obtained. The data preprocessing stage used filtering-difference
method to process Raman spectral data to complete interference reduction and crests extraction. In
the feature selection stage, scipy.signal.find_peaks (SSFP), SelectKBest (SKB) and recursive feature
elimination (RFE) were used for machine feature selection of spectral data. According to the feature
dimension obtained by machine feature selection, dataset partitioning by K-fold CV, the typical linear
logistic regression (LR) and typical nonlinear support vector machine (SVM) models were established
for classification. Experimental results showed that the typical nonlinear SVM identification model
based on both RFE machine feature selection and six-fold CV dataset partitioning had the best
identification rate, which was 94%. Therefore, the SVM classification model proposed in this study
could provide help in the intelligent identification of saline-alkali-tolerant japonica rice varieties.

Keywords: japonica rice; saline-alkali-tolerant; Raman spectroscopy; Python visual; RFE; typical
nonlinear; SVM

1. Introduction

Northeast China is the typical concentrated distribution area of soda saline-alkali
land, with an area of 7.65 million hm2 and an annual growth rate of 1.4% [1]. Soil saline-
alkali barrier and salinization are two of the main limiting factors of current agricultural
production, and the improvement and utilization of saline-alkali land is of great significance
in increasing reserve resources of cultivated land and improving ecological environment [2].
Rice is a moderately saline-alkali-tolerant plant that can accelerate the desalination of saline-
alkali soil and the accumulation of organic matter and realize the improved utilization of
saline-alkali land by taking advantage of its unique advantages of saline-alkali tolerance
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and aquatic irrigation [3,4]. Therefore, researchers regard the identification of saline-alkali-
tolerant rice varieties as an important task.

At present, there are two main methods for identification of saline-alkali-tolerant
rice varieties, including traditional phenotypic index method and molecular QTL labeling
method. Some Chinese researchers carried out field tests to screen saline-alkali-tolerant
rice varieties according to rice yield indexes [5–8], and some researchers in other countries
also used the phenotypic index data of rice to conduct statistical analysis to screen saline-
alkali-tolerant rice varieties [9–11]. The source of field investigation and phenotype data
mainly depended on the experience of breeders. The data collection process was not
only cumbersome and time-consuming, but also difficult to unify and standardize. Many
researchers used molecular QTL markers to analyze rice saline-alkali tolerance based
on phenotypic indicators of rice cultivation [11–14]. It was a complex process to use
molecular QTL markers to locate saline-alkali-tolerant rice varieties; the high cost of gene
detection limits the development of large-scale molecular detection. With the development
of science and technology, the design and construction of a simple, accurate, and intelligent
identification method for saline-alkali-tolerant of rice is of great significance for improving
saline-alkali land.

Raman spectroscopy technology can provide rapid, simple, repeatable, and non-
destructive qualitative and quantitative analysis without sample preparation, which can
be directly measured by laser [15]. Raman spectroscopy qualitative analysis method in-
cludes linear and nonlinear calibration methods. Python is a computer programming
language with strong operability, easy-to-use, and full-featured tools, which is widely
used in data analysis [16]. Among them, logistic regression (LR) is a typical linear cali-
bration method [17] and support vector machine (SVM) is a typical nonlinear calibration
method [18]. Therefore, LR and SVM methods in Python were selected in this paper for
qualitative analysis of Raman spectral data. However, when applying LR and SVM for
modeling of spectral data, because the interference of instrument noise, stray light, fluo-
rescence background, and the dimension of original spectral data are too high, this will
lead to the problem of long model running time and affect the model accuracy. Some
researchers [19,20] used the static tools Matplotlib and Seaborn in the Python visualization
library to visualize data from different neighborhoods and analyze the results of the visu-
alization. Matplotlib is one of the most popular data visualization libraries in Python. It
can support 2D and 3D diagrams, and is an important tool for data analysis and visual-
ization. Seaborn is based on Matplotlib for a higher level of API encapsulation, and the
drawing interface is more integrated, which makes drawing easier [21]. Therefore, this
experiment was based on the visual features of Python data processing, and the spectral
data were subjected to interference reduction and dimensionality reduction processing
before establishing a recognition model.

At present, the application of Raman spectroscopy combined with Python visual in
the identification of saline-alkali-tolerant Japonica rice varieties has not been reported. In
this study, Raman spectrometer was used to obtain molecular information of japonica rice
varieties, and Python data analysis and visualization method (reduce interference, extract
crest, reduced feature dimension, dataset partitioning, and classification model) was used
to identify saline-alkali-tolerant japonica rice varieties, trying to establish a fast, convenient,
economic, and accurate classification model of saline-alkali-tolerant japonica rice varieties.

2. Materials and Methods
2.1. Sample Preparation

The test materials were collected from the rice breeding experimental field of Qiqihar
Branch of Heilongjiang Academy of Agricultural Sciences in September 2021. A total of
6 japonica rice varieties were tested, including 3 saline-alkali-tolerant varieties and 3 saline-
alkali-sensitive varieties, respectively, which were planted in non-saline-alkali soil (control
field) and saline-alkali soil (saline-alkali stress field) [22–24]. Samples collected from control
fields were called control samples, and those collected from salt-alkali stress fields were
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called treated samples [25,26]. Twelve holes were taken from each japonica rice variety in
control field and salt-alkali stress field, for a total of 144 holes.

As shown in Table 1, the 144 holes materials obtained from the experimental field were
placed in the laboratory at 25 ◦C for 15 days drying. Three ears of grain were taken from
different positions in each hole, with 10 grains per ear of grain. The Shanghai Superstar
LJJM milled rice machine was used for one-time shelling of 50 s, and 36 seeds with complete
appearance after shelling were selected from each variety in each field as samples. A total
of 432 samples were obtained from 6 varieties in the two experimental fields.

Table 1. Variety and quantity of test samples (1: saline-alkali-tolerant, 0: saline-alkali-sensitive,
CS: control sample, TS: treated sample).

Number of
Varieties Sample Variety of

Sample
Number

of CS
Number

of TS Total

1 QJ10 1 36 36 72
2 BD6 1 36 36 72
3 DF132 1 36 36 72
4 LJ12 0 36 36 72
5 KD42 0 36 36 72
6 LD107 0 36 36 72

2.2. Obtaining Spectral Information

The sample image information was obtained using Advantage 532 Raman spectrome-
ter (excitation power was less than 5 mW, the resolution was 1.4 cm−1, the measurement
range was 200~3400 cm−1 and the scanning was four times) combined with Pro Scope HR
software (Table 2), and saved in PRN format, from 1–2 November 2021, at room tempera-
ture of 25 ◦C. Each sample obtained 3201 Raman spectral information; four hundred and
thirty-two samples obtained a total of 1,382,832 Raman spectral information.

Table 2. Pro Scope HR set parameters for obtaining sample image information.

Laser Power Integration
Time

Number of
Spectrum Display Save

Spectrum Resolution

High 4 3 Average ASCII Low

2.3. Reduce Interference and Extract Crest

Extracting the original data from the database, as shown in Figure 1, four hundred
and thirty-two spectral pieces of information were interlaced in disorder and difficult
to distinguish. Due to the interference of instrument noise, stray light, and fluorescence
background, the data accuracy was affected when collecting spectral data. Therefore, it is
necessary to deal with the disturbance reduction of the original Raman spectral data.

According to the effective Raman shift of Raman spectrum 200–3400 cm−1, the filtering
method was used for data noise reduction and impurity removal. Constructing the filter
using signal.butter, the parameter settings is as follows (1).

b, a = scipy.signal.butter(N, Wn) (1)

Note: a is the denominator coefficient vector of the filter, b is the numerator coefficient
vector of the filter. N is the order of the filter, Wn is the critical frequency or frequencies.

In this test, the N parameter was 2 (one-step forward and one-step backward filtering
to avoid phase difference) and Wn parameter was 0.002. Compared with the original data
curve (Figure 2), the filtered curve was obviously smooth. The filtering method not only
filtered out various interference information of original spectral data, but also filtered
out useful spectral crest information. Therefore, it is essential to extract spectral crest
information. The difference method was used to extract spectral crest information, and the
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intensity of wave peak can be extracted by subtracting the spectral intensity after filtering
from the original data of the same sample, as shown in Formula (2):

y∗∗n = yn − y∗n (1 ≤ n ≤ 3201) (2)

Note: y is the wave intensity of original data, y* is the wave intensity after filtering, and y**
is the wave intensity after filtering difference.
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line is filtering curve.

As shown in Figure 3, the full Raman shift of the Raman spectrum is clearly visible,
each japonica rice variety shows 12 significant crest points and many nonsignificant crest
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points. Combined with crest extraction and rice Raman characteristics and their attribu-
tion [27,28], effective Raman shift of 200–1800 cm−1 and 2800–3200 cm−1 were selected.
Seven effective crests at 480 cm−1, 865 cm−1, 941 cm−1, 1129 cm−1, 1339 cm−1, 1461 cm−1,
and 2910 cm−1 were extracted, and each japonica rice variety had different peak intensities
near the same Raman shift. Seven effective crests were extracted by filtering difference
method, which laid a foundation for the next crest feature extraction.
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Figure 3. The peak crest of Raman spectrum was extracted by filtering difference.

2.4. Reduced Feature Dimension
2.4.1. Dimension Reduction by Scipy.Signal.Find_Peaks (SSFP)

Seven effective crests were selected based on the filtering difference method and the fin-
gerprint identification information of rice Raman spectrum. The machine learning function
of scipy.signal.find_peaks (SSFP) [29] in Python was used to automatically detect the char-
acteristic information of crest. To further understand the information about crests, using the
peak_prominences function, peak_widths function, width_height function (width_height),
and peak_dif function, we calculated the prominence, width, height of width, and offset
of each crest that passed the filtering difference. Four kinds of characteristic pieces of
information of crests were detected, as shown in Figure 4.
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2.4.2. Dimension Reduction by SelectKBest (SKB)

SKB is one of the methods for automatically selecting feature variables in sklearn,
which is famous for its large variable feature selection tool. The working principle of SKB
is to use a certain parameter to score certain features and select the best k most powerful
feature information. The SKB method in this test selects mutual_info_regression (MIR)
parameters and uses MIR algorithm [30] to score the 28-dimensional feature information
without dimensionality reduction, as shown in formula and parameter settings (3):

I(X; Y) ∑
x∈X

∑
y∈Y

p(x, y)log p(x,y)
p(x)p(y)

selector = SelectKBest(mutual_in f o_regression, k = 10)
(3)

Note: MIR algorithm is used to evaluate the correlation between category-independent
variables and category-dependent variables.

2.4.3. Dimension Reduction by Recursive Feature Elimination (RFE)

The main idea of RFE is to repeatedly construct the features of the model [31], eliminate
the redundancy between features, select the optimal feature combination, and reduce the
feature dimension. Firstly, the original 28 features as the initial feature subset were input
into the RFC classifier [32], the importance of each feature was calculated, and the classi-
fication accuracy of the initial feature subset 1 was obtained by cross-validation method.
Second, from the current feature subset, characteristic features of lowest importance were
removed, obtaining a new feature subset 2, which was input to the RFC model [33]. Again,
the classification accuracy of the initial feature subset 2 was obtained, and recursive was re-
peated from the RFC classifier to the features of importance to the cross-validation method
to obtain a new subset classification accuracy method, until the feature subset was empty.
Finally, a total of K feature subsets with different feature numbers were obtained, and the
feature subset with the highest classification accuracy was selected as the optimal feature
combination. Therefore, this is a greedy algorithm to search for the optimal feature subset,
as shown in parameter settings (4).

r f e_select = RFE(estimator = RandomForestClassi f ier( ), step = 1) (4)

2.4.4. Dataset Partitioning by K-Fold Cross-Validation (K-Fold CV)

Figure 5 showed the distribution of the 432-sample dataset based on three important
features. Except for the wave crest at 941 cm−1, the sample distribution of the other six
crests was obviously a linear non-separable datas.

The implementation of the K-fold CV algorithm is to divide the dataset into K equal
sample subsets, and then traverse the K subsets in turn. The i (i = 1, 2, . . . , K) traverse will
take the i subset as the test set, and all the other subsets as the training set for the training
and evaluation of the model. Finally, the average value of K evaluation indexes is taken
as the final evaluation index. The larger the K value is, the larger the training set used by
the training model is, the less susceptible to noise, and the better the performance of the
model is [34–36]. In view of the fact that each japonica rice variety sample in this study was
72, the dataset was divided into six-fold CV method, and the parameter settings were as
follows (5).

k f = KFold(n_splists = 6) (5)
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of saline-alkali-tolerant japonica rice varieties from control and treated fields, blue circles represent
samples of saline-alkali-sensitive japonica rice varieties from control and treated fields.

2.5. Identification Models Evaluate Feature Selection Methods
2.5.1. Typical Linear LR Identification Model

LR is a classification model in machine learning of a classification algorithm. Although
the name has regression, it has a certain connection with regression. Due to the simplicity
and efficiency of the algorithm, it is widely used in practice [37,38]. LR’s input function is
the result of a linear regression, as shown in Formula (6):

h(w) = w1x1 + w2x2 + w3x3 . . . + b (6)

Input the result of a linear regression into the sigmoid function, as shown in Formula (7):

Sigmoid Function : g
(

θTx
)
=

1
1 + e−θT x

(7)

The sigmoid function output results are in the interval of [0, 1], in which the default
machine threshold is a 0.5 function.

2.5.2. Typical Nonlinear SVM Identification Model

In the case of linear inseparability, SVM uses nonlinear mapping algorithm to trans-
form the low-dimensional input space linearly inseparable samples into high-dimensional



Agriculture 2022, 12, 1048 8 of 14

feature space to make them linearly separable, thus making it possible to use linear al-
gorithm in high-dimensional feature space to perform linear analysis on the nonlinear
features of samples [39]. The solution is to map them to a higher dimensional space, but
the difficulty of this approach is the increase of computational complexity, and the kernel
function neatly solves this problem. Therefore, the kernel function is the key to the SVM
model. The kernel list parameter of the SVM model is rbf, and radial basis function kernel
(RBF) is suitable for the linear non-fractional dataset, as shown in formula and parameter
settings (8):

RBF : exp
(
− 1

2σ2 ||X− Xi||2
)

kernel =′ rb f ′, random_state = 1, max_iter = −1, tol = 1e− 4
(8)

RBF can map the samples to a higher dimensional space and process the sample when
the relationship between class labels and features is nonlinear.

3. Results and Analysis
3.1. Analysis of Characteristic Information Extraction of Crest

Figure 4 shows that the SSFP function was used to extract four characteristic pieces of
information of wave crest (prominence, width, width_height, and peak_dif). The shape
characteristic information of wave crest were prominences and width, and the position
characteristic information of wave crest were width_height and peak_dif. The SSFP auto-
matic detection method extracts four-dimensional feature information for each wave peak,
which could accurately lock the shape, position, and change of each wave peak.

Seven crests were extracted from each sample, and each crest had four-dimensional
characteristic information. Therefore, each sample had 28-dimensional characteristic infor-
mation. Each sample was normalized vertically for prominences, width, and width_height,
while peak_dif was normalized horizontally. The normalized feature information was in
the range [0, 1]. All samples were labeled based on saline-alkali-tolerant japonica variety
marker 1 and saline-alkali-sensitive japonica variety marker 0, and 432 sample datasets
with labeled 28-dimensional characteristic information were obtained.

3.2. Analysis of Selection of Features

Table 3 shows the filtering-difference method combined with crest extraction and rice
Raman characteristics, and their attribution were used to extract seven effective wave peaks.
Four-dimensional characteristic information of each crest was selected by SSFP function;
each sample obtained 28-dimensional characteristic information. If 432 labeled samples
with 28-dimensional feature information are directly brought into the classification model
for machine learning, the large feature information matrix will lead to problems such as
large amount of calculation and long recognition time. Therefore, it is essential to reduce
the dimension of feature information and select the best feature information.

Table 3. Results of 3 feature information selection methods (p is prominences, w is width, wh is
width_height, and pd is peak_dif).

Method
Raman Shift Position for Peak Extraction (Raman Shift/cm−1)

Total
480 865 941 1129 1339 1461 2910

SSFP p\w\wh\pd p\w\wh\pd p\w\wh\pd p\w\wh\pd p\w\wh\pd p\w\wh\pd p\w\wh\pd 28
SKB p\pd p\pd pd pd pd wh p\w 10
RFE w\pd pd p\wh\pd pd p\wh\pd p\w\pd wh 14
Total 8 7 8 6 8 8 7 52

3.2.1. Features Selected by SKB

Through the MIR algorithm in SKB, the 10 most powerful pieces of feature information
were finally selected, as shown in Table 3. The SKB method selected 10-dimensional
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characteristic information of 7 crests. There were three crests of p-characteristic, one
crest of w-characteristic, one crest of wh-characteristic, and five crests of pd-characteristic.
There are two-dimensional characteristic pieces of information at 480 cm−1, 865 cm−1,
and 2910 cm−1, and one-dimensional characteristic information at the other four Raman
shifts. Compared with the SSFP 28-dimensional feature information extraction, the feature
information selection rate of the SKB method was 36%.

3.2.2. Features Selected by RFE

Table 3 shows that the RFE method selected 14-dimensional characteristic information
of seven crests. There were three crests of p-characteristic, two crests of w-characteristic,
three crests of wh-characteristic, and six crests of pd-characteristic. There are pieces of
three-dimensional characteristic information at 941 cm−1, 1339 cm−1, and 1461 cm−1, two-
dimensional characteristic information at 480 cm−1, and one-dimensional characteristic
information at the other three Raman shifts. Compared with the SSFP 28-dimensional
feature information extraction, the feature information selection rate of the RFE method
is 50%.

Two methods of feature information selection were used to reduce the dimension of
feature information extracted from SSFP, which solves the problem of reducing feature ma-
trix and reducing computing time. Whether the method of selecting effective characteristic
information can accurately identify saline-alkali-resistant japonica rice varieties requires
the classification model to evaluate the validity of selecting characteristic information.

3.3. Performance Analysis of Models

Based on one feature information extraction and two feature selection methods, 28 di-
mensions of feature information were extracted by SSFP method, 10 dimensions of feature
information were selected by SKB method, and 14 dimensions by RFE method. The data
of 432 labeled samples of six japonica rice varieties were divided according to six-fold
CV method of the same japonica rice variety, with five subsets as training sets and one
subset as test set, and the sample sets were divided six times in total. Based on six-fold
CV, the results of one feature information extraction and two feature selection methods
were brought into the classification model, respectively, and then confusion matrix [40,41]
was carried out to evaluate the feature information selection methods, so as to seek a fast,
convenient, economic, reliable, and accurate classification model of saline-alkali-resistant
japonica rice varieties.

3.3.1. Performance of Typical Linear LR Classification Model

Based on one feature information extraction by SSFP, and two feature selections by
SKB and RFE method, the average accuracy rate of six-fold CV (Table 4) was 91.44%, 92.13%,
and 91.67%, and the average precision rate of six-fold CV (Table 4) was 90.56%, 91.45%, and
89.36%, respectively. The results showed that there was no significant difference in both
the accuracy and precision rate of the classification models selected with the three kinds of
feature information. Based on the three feature selections, the average accuracy rate was
lower than the average precision rate, respectively; the typical nonlinear properties of the
experimental dataset greatly interfered with the classification performance of the LR model.
Although SKB feature selection method had the lowest number of feature selection (10) and
high accuracy rate (92.13%), the value of the average precision (91.45%) was lower than the
value of the average accuracy (92.13%), which could lead to the decrease of model stability
and model generalization ability.
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Table 4. Confusion matrix comparison of datasets of LR classification models based on three feature
selection methods. TN: true negatives are the number of predictions where a sample of a 0 is correctly
classified (as 0); FP: false positives are the number of predictions where a sample of a 0 is incorrectly
classified as a 1; FN: false negatives are the number of predictions where a sample of a 1 is incorrectly
classified as a 0; TP: true positives are the number of predictions where a sample of a 1 is correctly
classified (as a 1).

Feature
Selection

Test Dataset LR Classification Model

Test Data Subset TN (0,0) FP (0,1) FN (1,0) TP (1,1) Accuracy (%) Precision (%)

SSFP

1 32 4 2 34 0.9167 0.8947
2 32 4 3 33 0.9028 0.8919
3 33 3 4 32 0.9028 0.9143
4 34 2 2 34 0.9444 0.9444
5 30 6 4 32 0.8611 0.8421
6 34 2 1 35 0.9583 0.9459

The average 0.9144 0.9056

SKB

1 33 3 1 35 0.9444 0.9211
2 31 5 2 34 0.9028 0.8718
3 32 4 3 33 0.9028 0.8919
4 34 2 4 32 0.9167 0.9412
5 31 5 5 31 0.8611 0.8611
6 36 0 0 36 1 1

The average 0.9213 0.9145

RFE

1 33 3 3 33 0.9167 0.9167
2 31 5 1 35 0.9167 0.8750
3 30 6 2 34 0.8889 0.8500
4 33 3 0 36 0.9583 0.9231
5 29 7 3 33 0.8611 0.8250
6 35 1 2 34 0.9583 0.9714

The average 0.9167 0.8935

3.3.2. Performance of Typical Nonlinear SVM Classification Model

Based on one feature information extraction by SSFP, and two feature selections by
SKB and RFE method, the average accuracy rate of six-fold CV (Table 5) was 93.27%,
93.06%, and 93.98%, and the average precision rate of six-fold CV was 93.53%, 93.84%, and
95.66%, respectively. The results showed that there was no significant difference in both
the accuracy and precision rate of the classification models selected with the three kinds
of feature information. Based on the three feature selection, the average accuracy rate of
the typical nonlinear SVM classification model was higher than that of the typical linear
LR classification model, respectively, and the average accuracy rate was higher than the
average precision rate, respectively; the SVM classification model is obviously suitable for
the linear non-fractional dataset. The RFE feature selection method had the highest average
accuracy rate, and the average precision rate was higher than the average accuracy rate,
which could make the model more stable with stronger generalization ability.

Table 5. Confusion matrix comparison of datasets of SVM classification models based on three feature
selection methods.

Feature Selection
Test Dataset SVM Classification Model

Test Data Subset TN (0,0) FP (0,1) FN (1,0) TP (1,1) Accuracy (%) Precision (%)

SSFP

1 34 2 2 34 0.9444 0.9444
2 34 2 4 32 0.9167 0.9412
3 30 6 5 31 0.8472 0.8378
4 35 1 0 36 0.9861 0.9730
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Table 5. Cont.

Feature Selection
Test Dataset SVM Classification Model

Test Data Subset TN (0,0) FP (0,1) FN (1,0) TP (1,1) Accuracy (%) Precision (%)

5 35 1 3 32 0.9437 0.9697
6 34 2 1 35 0.9583 0.9459

The average 0.9327 0.9353

SKB

1 33 3 3 33 0.9167 0.9167
2 34 2 4 32 0.9167 0.9412
3 32 4 6 30 0.8611 0.8824
4 36 0 1 35 0.9861 1
5 34 2 1 35 0.9583 0.9459
6 34 2 2 34 0.9444 0.9444

The average 0.9306 0.9384

RFE

1 35 1 5 31 0.9167 0.9688
2 34 2 3 33 0.9306 0.9429
3 34 2 5 31 0.9028 0.9394
4 35 1 0 36 0.9861 0.9730
5 35 1 2 34 0.9583 0.9714
6 34 2 2 34 0.9444 0.9444

The average 0.9398 0.9566

4. Discussion

The predecessors conducted many studies on rice origin tracing or variety attribute
category, and the test materials included multiple varieties from the same origin and the
same variety from multiple origins [42–44]. The test materials in this study were three
saline-alkali-tolerant varieties and three saline-alkali-sensitive varieties, and 432 samples
were collected from the control field and the saline-alkali-treated field, respectively. Saline-
alkali-tolerant japonica rice variety was labeled as 1 and saline-alkali-sensitive japonica rice
variety was labeled as 0 in the training set and test set. Both 0 and 1 contained samples of
control field and samples of saline-alkali stress field. In view of the diversity of samples in
the training set, it can avoid the underfitting situation that often occurs in machine deep
learning [36,37]. In view of the extensiveness of samples in the test set, this can avoid the
overfitting situation in the future application of the model [45,46]. Therefore, the diversity
and extensiveness of materials selection in this study effectively avoids the fitting situation
of the identification model dataset of saline-alkali-resistant japonica rice varieties.

If 432 labeled samples with 28-dimensional feature information are directly brought
into the classification model for machine learning, the large feature information matrix will
lead to problems such as large amount of calculation and long recognition time [47,48].
The two feature information selection methods in this experiment are machine learning
methods based on Python programming software database to automatically select the best
feature information; compared with the SSFP feature extraction method, SKB and RFE
feature selection methods reduce the dimension of feature information by more than 50%.
Compared with the SSFP feature extraction and SKB feature selection methods, the RFE
feature selection method had the highest recognition rate in SVM classification models
(94%). The results showed that the machine feature information selection method could
effectively reduce the dimension of feature information, reduce the model identification
time, and improve the model classification ability.

LR is a classification model and a typical linear classification method in machine
learning whose input function is the result of a linear regression [20,37,38]. The RBF kernel
function is selected by the SVM model to divide the linear non-separable dataset, which is
good at mapping the linear non-separable dataset to the high-dimensional space to achieve
the division of multidimensional planes [21,46]. In this test, based on the seven crests,
three important features were selected for each wave peak, and the three-dimensional
distribution maps of the seven wave peaks were established, respectively (Figure 5). Except
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for the wave crest at 941 cm−1, the sample distribution of the other six crests was obviously
a linear non-separable dataset. In view of this, the dataset of this experiment was a typical
nonlinear dataset, and only SVM, which is a typical nonlinear classification method, could
be used for accurate identification of saline-alkali-tolerant japonica rice varieties, obtaining
a 94% accuracy rate.

5. Conclusions

A Raman spectrometer can obtain data information of saline-alkali-tolerant japonica
rice varieties, and Python data visualization analysis provides objective and effective
choices for the classification of saline-alkali-tolerant japonica rice varieties. In this research,
we propose a machine learning classification and detection method based on Raman
spectroscopy and Python visual analysis that can be applied to achieve the saline-alkali-
tolerant japonica rice varieties’ identification gained by typical nonlinear SVM model.
In order to make up for the deficiencies brought about by feature selection, two feature
selection methods were selected to improve the identification efficiency. The results of the
test dataset show that the use of the RFE classification was the best, the RFE classification
was better than the SKB, and the accuracy of the RFE classification was nearly 94%.

After using the trained model to predict the unknown samples, the results show that
the RFE–SVM analysis method was the best model and it reached the expected prediction.
In addition, we discovered that the sample dataset of this experiment is typical nonlinear,
which is the same that the previous researchers recognized (SVM is good at mapping
the linear non-separable dataset to the high-dimensional space to achieve the division of
multidimensional planes). The RFE–SVM combination was used to identify saline-alkali-
tolerant japonica rice varieties; the fourth subset of six-fold CV was the best test set, with the
highest accuracy value (0.9861) and the highest precision value (0.9730) at the same time.

Through the development of science and technology, image Raman spectrometer
technology will be used to obtain data information of saline-alkali-tolerant rice varieties.
By providing more experimental data, image recognition and data analysis of Raman
spectroscopy data will be performed in the future through machine deep learning models
suitable for large sample datasets. Combining the image Raman spectroscopy technique
with the machine deep learning model will provide a saline-alkali-tolerant japonica rice
varieties identification model with stronger generalization ability.
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