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Abstract: In order to explore the mechanical characteristics of stubble breaking and provide a
theoretical basis for the design of a stubble breaking and crushing blockage prevention device, an
orthogonal test with three factors (water content, bulk weight, and root content) and a quick shearing
test of remolded soil were carried out in a laboratory. The shear resistance of the rice root–soil
complex was studied and the soil mechanical equation of the rice root–soil composite was established.
It is found that the shear strength of the root–soil composite is related to water content and root
content. When the water content was around 30% and the root content was 1.1%, the cohesion of the
root–soil composite was the smallest. With the decrease or increase of water content and the decrease
or increase of root content, the cohesion of the root–soil composite showed the trend of increasing
layer by layer. When the water content was 40% and the root content was 1.1%, the internal friction
angle of the root–soil composite showed the minimum value. With the decrease of water content and
the increase of root content, the internal friction angle of the root–soil composite gradually showed
an increasing trend; while the root content had a great influence on the internal friction angle, the
influence of water content on it was relatively small. The direct shear and fast shear tests of root–soil
composite samples showed that the shear strength of the root–soil composite and the normal pressure
loaded on it conform to the Coulomb equation. The presence of roots increased the shear strength
and cohesion value of the soil and improved the resistance to deformation of the soil, but had little
influence on the internal friction angle.

Keywords: root–soil complex; root soil mechanics; Coulomb equation; direct shear test; conserva-
tion agriculture

1. Introduction

Conservation tillage technology is widely used in agricultural engineering [1–4]. No-
tillage, less tillage, and straw mulching are adopted to maintain soil moisture, improve soil
structure [5], and slow down land degradation [6–10]. A no-tillage sowing environment for
implementing conservation tillage is different from traditional sowing farmland. Besides
straw and weeds on the surface, there are also a lot of crop stubbles in the soil [11–13].
Therefore, the trencher of the no-tillage planter needs to process this root–soil complex.
The main function of the residue cutting and anti-blocking device is to cut and remove
straw and weeds on the surface, and, at the same time, break and loosen the solid root–soil
complex [14–16]. In order to design more reasonable conservation agriculture equipment,
the mechanical properties of soil need to be studied.

Soil itself is a complex system. In addition, the friction, biting, and adhesion of the
root system distributed underground form a special composite material–root–soil complex.
Burak et al. [17] studied the influence of known root properties on the shear strength of the
root–soil complex. Feng et al. [18] took a root–soil complex composed of arbor roots and
unsaturated red clay as the research object, and studied the influence of soil water content,
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the angle between parallel double roots, and shear surface on shear strength. Meijer [19]
studied a common model framework that quantifies the impact of various model assump-
tions through existing methods; Liu et al. [20] analyzed the micro-structural characteristics
of root surfaces of Caragana and Overlord shrubs, soil surface in contact with the roots,
and soil surface in contact with no roots and their influence on friction characteristics of
the root–soil interface by means of scanning electron microscope. Zheng et al. [21] carried
out shear tests on the rice root–soil complex on a universal material-testing machine with a
self-made shear test device. Meng et al. [22] performed mechanical analysis of soils contain-
ing Golden Vicary Privet roots, and they found that both root geometry and distribution
characteristics affected the shear strength of rooted soils. Hou et al. [23] studied the use of
X-ray-computed tomography (CT) as a non-invasive method to detect root distribution
in soil. They found that X-ray CT was able to reconstruct the core of the soil in three
dimensions to accurately estimate the wide range of soil characteristics, including roots,
and to examine not only spatial but also temporal changes. Fan et al. [24] carried out in-situ
pull-out tests on roots. Their research results showed that the initial pull-out stiffness
decreased with the increase of root length and soil water content. They found that the
increase of soil water content led to a significant decrease in soil–root bonding strength, and
that the soil–root bonding strength decreased with the increase of root length. In addition,
many scientific researchers at home and abroad have carried out a lot of research on this
aspect, revealing the interaction between stubble and soil [25–27], and the mechanism of
action of roots on soil consolidation and slope protection [28–31].

While normally tilled soils are the subject of most studies, the research on the root–soil
complex under conservation tillage is relatively scarce. Only Jiang et al. [32] measured the
mechanical properties of the whole corn stubble and the root–soil complex for the first time
in a two-cropping area over one year in the north. However, little research was conducted
on the characteristics of the root–soil complex in rice stubble fields under the protective
tillage technology in the middle and lower reaches of the Yangtze River.

Therefore, the research object of this paper was the rice root–soil complex in the
middle and lower reaches of the Yangtze River. The shear strength of the rice root–soil
complex was tested, according to the test method of soil mechanics, under the conditions
of different bulk weight, different water content, and different root content. The shear
behavior of rice root–soil complex was studied and the soil mechanical equation of rice
root–soil complex was established. This paper provides necessary mechanical indexes for
the study of the stubble breaking principle, as well as a necessary theoretical basis for the
design of a stubble breaking and crushing blockage prevention device and the research of a
simulation machine.

2. Materials and Methods
2.1. Preparation of Test Samples

The samples used in this experiment were soils from a typical rice–wheat rotation area
in the middle and lower reaches of the Yangtze River. The samples were taken from the
test field of Changsheng Agricultural Machinery Coop, Tuanfeng County, Huanggang City,
Hubei Province, China (30◦43′1′′ N, 114◦54′39′′ E). The location of the study area is shown
in Figure 1. The soil bulk density, firmness, and water content are shown in Table 1. The test
instruments mainly include a strain-controlled direct shearing apparatus, standard screen
(coarse screen, fine screen), an electronic balance (weighing 200 g and 1000 g, accuracy
0.01 g), drying oven, vibrating screen, grinding bowl, ceramic plate, etc.
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reproduced in the laboratory in accordance with specifications [33,34]. When sampling in 
the field, it is difficult to sample the grass roots due to their hardness. This would seriously 
interfere with the original soil and lead to errors in the measurement results. 

The soil samples collected and their water-bearing rice stubbles were dried and 
weighed separately, and the root content in each 100 g soil was 0.5 g, 1.1 g, and 2.1 g, 
respectively. According to the basic parameters of the abovementioned soil samples, the 
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Figure 1. Location map of the study area.

Table 1. Original solidity, water content, and wet bulk density of soil samples.

Depth/cm Solidness/kPa Moisture Content/% Wet Volume
Weight/g·cm−3

0–10 655 37.76 1.55
10–20 1400 30.27 1.79
20–30 1775 22.96 1.99

This test was conducted according to the method of root–soil composite shear stress
test. It is difficult to sample straw roots due to the hardness of straw roots in field sampling.
This would cause serious disturbance to the original soil and result in errors in measurement
results. Field tests are also limited by time, environmental conditions, and test equipment.
Therefore, disturbed soil was used in this test, and then samples were reproduced in the
laboratory in accordance with specifications [33,34]. When sampling in the field, it is
difficult to sample the grass roots due to their hardness. This would seriously interfere
with the original soil and lead to errors in the measurement results.

The soil samples collected and their water-bearing rice stubbles were dried and
weighed separately, and the root content in each 100 g soil was 0.5 g, 1.1 g, and 2.1 g,
respectively. According to the basic parameters of the abovementioned soil samples, the
water content of the samples was initially set at the levels of 20%, 30%, and 40%, and the
soil density was 1.5 g·cm−3, 1.7 g·cm−3, and 1.9 g·cm−3 levels.

2.2. Testing Indicators and Methods
2.2.1. Particle Analysis Test

Through soil grain size analysis tests, it is possible to determine the percentage of
each particle group in the dry soil sample to the total mass of the soil sample, and to
determine the grain size distribution. This test uses the screening method to screen the test
soil samples.

First, the percentage of the mass of the sample smaller than a certain particle size to
the total mass of the sample was calculated according to Equation (1):

Xs =
As

Bs
dx × 100% (1)
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where:

Xs—the percentage of sample mass smaller than a certain particle size to the total mass of
the sample, %.
As—sample mass smaller than a certain particle size, g.
Bs—the quality of the sample taken when analyzed with a fine screen; the total mass of the
sample is determined when analyzed with a rough screen, g.
dx—sample mass with particle size less than 2 mm as a percentage of total sample mass, %.

2.2.2. Shear Test of Root–Soil Composite

The friction angle of the soil ϕs and cohesion Cs are indispensable indexes for calcu-
lation of soil stability and other strength. In this study, the total stress method was used
to characterize this characteristic of soil mass, its cohesion (Cs), and internal friction angle
(ϕs) as a variable indicator of shear strength. A quick shear test of root–soil composite was
carried out with the direct shear apparatus.

The calculation of the shear displacement of the specimen is shown in Equation (2).

∆Ls= 20ns−Rs (2)

where:
∆Ls—shear displacement of the Ls-root–soil composite sample, 0.01 mm.
ns—number of handwheel turns of the straight shearing instrument.
Rs—dial gauge reading of the direct shearing instrument, 0.01 mm.

The calculation of shear strength of the root–soil composite based on the Coulomb
equation and the shear strength of clayey soil is shown in Equation (3).

τs= σstanϕs+Cs (3)

where:
τs—root–soil composite shear strength, kPa.
σs—normal stress acting on the root–soil complex, kPa.
ϕs—internal friction angle of root–soil complex, ◦.
Cs—cohesion of root–soil complex, kPa.

With the axial strain as the transverse coordinate and the axial deviation stress as the
longitudinal coordinate, the stress–strain curves of each sample under each radial load
condition were plotted. When the axial deviation stress reached a certain value, there was a
value when the axial deviation stressed stabilized or reached the peak strength. This value
was the shear strength of the root–soil composite specimen when it was destroyed under
this vertical stress. Vertical stress to be loaded on the test soil σs is the horizontal coordinate.
The shear strength of the root–soil composite, τs, is the vertical coordinate. We drew the
relationship between shear strength τs and vertical stress σs. According to the Coulomb
equation, there is a linear relationship between the shear strength of soil mass and the
normal stress on it. If the measured point can be fitted into a straight line, the inclination of
the line is the internal friction angle (ϕs) of the root–soil complex. The intercept part of the
line on the longitudinal axis is the cohesion force (Cs) of the root–soil complex.

3. Experimental Design

Soil particle classification test and root–soil composite shear strength test were carried
out in accordance with China′s Standard for Geotechnical Test Methods [35]. Soil particle
classification experiment is a routine experiment to determine the basic parameters of the
tested soil. For the shear strength test of root–soil composite, based on the above-mentioned
basic test parameters, the test treatment was selected as the main test factors, i.e., soil water
content, root content, and soil bulk weight. The soil water content was 20%, 30%, and
40%. The root content level was 0.5%, 1.1%, and 2.1%; the soil bulk density level was
1.5 g·cm−3, 1.7 g·cm−3 and 1.9 g·cm−3. According to the requirements of the direct shear
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test, the normal stresses loaded were 100 KPa, 200 KPa, 300 KPa, and 400 KPa. In order to
fully calculate the shear strength of each factor at each level, this test was designed as a
complete test.

According to the balanced dispersion and neat comparability of orthogonal experimen-
tal design, the L9(34) orthogonal table was selected to construct a 3-factor and 3-level test
scheme, and the shear strength of the root–soil composite was tested by direct shear (fast
shear) test. The corresponding factor level is shown in Table 2. The orthogonal test scheme
is shown in Table 3 and the test index was the shear strength of the root–soil composite.

Table 2. Level table of testing factors for the mechanical characteristics of rice straw.

Factor
Level

1 2 3

Water content (A)/% 20 (A1) 30 (A2) 40 (A3)
Volume weight (B)/g·cm−3 1.5 (B1) 1.7 (B2) 1.9 (B3)

Root content (C)/% 0.5 (C1) 1.1 (C2) 2.1 (C3)

Table 3. Orthogonal test scheme for the shear strength test of the root–soil composite.

Test No.

Factors of the Test Test Index

A B C D Cs ϕs

(Water
Content/%)

(Volume
Weight/g·cm−3) (Root Content/%) (Blank) (Cohesion)/kPa (Friction

Angle)/◦

1 1 (20) 1 (1.5) 1 (0.5) 1
2 1 2 (1.7) 2 (1.1) 2
3 1 3 (1.9) 3 (2.1) 3
4 2 (30) 1 2 3
5 2 2 3 1
6 2 3 1 2
7 3 (40) 1 3 2
8 3 2 1 3
9 3 3 2 1

4. Results and Discussion
4.1. Particle Analysis of Sample Soil

According to the above experimental design, the soil particles of the tested root–soil
complex were analyzed. The grain size distribution curve is shown in Figure 2 and the
particle composition is shown in Table 4.
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Table 4. Particle composition of the test soil samples.

Scheme.

Coarse Grain Group Fine Grain Group

Sand
Powder Particle Clay Particles

Coarse Medium Fine Extremely Fine

1~0.5 0.5~0.25 0.25~0.1 0.1~0.05 0.05~0.01 0.01~0.002 <0.002

1 (0–10) 1.98 6.46 21.56 16 25 13 16
2 (10–20) 1.24 4.06 25.2 19.5 25 16.5 8.5
3 (20–30) 0.42 0.22 21.36 16 30 18 14

According to the grain gradation of soil samples in Figure 2 and Table 4, the clay
content, silt content, and sand content of the test soil samples in the 0–10 cm layer were
29%, 25%, and 46%. In the 10–20 cm soil layer, the clay content was 25%, the silt content
was 25%, and the sand content was 50%. In the 20–30 cm soil layer, the clay content was
32%, the silt content was 30%, and the sand content was 38%.

4.2. Analysis of Shear Strength of the Root–Soil Composite
4.2.1. Range Analysis

According to the aforementioned research methods and means, the test of shear
strength of the root–soil composite was carried out with range analysis. The specific data
are shown in Table 5.

Table 5. Range analysis table of shear strength of the root–soil composite.

Test No.

Factors of the Test

A
(Water Content/%)

B
(Volume

Weight/g·cm−3)

C
(Root Content/%)

D
(Blank)

Cs
(Cohesion)/kPa

ϕs
(Friction Angle)/◦

CsK1 39.2680 8.4160 −3.2340 6.9300
CsK2 −9.2400 8.3160 −12.9360 1.4860
CsK3 0.5620 13.8580 46.7600 22.1740
Csk1 13.0893 2.8053 −1.0780 2.3100
Csk2 −3.0800 2.7720 −4.3120 0.4953
Csk3 0.1873 4.6193 15.5867 7.3913

Cs range R 16.1693 1.8473 19.8987 6.8960
Priority
order C > A > D > B

ϕs K1 67.63 71.29 69.44 71.89
ϕs K2 66.47 69.14 73.70 69.77
ϕs K3 75.76 69.43 66.72 68.20
ϕs k1 22.54 23.76 23.15 23.96
ϕs k2 22.16 23.05 24.57 23.26
ϕs k3 25.25 23.14 22.24 22.73

ϕs range R 3.10 0.72 2.33 1.23
Priority
order A > C > D > B

From Table 5, for the shear strength parameters Cs of the root–soil composite, the
extreme differences of factor water content, bulk density, and root content were 16.1693,
1.8473, and 19.8987, respectively. Additionally, ϕs (friction angle), the range value of water
content factor was 3.10, the range value of unit weight was 0.72, and the range value of root
content was 2.33. It can be seen that the two key parameters Cs and ϕs which influence the
shear strength of the root–soil composite were the root content and water content. However,
the effect of water content on ϕs was the most significant, and the effect of root content on
Cs was the most obvious.

With the horizontal coordinates of water content, bulk weight, and root content, and
the average values of cohesion and internal friction angle as vertical coordinates, the trend
of the factor level and test index was plotted respectively, as shown in Figure 3.



Agriculture 2022, 12, 1045 7 of 15Agriculture 2022, 12, x FOR PEER REVIEW 7 of 15 
 

 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 3. Trend diagram of test factors and indexes. Note: (a) the effect of water content on cohesion. 
(b) the effect of volume weight on cohesion. (c) the effect of root content on cohesion. (d) the effect 
of water content on friction angle. (e) the effect of volume weight on friction angle. (f) the effect of 
root content on friction angle. 

It can be seen from Figure 3 that the influence of water content on test index Cs 
decreased first and then increased, reaching the minimum at water content A level. The 
influence of the bulk weight of the root–soil complex on the test index Cs gradually 
increased, reaching the maximum at the level of bulk weight B. The influence of root 
content on test index Cs showed a trend of decreasing first and then increasing, and 
showed a minimum value at the level of root content C2. However, the influence of the 
above factors on the test index φs was somewhat different. The influence of water content 
on φs decreased first and then increased, but also reached the minimum at A2 level. The 
influence of specific weight on φs first decreased and then increased, and showed a 
minimum value at B2 level. The influence of root content on φs increased first and then 
decreased, and there was a maximum value at C2. That is to say, the influence of water 
content and bulk weight on the key indexes Cs and φs of shear strength of the root–soil 
composite first decreased, then increased, with extreme points and minimum values; the 
influence of root content on the key indexes Cs and φs of shear strength of the root–soil 
composite is mutually exclusive, i.e., the deterioration of φs occurred when the influencing 
factors were in favor of Cs, and vice versa. 

4.2.2. Variance Analysis 
The above range analysis only qualitatively analyzes the influence of each factor level 

on each test index. On this basis, variance analysis was carried out in order to obtain the 
quantitative analysis of each factor on each test index respectively. The variance analysis 
is shown in Table 6. 

Table 6. Variance analysis of shear srength of root–soil composites. 

Test No. 
Factors of the Test Index of the Test 

A 
(Water Content)/% 

B 
(Volume Weight)/g·cm−3 

C 
(Root Content)/% 

D 
(Blank) 

Cs 
(Cohesion)/kPa 

φs 
(Friction Angle)/° 

(Cs k1)2 1541.98 70.83 10.46 48.02 ∑Cs = 30.59  
(Cs k2)2 85.38 69.16 167.34 2.21   
(Cs k3)2 0.32 192.04 2186.50 491.69 Cs = 5.10  

Square of deviance of Cs is S 438.58 6.70 684.13 76.67   
Freedom of Cs is f 2 2 2 2   

Figure 3. Trend diagram of test factors and indexes. Note: (a) the effect of water content on cohesion.
(b) the effect of volume weight on cohesion. (c) the effect of root content on cohesion. (d) the effect of
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It can be seen from Figure 3 that the influence of water content on test index Cs
decreased first and then increased, reaching the minimum at water content A level. The
influence of the bulk weight of the root–soil complex on the test index Cs gradually
increased, reaching the maximum at the level of bulk weight B. The influence of root
content on test index Cs showed a trend of decreasing first and then increasing, and showed
a minimum value at the level of root content C2. However, the influence of the above
factors on the test index ϕs was somewhat different. The influence of water content on ϕs
decreased first and then increased, but also reached the minimum at A2 level. The influence
of specific weight on ϕs first decreased and then increased, and showed a minimum value
at B2 level. The influence of root content onϕs increased first and then decreased, and there
was a maximum value at C2. That is to say, the influence of water content and bulk weight
on the key indexes Cs and ϕs of shear strength of the root–soil composite first decreased,
then increased, with extreme points and minimum values; the influence of root content on
the key indexes Cs andϕs of shear strength of the root–soil composite is mutually exclusive,
i.e., the deterioration of ϕs occurred when the influencing factors were in favor of Cs, and
vice versa.

4.2.2. Variance Analysis

The above range analysis only qualitatively analyzes the influence of each factor level
on each test index. On this basis, variance analysis was carried out in order to obtain the
quantitative analysis of each factor on each test index respectively. The variance analysis is
shown in Table 6.



Agriculture 2022, 12, 1045 8 of 15

Table 6. Variance analysis of shear srength of root–soil composites.

Test No.

Factors of the Test Index of the Test

A
(Water Content)/%

B
(Volume

Weight)/g·cm−3

C
(Root Content)/%

D
(Blank)

Cs
(Cohesion)/kPa

ϕs
(Friction Angle)/◦

(Cs k1)2 1541.98 70.83 10.46 48.02 ∑Cs = 30.59
(Cs k2)2 85.38 69.16 167.34 2.21
(Cs k3)2 0.32 192.04 2186.50 491.69 Cs = 5.10

Square of deviance
of Cs is S 438.58 6.70 684.13 76.67

Freedom of Cs is f 2 2 2 2
Variance of Cs is V 219.29 3.35 342.06 38.33

Fj value of Cs 5.72 0.09 9.02
Obvious * (0.25) NS ** (0.10)
(ϕs k1) 4573.58 5082.11 4822.00 5168.43 ∑ϕs = 209.87
(ϕs k2) 4418.86 4780.816 5432.37 4868.31
(ϕs k3) 5740.22 4821.18 4451.80 4651.52 ϕs = 34.98

Square of deviance
of ϕs is S 17.09 0.90 8.26 2.29

Freedom of ϕs is f 2 2 2 2
Variance of ϕs is V 8.55 0.45 4.13 1.14

Fj value of ϕs 7.48 0.40 3.61
obvious * (0.25) NS * (0.25)

F0.25(2,2) 3
F0.10(2,2) 9

Note: ** (0.10) means extremely significant at the significance level of 0.1, * (0.25) means significant at the
significance level of 0.25, and NS means not significant.

Table 6 shows that the bulk weight of the root–soil complex was not significant to the
test index, so in range analysis, the change trend of the bulk weight to the test index is not
credible. The influence of water content and root content of the root–soil composite on shear
strength of the root–soil composite was significant and extremely significant respectively.
Combining with the previous range analysis, the influence of root content on the two test
indexes is mutually exclusive. Therefore, it is necessary to redesign the influence of water
content and root content on shear strength of the root–soil composite with fixed soil volume.
Therefore, the soil bulk density was fixed at the level of 1.7 g/cm3 and the water content
and root content were tested completely respectively. The test data are shown in Table 7.

Table 7. Testing of Water Content and Root Content on Shear Strength and Index of Root–soil
Composite.

Test No.

Factors of the Test Test Index

Water
Content/% Root Content/% Cohesion

Cs/kPa
Friction Angle

ϕs/◦

a1 20 2.1 18.11 22.34
a2 20 1.1 1.85 23.46
a3 20 0.5 10.44 21.06
b1 30 2.1 7.39 21.45
b2 30 1.1 −18.48 25.17
b3 30 0.5 16.01 27.34
c1 40 2.1 8.32 24.80
c2 40 1.1 −7.85 26.79
c3 40 0.5 −19.40 27.11

4.2.3. Shear Stress and Shear Deformation

Quick shear tests were carried out on root–soil composite samples with different water
content and root content combination step-by-step under four normal pressure classes of
100 kPa, 200 kPa, 300 kPa, and 400 kPa respectively. When the water content of the root–soil
composite was 20%, 30%, and 40%, the shear stress of the root–soil composite specimens
with different root content is shown in Figure 4.
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experiment. In addition, the shear stress of the root–soil composite increased with the 
increase of normal pressure, which was non-linear. According to analysis, the shear stress 
tended to stabilize for the first time due to the main body of the sample, i.e. the soil was 
sheared, but the root system in the soil played an associated role as the soil was destroyed 
more deeply. At this time, the shear resistance was not pure soil, but root–soil complex 
doped with roots. As the experiment continued, the shear stress of the sample increased 
again in a non-linear manner, and the increase was significantly greater than the previous 
stage. 

Figure 4. Relationship between shear stress and shear deformation of samples with 20%, 30%, and
40% water content. Note: (a) 20.5% water content, 1.7g·cm−3 wet density, 2.1% root content. (b) 20.5%
water content, 1.7 g·cm−3 wet density, 1.1% root content. (c) 20.5% water content, 1.7 g·cm−3 wet den-
sity, 0.5% root content. (d) 27.02% water content, 1.7 g·cm−3 wet density, 2.1% root content. (e) 27.02%
water content, 1.7 g·cm−3 wet density, 1.1% root content. (f) 27.02% water content, 1.7 g·cm−3 wet
density, 0.5% root content. (g) 37% water content, 1.7 g·cm−3 wet density, 2.1% root content. (h) 37%
water content, 1.7 g·cm−3 wet density, 1.1% root content. (i) 37% water content, 1.7 g·cm−3 wet
density, 0.5% root content.

It can be seen from Figure 4 that the shear stress between the root–soil complex
increased with the increase of shear deformation and showed an approximate linear rela-
tionship at the initial stage. When the shear deformation reached a certain degree, the shear
stress presented a non-linear relationship and tended to stabilize gradually. As the shear
deformation continued to increase, the shear stress again showed a non-linear increase, and
there was no sign that the shear stress tended to stabilize until the end of the experiment. In
addition, the shear stress of the root–soil composite increased with the increase of normal
pressure, which was non-linear. According to analysis, the shear stress tended to stabilize
for the first time due to the main body of the sample, i.e., the soil was sheared, but the root
system in the soil played an associated role as the soil was destroyed more deeply. At this
time, the shear resistance was not pure soil, but root–soil complex doped with roots. As
the experiment continued, the shear stress of the sample increased again in a non-linear
manner, and the increase was significantly greater than the previous stage.
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4.2.4. Shear Strength of Root–Soil Composite and Its Relationship with Root Content

Under the condition of fixed soil bulk density, comprehensive tests on shear strength
of the root–soil compatible body were performed by two factors, water content and root
content. Based on the results and the data in Table 7, the changes of shear strength τs, shear
strength index Cs, and ϕs of the root–soil composite under the condition of fixed bulk
density and water content are discussed.

When the soil bulk weight of the root–soil complex was 1.7 g·cm−3, the scatter plots
of shear stress and normal stress with different root content at 20%, 30%, and 40% water
content and their fitting lines are shown in Figure 5 respectively.
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Note: (a) 20% water content, 1.7g·cm−3 wet density. (b) 30% water content, 1.7g·cm−3 wet density.
(c) 40% water content, 1.7g·cm−3 wet density.

The shear strength of the root–soil composite increased with the increase of the root
content and normal pressure when the bulk weight and water content were constant. The
cohesion of Cs changed with the change of root content, and the change was large. When
water content was 20%, the change of Cs was 16.26 kPa; when water content was 30%, the
change of Cs was 34.49 kPa; when water content was 40%, the change of Cs was 27.6 kPa.
The change of ϕs with root content was relatively small. When water content was 20%, the
change of ϕs was 2.4◦; when water content was 30%, the change of ϕs was 5.89◦; when
water content was 40%, the change of ϕs was 2.31◦.

The above research also shows that, because of the high tensile and shear strength of
the roots themselves, when mixed with the soil, the roots form reinforcing bars similar to
those in reinforced concrete, which act as anchors for the soil. The root system strengthens
the axial pressure of soil and significantly increases the cohesion of the root–soil com-
plex. The increase of roots also increased the contact area between roots and soil and
increased the amplitude of cohesion. However, it had little effect on the internal friction
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angle. Meng et al. [22] drew the same conclusions from their experiments, and in most
studies [36–38], the conclusions are basically the same.

4.2.5. Shear Strength of the Root–Soil Composite and its Relationship with Water Content

Similarly, based on the data in Table 7, under the condition of fixed volume weight
and root content, the shear strength τs of the root–soil composite due to different water
content is discussed. The shear strength index Cs and ϕs of the root–soil composite due to
different water content are also discussed.

When the soil bulk weight of the root–soil complex was 1.7 g·cm−3, the scatter plots of
shear stress and normal stress with different water content at 2.1%, 1.1%, and 0.5% and their
fitting lines are shown in Figure 6 respectively. From Figure 6, it can be seen that the shear
strength of soils with different water content increased linearly with the increase of normal
pressure when the bulk density and root content of the root–soil complex were constant,
but the increase rate was different with different water content. Based on the characteristics
that the root–soil complex is an elastic–plastic body and the Coulomb Equation, regression
analysis was carried out on the above test data to obtain the relationship between vertical
normal pressure and shear strength. The Cs value, tanϕs value, ϕs value, and R2 value of
each fitting line under different water content and root content are shown in Table 8.
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(c) 0.5% root content, 1.7 g·cm−3 wet density.
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Table 8. Coefficient table of fitted equations with different moisture contents and root contents at the
same volume weight.

Water
Content/%

Root
Content/% Cs/kPa tanϕs ϕs/◦ R2

20
0.5 10.440 0.385 21.06 0.999
1.1 1.848 0.434 23.46 0.997
2.1 18.110 0.411 22.34 0.984

30
0.5 16.010 0.517 27.34 0.989
1.1 −18.480 0.470 25.17 0.996
2.1 7.392 0.393 21.45 0.978

40
0.5 19.400 0.512 27.11 0.995
1.1 −7.392 0.509 26.98 0.987
2.1 −6.468 0.471 25.22 0.997

In addition, when the unit weight, root content, and normal pressure of the root–soil
composite were constant, the shear strength decreased gradually with the increase of water
content. The change of Cs cohesion changed with the change of water content, and the
change range was large. The change of Cs was 10.72 kPa when the root content was 2.1%,
20.33 kPa when the root content was 1.1%, and 29.84 kPa when the root content was 0.5%.
When the root content reached a certain value, the main factor influencing the change of
cohesion Cs changed from water content to root content, which means the influence of
water content change was weakened. Additionally, ϕs changed relatively slightly with
water content; the change of ϕs was 3.35◦ when the root content was 2.1%, 3.33◦ when the
root content was 1.1%, and 6.28◦ when the root content was 0.5%. The range of ϕs varied
from 21◦ to 27◦. It can also be seen that when the root content was small, the water content
had a greater influence on the friction angle ϕs in the root–soil composite. When the root
content exceeded a certain value, the influence of water content was weakened and the root
system played an important role in enhancing the shear strength of the root–soil composite.

From the above data, the relationship between cohesion–rooting content–water content
and internal friction angle–rooting content–water content was constructed as shown in
Figures 7 and 8, respectively. From Figure 7, it can be seen that the cohesion of the root–soil
complex was the smallest when the water content was around 30% and the root content was
1.1%. The cohesion of the root–soil complex increased with the decrease or increase of the
water content and the decrease or increase of the root content. As shown in Figure 8, when
the water content was 40% and the root content was 1.1%, the internal friction angle of the
root–soil composite showed the minimum value. With the decrease of water content and
the increase of root content, the internal friction angle of the root–soil composite gradually
showed an increasing trend. The root content has a great influence on the internal friction
angle. The influence of water content was relatively small. Fan et al. [24] found that
increasing soil water content led to a significant decrease in soil–root bonding strength,
which is consistent with the conclusions of this experiment. This also fits the general
conclusions of other research fields on root–soil complexes [39–41].
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5. Conclusions

Based on the method of orthogonal test design, the orthogonal test with three levels
of factors (water content, bulk weight, and root content) was designed in this paper. The
quick shear test of the remolded soil was carried out in the laboratory with the direct shear
tester, and the experimental results were analyzed by range analysis. The trend diagram
of each test index was drawn by each factor level, and then the ANOVA was carried out.
According to the difference of significance levels of each influence factor, the orthogonal
test results were analyzed by ANOVA. At a certain level of fixed bulk density, a complete
test was carried out on the rooting content and water content at a high significance level.
The corresponding stress–strain diagram and τs–σs relation curve were plotted. At the
same time, the corresponding shear strength model fitting was carried out.

(1) The influence of water content and bulk weight on the key indexes Cs and ϕs of
shear strength of the root–soil composite first decreased and then increased, with
extreme points and minimum values. The influence of root ratio on the key indexes
Cs and ϕs of shear strength of the root–soil composite is mutually exclusive, i.e., the
deterioration of ϕs occurred when the influencing factors were in favor of Cs and
vice versa.

(2) In the shear strength test of the root–soil composite, the main factors influencing Cs
were root content, water content, error factor, and unit weight in turn. The main
factors influencing ϕs were water content, root content, error factor, and unit weight
in turn. The influence of bulk weight on the test index was not significant, while the
water content and root content had significant influences on shear strength of the
root–soil composite.

(3) The indoor direct shear and fast shear tests of the root–soil composite samples showed
that the root system enhanced the axial pressure of the soil and significantly increased
the cohesion. The increase of roots also increased the contact area between roots and
soil and increased the amplitude of cohesion, but it had little effect on the internal
friction angle.
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