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Abstract: The implementation of intelligent technology in agriculture is seriously investigated as a
way to increase agriculture production while reducing the amount of human labor. In agriculture,
recent technology has seen image annotation utilizing deep learning techniques. Due to the rapid
development of image data, image annotation has gained a lot of attention. The use of deep learning
in image annotation can extract features from images and has been shown to analyze enormous
amounts of data successfully. Deep learning is a type of machine learning method inspired by the
structure of the human brain and based on artificial neural network concepts. Through training phases
that can label a massive amount of data and connect them up with their corresponding characteristics,
deep learning can conclude unlabeled data in image processing. For complicated and ambiguous
situations, deep learning technology provides accurate predictions. This technology strives to
improve productivity, quality and economy and minimize deficiency rates in the agriculture industry.
As a result, this article discusses the application of image annotation in the agriculture industry
utilizing several deep learning approaches. Various types of annotations that were used to train the
images are presented. Recent publications have been reviewed on the basis of their application of
deep learning with current advancement technology. Plant recognition, disease detection, counting,
classification and yield estimation are among the many advancements of deep learning architecture
employed in many applications in agriculture that are thoroughly investigated. Furthermore, this
review helps to assist researchers to gain a deeper understanding and future application of deep
learning in agriculture. According to all of the articles, the deep learning technique has successfully
created significant accuracy and prediction in the model utilized. Finally, the existing challenges and
future promises of deep learning in agriculture are discussed.

Keywords: image annotation; deep learning; agriculture; plant recognition; disease detection; count-
ing; classification; yield estimation

1. Introduction

The agriculture sector is the backbone of most countries, providing enormous employ-
ment opportunities to the community as well as goods manufacturing and food supply.
Fruit plantation is one of the most important agricultural activities. The production and
protection of fruit per capita has recently been considered an essential indicator of a coun-
try’s growth and quality of life [1]. Population growth of 7.2 to 9.6 billion people is expected
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by 2100. The advanced approach of smart agriculture must be used to meet the demand
for food from agriculture [2]. Several studies have recommended that the critical issue
of improving management and production in the agriculture industry is addressed [3,4].
Agriculture production has challenges in terms of productivity, environmental impact and
sustainability. Agriculture ecosystems necessitate constant monitoring of several variables,
resulting in a large amount of data. The data could be in the form of images that can
be processed with various image processing algorithms to identify plants, diseases and
other cases in varied agricultural situations [5]. Advanced technology improvements have
been made in agriculture with limited resources to ensure production, quality, processing,
storage and distribution [6]. The technology used in this field involves various scientific
disciplines covering sensors, big data, artificial intelligence and robotics [7]. Apart from
using sensor technology to advance the agriculture industry [8], the use of image annotation
techniques to improve agriculture production is a relatively new invention in technology.

Image annotation has attracted widespread attention in the past few years due to
the rapid growth of image data [9–11]. This method is used to analyze big data images
and predict labels for the images [12]. Image annotation is the technique of labeling an
image with keywords which reflect the character of the image and assist in the intelligent
retrieval of relevant images using a simple query representation [13]. Image annotation in
the agriculture sector can annotate images according to the user’s requirement. Everything
from plants and fruits to soil can be annotated to be recognized and classified. Moreover, it
helps in plant detection, classification and segmentation based on the plant species, type,
health condition or maturity. It can predict the label of a given image and can correspond
well to the image content [12]. Image annotation can describe images at the semantic
level and has many applications that are not only focused on image analysis but also on
urban management and biomedical engineering. Basically, image annotation algorithms
are divided into traditional and deep neural network-based methods [14]. However,
traditional or manual image annotation has inherent weaknesses. Therefore, automatic
image annotation (AIA) was introduced in the late 1990s by Mori et al. [15].

The objective of automatic image annotation is to predict several textual labels for
an unseen image representing its content, which is a labeling problem. This technology
automatically annotates the image using its semantic tags and has been applied in image
retrieval classification and the medical domain. The training data attempt to teach a
model to assign semantic labels to the new image automatically. One or more tags will
be transferred to the image based on image metadata or visual features. For instance, the
technology has been proposed in many areas and shows outstanding achievement [13,16].
Large amounts of data are required to improve the accuracy of annotating images of plants
or diseases. To assist researchers in overcoming these severe challenges, Deng et al. [17]
introduced ImageNet, a publicly available collection of existing plants extensively used
in computer vision. It has been frequently used as a benchmark for various visualization
types of computer vision issues. Another public dataset is PlantVillage [18], an open-access
platform for disease plant leaf images by Penn State University. Moreover, the datasets that
are dedicated to fruit detection are MinneApple [19], Date Fruit [20] and MangoYOLO [21],
weed control datasets are DeepWeeds [22] and Open Plant Phenotype Dataset [23] and a
dataset of plant seedlings at different growth stages is V2 Plant Seedling Dataset [24].

AIA can be classified into many categories. The difference in the classes is based on
the contribution, computational complexity, computational time and annotation accuracy.
One of the categories is deep learning-based image annotation [25,26]. Deep learning in
research on AIA has attracted extensive attention in the theoretical study and various
image processing and computer vision task applications. It shows high potential in image
processing capabilities for the future needs of agriculture [27,28]. Deep learning, which is
a subset of machine learning, was firstly introduced by Dechter [29] in 1986 to machine
learning and by Aizerberg et al. [30] in 2000 to the artificial neural network. It can transform
the data using various functions that allow data representation in a hierarchical way and
defined as a simpler concept. It learns to perform any task directly from the images and
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produce high-accuracy responses [31,32]. Several AIA techniques have been proposed
other than the deep learning approach such as support vector machines, Bayesian, texture
resemblance and instance-based method. Deep learning techniques, on the other hand,
have succeeded in image processing throughout the last decade [33]. The high accuracy of
deep learning is generated by high computational and storage requirements during the
training and inference phase. This is because the training process is both space consum-
ing and computationally intensive, as millions of parameters are needed to refine over
multiple periods of time [34]. Due to complexity of the data models, training is quite
expensive. Furthermore, deep learning necessitates the use of costly graphic user inter-
faces (GPUs) and many machines. This raises the cost to the users. The image annotation
training set based on deep learning can be classified into supervised, unsupervised and
semi-supervised categories.

Supervised deep learning involves training a data sample from a data source that
has been classified correctly. Its algorithm is trained on input data that has been labeled
for a certain output until it is able to discern the underlying links between the inputs and
output findings. The system is supplied with labeled datasets during the training phase,
which will inform it which outputs are associated with certain input values. Supervised
learning provides a significant challenge due to the requirement of a huge amount of
labeled data [35,36] and at least hundreds of annotated images are required during the
supervised training [37]. The training approach consists of providing a large number of
annotated images to the algorithm to assist the model to learn, then testing the trained
model on unannotated images. To determine the accuracy of this method, annotated images
with hidden labels are often employed in the algorithm’s testing stage. Thus, annotated
images for training supervised deep learning models achieve acceptable performance levels.
Most of the studies applied supervised learning, as this method promises high accuracy
as proposed in [38–40]. Another attractive annotation method is based on unsupervised
learning. Unsupervised learning, in contrast to supervised learning, deals with unlabeled
data. In addition, labels for these cases are frequently difficult to obtain due to insufficient
knowledge data or the labeling is prohibitively expensive. Furthermore, the lack of labels
makes setting goals for the trained model problematic. Consequently, determining whether
or not the results are accurate is difficult. The study by [41] employed unsupervised
learning in two real weed datasets using a recent unsupervised deep clustering technique.
These datasets’ results signal a potential direction in the use of unsupervised learning and
clustering in agricultural challenges. For circumstances where cluster and class numbers
vary, the suggested modified unsupervised clustering accuracy has proven to be a robust
and easier to interpret evaluation clustering measure. It is also feasible to demonstrate how
data augmentation and transfer learning can significantly improve unsupervised learning.

Semi-supervised learning, like supervised and unsupervised learning, involves work-
ing with a dataset. However, the dataset is separated into labeled and unlabeled parts.
When the labeling of acquired data is too difficult or expensive, this technique is frequently
used. In fact, it is also possible to use it if the labeled data are poor quality [42]. The
fundamental issue in large-scale image annotation approaches based on semi-supervised
learning is dealing with a large, noisy dataset in which the number of images expands faster.
The ability to identify unwanted plants has improved because of the advancement in farm
image analysis. However, the majority of these systems rely on supervised learning, which
necessitates a large number of manually annotated images. As a result, due to the huge
variety of plant species being cultivated, supervised learning is economically infeasible
for the individual farmer. Therefore, [43–45] proposed an unsupervised image annotation
technique to solve weed detection in farms using deep learning approaches.

Deep learning has significant potential in the agriculture sector in increasing the
amount and quality of the produce by image-based classification. Consequently, many
researchers have employed the technology and method of deep learning to improve and
automate tasks [3]. Its role in this sector gives excellent results in plant counting, leaf
counting, leaf segmentation and yield prediction [46]. Noon et al. [47] have reviewed
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the application of deep learning in the agriculture sector by identifying plant leaf stress
in early detection to enable farmers to apply the suitable treatment. Deep learning is
effective in detecting leaf stress for various plants. However, implementing deep learning
in agriculture requires a large amount of data regarding the plants, in terms of collecting
and processing. The necessary data are basically collected using wireless sensors, drones,
robots and satellites [48]. The more data used to train the deep learning model, the more
robust and pervasive the model becomes [49].

Unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs) are exam-
ples of robotics systems that provide a cost-effective, adaptable and scalable solution for
product management and crop quality [50]. Weeds are able to reduce crop production and
their growth must be monitored regularly to keep them under control. Additionally, apply-
ing the same amount of herbicide to the entire field results in waste, pollution and a higher
cost for farmers. The combination of image analytics from UAV footage and precision
agriculture is able to assist agronomists in advising farmers on where to focus herbicides
in particular regions in the field [51,52]. As stated in [53], the first stage in site-specific
weed management is to detect weed patches in the field quickly and accurately. Therefore,
the authors proposed object detection implemented with Faster RCNN in training and
evaluating weed detection in soybean fields using a low-altitude UAV. The proposed tech-
nique was the best model in detecting weeds by obtaining an intersection over union (IoU)
performance of 0.85. Franco et al. [54] have captured a thistle weed species, Cirsium arvense,
in cereal crops by utilizing a UAV. This tool is used to gather a view of an agriculture site
with detailed exploration and is attractive due to its low operational costs and flexible
driving. A UAV captured RGB images of thistles at 50 m above the ground, annotated weed
and cereal classes and grouped them under a unique label of pixels. According to [51],
labeling plants in a field image consumes a lot of time and there is very little attention paid
to annotating the data by training a deep learning model. Therefore, the authors proposed
a deep learning technique to detect weeds using UAV images by applying overlapping
windows for weed detection [51]. Deep learning techniques will provide the probability of
the plant being a weed or crop for each window location. Deep learning can make harvest-
ing robots more effective when generating robust and reliable computer vision algorithms
to detect fruit [55]. The usage of UAVs in dataset collection has also been applied in palm
oil tree detection [56], rice phenology [57], detection and classification of soybean pests [58],
potato plant detection [59], paddy field yield assessment [60] and corn classification [61].

Over the last few decades, UGVs have been used to achieve efficiency, particularly
by reducing manpower requirements. UGVs have been employed for soil analysis [62],
precision spraying [63], controlled weeding [64] and crop harvesting [65]. Mazzia et al. [66]
employed a UGV for path planning using deep learning as an estimator. Row-based crops
are ideal for testing and deploying UGVs that can monitor and manage to harvest the crops.
The study proposed by the authors proved the feasibility of the deep learning technique
by demonstrating the viability of a complete autonomous global path planner. In [67], a
robot harvester with the implementation of a deep learning algorithm is used to detect an
obstacle and observe the surrounding environment for rice. The image cascade network’s
employment successfully detects obstacles and avoids collision with an average success
rate of 96.6%. Besides UAVs and UGVs, deep learning provides a practical solution in
the agriculture field from satellite imagery. A vital component of agricultural monitoring
systems is having accurate maps of crop types and acreage. Therefore, the application of
satellites is able to determine the boundary of smallholder farms since their boundaries
are hazy, in irregular shapes and frequently mixed with other land uses. Persello et al. [68]
presented a deep learning technique to automatically delineate smallholder farms using
a convolutional network in combination with a globalization and grouping algorithm.
The proposed solution outperforms alternative strategies by autonomously delineating
field boundaries with F scores greater than 0.7 and 0.6 for the proposed test regions,
respectively. Furthermore, satellites are implemented to capture images in identifying crops
as presented in [69]. The authors utilized multiexposure satellite imagery of agricultural
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land using image analysis and deep learning techniques for edge segmentation in an image.
The implementation of a CNN for image edge smoothing achieves accuracy of 98.17%.
According to [70], enough data should be collected for training in order to predict crop
yields and forecast crop prices reliably. Data availability is a significant limitation that can
be overcome using satellite imagery that can cover huge geographic areas. The combination
of utilizing deep learning using satellite imagery applications gives a significant advantage
results in extracting field boundaries [71], monitoring agricultural areas [72], weather
prediction [73], crop classification [74] and soil moisture forecast [75].

Various implementations of deep learning in agriculture approaches have been exten-
sively reviewed in recent years as proposed in [5,37,76–79]. Among those, Koirala et al. [77] re-
viewed the application of deep learning in fruit detection and yield estimation, Zhang et al. [80]
explore dense scene analysis of the application deep learning in agriculture and Moazzam
et al. [79] emphasized the challenges of weed and crop classification using deep learning.
Based on the great attention on the implementation of deep learning in the agriculture
sector in recent years, and contrary to existing surveys, this article concisely reviews the use
of deep learning techniques in image annotation, focusing on plants and crop areas. This
review article presents the most recent five years of research on this method in agriculture,
covering the new technology and trends. The presentation covers the techniques of anno-
tating images, the learning techniques, the various architectures proposed, the tools used
and, finally, the applications. The application issues are basically in plant detection, disease
detection, counting, yield estimation, segmentation and classification in the agriculture
sector. These tasks are difficult to perform manually, time consuming and require workforce
involvement. The lack of people’s ability to identify objects for these tasks is finally compen-
sated for by using current technology and trends, particularly image annotation and deep
learning techniques, which also boost process efficiency. There are many different types
of plants. To identify plants, especially rare ones, knowledge is required. Additionally, a
systematic and disciplined approach to classifying various plants is crucial for recognizing
and categorizing the vast amount of data acquired on the many known plants. To solve
this problem, plant detection and classification are crucial tasks. Since segmentation helps
to extract features from an image, it will improve classification accuracy. A crucial con-
cern in agriculture is disease detection. Disease control procedures can waste time and
resources and result in additional plant losses without accurate identification of the disease
and its causative agent. Furthermore, in the agriculture industry, counting is essential in
managing orchards, yet it can be difficult because of various issues, including overlapping.
In particular, counting leaves provides a clear image of the plant’s condition and stage of
development. Especially in the age of global climate change, agricultural output assessment
is essential for solving new concerns in food security. Accurate yield estimation benefits
famine prevention efforts in addition to assisting farmers in making appropriate economic
and management decisions. Therefore, this manuscript emphasizes these efforts to boost
agriculture production by summarizing these tasks using deep learning, which improves
prediction and accuracy. Various architecture structures of CNNs are well described as a
reference for researchers to better understand the implementation of deep learning in the
agriculture sector to illustrate how they work. This article also proposes the future trends
and technology that could be implemented to improve the quality and productivity in the
agriculture field.

2. Deep Learning for Image Annotation

Image annotation using deep learning is the most informative method that requires
more complex training data. It is essential for functional datasets because it informs the
training model about the crucial parts of the image and may use those details to recognize
the classes in test images. The majority of automatic image annotation methods perform by
extracting features from training and testing images at the first step. Secondly, based on the
training data, the annotation model is developed. Finally, annotations are developed based
on the characteristics of the test images [81]. Figure 1 illustrates the detail of the image
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annotation process. Feature extraction is a technique for indexing and extracting visual
content from images. Color, texture, shape and domain-specific features are examples of
primitive or low-level image features [82].
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Depending on the approach utilized, various annotation types are used to annotate
images. The popular image annotation techniques employed in agriculture based on
deep learning are bounding box [83–86] and segmentation [87–90]. The study in [91]
proposed the tools to boost the efficiency of identifying agriculture images, which frequently
have more various objects and more detailed shapes than those in many general datasets.
Feature extraction in the architecture of deep learning can be found in imaging applications.
Different types of this architecture in deep learning that have frequently been applied in
recent years are unsupervised pre-trained networks (UPNs), recurrent neural networks
(RNNs) and convolutional neural networks (CNNs) [92]. An RNN has the advantage of
processing time-series data and making decisions about the future based on historical data.
An RNN has been proposed by Alibabaei et al. [93] to predict tomato yield according to the
date, climate, irrigation amount and soil water content. RNN architecture consists of long-
shot term memory (LSTM), gated recurrent units (GRUs), bidirectional LSTM (BLSTM) and
bidirectional GRU (BGRU). The study shows that BLSTM is able to capture the relationship
of the past and new observations and accurately predict the yield. However, the BLSTM
model has a longer training time compared to implemented models. The authors also
conclude that deep learning has the ability to estimate the yield at the end of the seasons.

A CNN is mainly used among deep learning architecture due to its high detection
accuracy, reliability and feasibility [94]. CNNs or convNets are designed to learn the spatial
features, for example edges, textures, corners or more abstract shapes. The core of learning
these characteristics is the diverse and successive transformation of the input object, which
is convolution at different spatial scales such as pooling operation. This operation identifies
and combines both high-level concepts and low-level features [95]. This method has been
proven to be good in extracting abstract features from a raw image through convolutional
and pooling layers [96]. The architecture of CNNs was introduced by Fukushima [97] who
proposed the algorithm of supervised and unsupervised training of the parameter that
learns from the incoming data. In general, a CNN receives the image data that form input
layers and generates a vector of different characteristics assigned to object classes in the
form of an output layer. There are hidden layers between the input and output layers
consisting of a series of convolution and pooling layers and ending with a fully connected
layer [98]. CNNs are widely used as a powerful class of models to classify images in a
multiple problems in agriculture such as fruit classification, plant disease detection, weed
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identification and pest classification [99]. In addition, they can also detect and count the
number of crops. Huang et al. [100] chose a CNN to classify green coffee beans because
CNN characteristics are good at extracting image color and shape.

Two categories of object detection in deep learning are defined by drawing bounding
boxes around the images and classifying the object’s pixels. From a label perspective,
drawing rectangular bounding boxes around the object is much easier compared to labeling
the object’s pixels by drawing outlines. However, from a mapping perspective, pixel-level
object detection is more accurate compared to the bounding box technique [101]. According
to Hamidinekoo et al. [102], it is challenging to segment and compute the detection of
individual fruits from images. Therefore, the authors applied a CNN to classify various
parts of the plant inflorescence and estimate fruit numbers from the images. CNNs are also
used in detecting fruit and disease. Onishi et al. [103] proposed a high-speed and accurate
method to detect the position of fruit and automated harvesting using a robot arm. The
authors utilized a shot multibox detector (SSD) based on the CNN method to detect objects
in an image using a single deep neural network. To achieve a high level of recognition
accuracy, the SSD creates multiscale predictions from multiscale feature maps and explicitly
separates the predictions based on ratio aspect. The image of fruit detection utilized in this
method is shown in Figure 2. Other fruits and leaves occlude some apples, but the method
can still detect the apples. The result of the study showed that the fruit detection using the
SSD is 90% and this accuracy was achieved in only 2 s.
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Another major concern in the agriculture sector nowadays is that many pathogens and
insects threaten many farms. Since deep learning can dive into deep analysis and computa-
tion, this technique is one of the prominent methods for plant disease detection [104]. Many
approaches help to monitor the health of the crop, from semantic segmentation to other
popular image annotation techniques. When compared to labeling data for classification,
segmentation data are more challenging. Several image annotations based on supervised
learning for object segmentation methods have been presented in recent years for this rea-
son. Sharma et al. [105] used image segmentation to detect disease by employing the CNN
method. In order to obtain maximum data on disease symptoms, the image is segmented
by extracting the affected parts of leaves rather than the whole images. The quantifying
result for each type of disease shows that the data are trained very well and achieved that
excellent result even under real conditions. Kang and Chen [106] performed detection and
segmentation of apple fruit and branches as shown in Figure 3. As shown in Figure 3a–f,
apples are drawn in distinct colors, and branches are drawn in blue. These detections and
segmentations are recognized by utilizing a CNN. The experiment achieved 0.873 accuracy
of instance segmentation of apple fruits and 0.794 accuracy of branch segmentation.
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Khattak et al. [107] proposed a CNN to identify fruits and leaves in healthy and
diseased conditions. The result shows that the CNN has a test accuracy of 94.55 percent,
making it a suggested support tool for farmers in classifying citrus fruit/leaf condition
as either healthy or diseased. In yield estimation, Yang et al. [108] trained a CNN to
estimate corn grain yield. The experiment conducted by the authors produced 75.50%
classification accuracy of spectral and color images. Fuentes [109] successfully proved
that the implementation of a deep learning technique can detect disease and pests in
tomato plants. In addition, the technique is able to deal with a complex scenario from the
surrounding area of the plant. The result obtained is shown in Figure 4a–d, where the deep
learning generates high accuracy in detecting disease and pests. The image from left to
right for each sub-figure is the input image, annotated image and predicted results.

The architectures of CNNs have been classified gradually with the increasing number
of convolutional layers, namely LeNet, AlexNet, Visual Geometri Group 16 (VGG16),
VGG19, ResNet, GoogLeNet ResNext, DenseNet and You Only Look Once (YOLO). The
differences between these architectures are the number of layers, non-linearity function
and the pooling type used [110]. Mu et al. [111] applied VggNet to detect the quality
of blueberry through the skin pigments during the seven stages of its maturity. The
technique was used to solve the difficulty and identify the maturity and quality grade of
the blueberry fruit measured by the human eye. In fact, the method has improved the
accuracy and efficiency of detection of the quality of blueberry. Lee et al. [112] proposed
three types of CNN architecture with different layers, namely, VGG16 with 16 layers,
InceptionV3 with 48 layers and GoogLeNetBN with 34 layers. The InceptionV2 inspired
GoogLeNetBN and InceptionV3 architecture and has the capability of improving the
accuracy and reducing the complexity of computation. Batch normalization (BN) has been
proven to be able to limit overfitting and speed up convergence. In a study by [113], three
CNN architectures, AlexNet, InceptionV3 and SqueezeNet, were compared to assess their
accuracy in evaluating tomato late blight disease. Among these architectures, AlexNet
generates the highest accuracy in feature extraction with 93.4%. Gehlot and Saini [114] also
compared the performance of CNN architectures in classifying diseases in tomato leaves.
The architectures assessed in the study are AlexNet, GoogLeNet, VGG-16, ResNet-101 and
DenseNet-121. The accuracy of all these architectures are almost equal. However, the size
of DenseNet-121 is much smaller, at 89.6MB, and the largest size is 504.33 MB, obtained by
ResNet-101.
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Figure 5 presents the details on the image annotation and its deep learning approach
technique. Low-level features are used to represent images in image classification and
retrieval. The initial stage in semantic comprehension is to extract efficient and effective
visual features from an image’s unstructured array of pixels. The performance of seman-
tic learning approaches is considerably improved by appropriate feature representation.
Numerous feature extraction techniques, including image segmentation, color features,
texture characteristics, shape features and spatial relationships, have been proposed [115].
There are five categories of image annotation methods, which are generative model-based
image annotation, nearest neighbor-based image annotation, discriminative model-based
image annotation, tag completion-based image annotation and deep learning-based image
annotation [25,26]. In the past decade, tremendous progress has been made in deep learn-
ing techniques, allowing image annotation tasks to be solved using deep learning-based
feature representation. The most recent advancements in deep learning enable a number
of deep models for large-scale image annotation. A CNN is commonly used by deep
learning-based approaches to extract robust visual characteristics. Several versions of CNN
architecture, such as LeNet, VGG, GooLeNet, etc., have been proposed. The following
section describes the most commonly employed CNN architectures. The four types of
image annotation are image classification, object detection or recognition, segmentation
and boundary recognition. All of these task types can be annotated using deep learning
techniques. The training process of deep learning can be supervised, unsupervised or
semi-supervised, depending on how the neural network is used. In most cases, supervised
learning is used to predict a label or a number. Commonly used benchmarks for evaluating
image annotation techniques are based on the performance metrics. Section 4.8 provides
the specifics on performance evaluation metrics.
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3. Deep Learning Architecture

A CNN is a special type of multilayer neural network used to recognize visual patterns
directly from pixel images with minimal processing. The computer views an image as an
array of numbers representing each pixel. Therefore, it is important that the relationship
between the pixels persists even after the network has processed the image. To store
the spatial relationship between pixels, a CNN is used, in which various mathematical
operations are stacked on top of each other to create layers of the network [38].

The CNN architecture consists of convolutional layers, pooling layers and fully con-
nected layers [116]. The basic architecture of a CNN is displayed in Figure 6.
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3.1. Convolutional Layer

In the feature learning process, the input image implemented with convolutional
operation transfers the input matrices with convolutional kernels or can be understood
as filters. These convolutional kernel operations, namely channels, kernel size, strides,
padding and activation function, are used in a conventional image processing technique
where the parameter needs to be set manually. These operations should be determined and
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optimized based on the practical problem [117]. Each kernel slides over the input images
and extracts features from the images. The sliding filter or kernel that slides horizontally
and vertically is known as convolutional operation [118]. Das et al. [119] have explained the
convolution process of strides and padding, where the strides act to reduce the data size by
slides in each step in feature maps. The dimensions for the feature map can be maintained
through the padding process. Padding will add zeros to the input matrix symmetrically.
The process of strides and padding are shown in Figure 7.
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The sliding process connects each neuron after the shift and provides a complete tiling
for the input image. All the weights and biases for all neurons are combined to detect the
same feature for all locations of the input image [120]. The output for the next layer, ai,j for
convolutional operation, is computed as follows:

aij = σ((W ∗ X)i,j + b) (1)

where σ is non-linearity introduced in the network, W is the filter or kernel that slides over
the input image, X is the input that is provided to the layer and b is the bias term of the
filter [121].

3.2. Activation Function

Rectified linear unit (ReLU) is a most notable non-saturated activation function used
to enhance the performance of a CNN. The operation of ReLU is shown in Figure 8. It is
defined as in (2), where zi,j,k is the activation function input at (i, j) on the kth channel. Max
operation in the equation allows the computation to be faster than the activation function of
the sigmoid of tanh and does not face a gradient vanishing problem like tanh and sigmoid
functions. Moreover, it allows the network to easily achieve sparse representation while
inducing sparsity in the hidden units [116,122].

ai,j,k = max
(

z1,j,k,, 0
)

(2)
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3.3. Pooling Layer

The pooling layer was firstly introduced in [123] in order to minimize the processing
of the data. Pooling layers, also known as downsampling, generate smaller feature maps
by reducing the parameter number and dimensionality in the input images. Even larger
images are shrunk down, and the most important features in the images are preserved. The
maximum values from each patch are kept by preserving the best fit in the feature [124].
There are two commonly used pooling functions, which are average pooling and maximum
pooling. The average pooling calculates the average value at each patch on the feature map,
and the maximum pooling calculates the maximum value on the feature map. The example
of these pooling operations are shown in Figure 9.
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3.4. Fully Connected Layer

The fully connected layer is the final layer after the convolutional and the pooling
layers. Here, the data are transformed to a one-dimensional layer and each neuron is
connected directly to a neuron in the previous layer. The structure for this layer may consist
of one or more hidden layers. The softmax activation function is usually applied in a fully
connected layer to classify the input by generating a probability between 0 and 1. A softmax
activation function is defined as in Equation (3) [125].

fc1 = f (b +
M

∑
q=1

w1,q ∗ oq) (3)

3.5. Loss Function

In every CNN architecture, the last layer is called the output layer. The final classifi-
cation occurs by calculating the prediction error produced by the CNN over the training
data using a loss function. The loss function is the crucial component of the CNN to
predict error through gradient calculation. Most of the studies on CNNs employ softmax
or cross-entropy loss as the encoded output [126,127].

4. Improvement of CNN Architecture

CNNs received proper attention after the success of the AlexNet architecture in 2012
and this achievement was the start of the other CNN architectures [128]. The others CNN
architectures are described in the next subsection.

4.1. LeNet

LeNet was the earliest CNN architecture, introduced by LeCun [129] in 1998. The
structure consists of three convolutional layers and two fully connected layers. The archi-
tecture of LeNet is shown in Figure 10. The network contains five layers with learnable
parameters, and combines and average pooling and three sets of convolutions layers. There
are two fully connected layers after the convolution and pooling process. At the end, a
softmax classifier sorts the images into their appropriate categories. The study presented
in [130] employed this architecture to detect and identify plant disease of potato and tomato.
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A batch size of 150 epochs was used to train the model and resulted in accuracy of detection
and recognition of 99%.
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4.2. AlexNet

AlexNet was proposed by Alex Krizhevsky [131] in 2012 during the ImageNet Large
Scale Recognition Challenge and won the competition. The proposed architecture reduced
error from 26% to 15.3% by utilizing the convolutional layers, max pooling layers, data
augmentation, dropout, ReLU activations and SGD. AlexNet with 60 million parameters has
eight layers, five convolutional layers and three fully connected layers. Every convolutional
and fully connected layer used non-saturated ReLU gives the training response over
tanh and sigmoid is improved [132]. Figure 11 shows the architecture of the AlexNet
convolutional network that was proposed by Patino et al. [133] in classification of tropical
fruits with 2633 images of fruits divided into 15 categories, including high variability and
complexity. The authors of [134] employed AlexNet to train different datasets consisting of
vegetables images. According to the experiment, the accuracy rate reached 92.1% compared
to the SVM method with 80.5%.
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4.3. VGG

VGG architecture was first proposed by Simonyan and Zisserman [135] in 2014 by
improving AlexNet by changing the kernel filter’s size. At the same time, the generation
of VGG aimed to improve the training time and reduce the number of parameters. It has
been applied in various image classification tasks and was trained on more than 14 million
images consisting of 1000 classes. It improved the AlexNet model that was considered the
most popular image classifier and carried with it the ReLU tradition of AlexNet. There are
many variants of VGGNet, including VGG-16, VGG-19, etc. The architecture of VGG-16
consists of a block of five convolutional layers and three fully connected layers containing
138 M parameters [136]. Figure 12 shows the architecture of VGG-16 as proposed by [137]
in classification of jujube. Contrasting with AlexNet, VGG-16 has a deeper network and
uniform structure consisting of 16 trainable layers containing 13 convolutional layers and
three fully connected layers.
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4.4. GoogLeNet/Inception

GoogLeNet is based on the architecture of Inception and uses the module that allows
the network to choose between multiple convolution filter sizes in each block. It was
proposed by research at Google in 2014 and won the ILSVRC 2014 image classification
challenge. The error rate generated by GoogLeNet showed a significant decrease compared
to AlexNet. The architecture consists of a 22-layer deep network assessing the quality in
detection and classification [138]. Then, the authors of [139] improved the architecture to
InceptionV3 by updating the ImageNet classification accuracy. The updated Inception is
referred to as InceptionVN. Then, in 2016, the architecture of Inception was updated to
InceptionV4 by combining the architecture of Inception together with residual connection
in research by Ni et al. [140].

Ni et al. [141] implemented GoogLeNet due to its superior performance in identifica-
tion of fruit and vegetables. This architecture was used to monitor the change process of
banana. The model was trained for 4320 iterations to recognize the freshness of banana. The
model obtained recognition accuracy of 98.92%. Its architecture is illustrated in Figure 13.
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4.5. Residual Network (ResNet)

ResNet is a specific type of neural network that was introduced by He et al. [142] in
2015 and won 1st place in the ILSVRC 2015 competition by achieving an error rate of 3.5%.
It has the ability to train a network with 100 layers and 1000 layers. The layer in ResNet
receives the input from the previous layer and its residual units. The architecture consists
of 34 layers, starting with one additional maxpooling layer, and ends with one average
pooling layer [143]. The architecture of ResNet is shown in Figure 14.
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Figure 14. Network architecture for plain network with 34 parameter layers and residual network
with 34 parameter layers [142].

4.6. DenseNet

DenseNet refers to a densely connected convolutional network introduced by Huang
et al. [144] and it has an interesting pattern of connections, in which each layer is connected
to the others within a dense block. All previous layers are used as input and its own feature
maps are used as the input for all subsequent layers. This means all layers are able to access
the feature maps. DenseNet can alleviate the vanishing gradient problem, promote feature
reuse, strengthen feature propagation and significantly reduce the number of parameters.
The structure of DenseNet with five layers and expansion of four is shown in Figure 15.
The limitation of DenseNet is the large memory consumption. Therefore, Huang et al. [145]
suggested CondenseNet to reduce the memory and speed it up by learning groups of
convolution operations and pruning while training [146].
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4.7. You Only Look Once (YOLO)

YOLO was developed by Redmon [147] in 2015 to reframe cognitive problems as
regression problems rather than classification problems. YOLO uses a single neural network
to predict the bounding box and assign class probabilities. The model of YOLO is simple
and able to train directly from full images. The loss function that is trained by YOLO
corresponds directly to detection performance and the entire model is trained together. The
architecture of YOLO is shown in Figure 16. It has 24 convolutional layers used to extract
features from an image and ends with two fully connected layers that are used to predict
the probabilities and coordinates of the output. There are many variants of YOLO that
have been developed as an improvement of the previous version, namely YOLOv2 [148],
YOLOv3 [149] and YOLOv4 [150]. Basically, the enhancement of the version is based on
the framework design where the usual YOLO uses DarkNet that is trained on ImageNet.
Then, the framework for YOLOv2 was improved to DarkNet-19, YOLOv3 with Darknet53
and YOLOv4 with DarkNet with CSPDarkNet53. Lippi et al. [151] preferred YOLO in early
detection of pests as this model represented the fastest and most effective solution. Among
these various versions of YOLO, the authors implemented YOLOv4 as it has been proven
to outperform the previous ones in terms of accuracy and speed on the assorted standard
dataset. YOLOv3 with Darknet53 framework has been employed by Chang et al. [152] to
achieve real-time plant species recognition. The experiment’s findings demonstrate that
the deep classifier was able to identify three different plants. Gai et al. [153] improved
YOLOv4 in a cherry fruit detection application. The model of YOLOv4 was improved
by replacing its backbone network, CSPDarkNet53, with DenseNet. The improvement
generated advanced feature extraction, deepened the network structure and provided
higher speed detection than the previous YOLOv4. The average accuracy given by the
improved YOLOv4 is 0.15 higher than YOLOv4. In 2020, Jocher [154] released YOLOv5,
which has fast, accurate and easy to train characteristics. It is well known for successful
real-time object detection trained on the COCO dataset. The backbone for YOLOv5 is cross
stage partial network (CSPNet) that is used to extract rich informative features from an
input image and, by utilizing deeper networks, the processing time has been improved.
YOLOv5 is implemented in detecting wheat spikes using UAV [155], detecting maturity of
strawberry fruit [156], detecting defects of kiwi fruit [157] and detecting apple fruit [158].
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There are many more ConvNets that have been proposed. ConvNets have improved
greatly over time, owing primarily to increased processing power, new concepts, experi-
ments and worldwide interest in deep learning. Those ConvNets are summarized in Table 1.
The accuracy values were taken from image classification on ImageNet, the database plat-
form consisting of a large visual database intended for use in the development of visual
object recognition software.
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Table 1. ConvNet details.

CNN Architecture Year Developed by Characteristics ImageNet Top Accuracy ImageNet
Top-5 Accuracy Number of Parameters

LeNet 1998 Yann LeCun et al. [159] Small and easy to understand 98.35% - 60 thousand

AlexNet 2012 Alex Krizhevsky et al. [131] First major CNN model that used GPU for training 63.3% 84.60% 60 million

VGG-16 2014 Simonyan, and Zisserman [135]

-Good architecture for particular task benchmark
-Attractive feature of architectural simplicity comes at

high cost
-Progressing network requires a lot of computation

-Has 16 layers

74.4% 91.90% 138 million

VGG-19 2014 Simonyan and Zisserman [135] -Has 19 layers 74.5% 90.9% 144 million

GoogLeNet/InceptionV1 2014 Google [138]
-Designed to work well under strict constraint of

memory and computational budget
-Trains faster than VGG

74.80% 92.2% 4 million

InceptionV3 2014 Szegedy et al. [139] Has higher efficiency and deeper network compared
than InceptionV1 and -V2 78.8% 94.4% 24 million

InceptionV4 2014 Szegedy et al. [140] Has more Inception modules than InceptionV3 and
uniform, more simplified architecture 80.0% 95.0% 48 million

Inception-ResNetV2 2014 Szegedy et al. [140]
-Hybrid Inception version with enhancement of

recognition performance
-Has computational cost similar to InceptionV4

80.1% 95.1% 56 million

YOLO 2015 Joseph Redmon [147] Superb speed (45 frames per second) 76.5% 93.3% 60 million

ResNet-50 2015 Kaiming He [142]

-Introduces a skip connection to adapt the input from
the previous layer to the next layer by maintaining the

input
-Deep network with 50 layers

76.0% 93.0% 26 million

ResNet-152 2015 Kaiming He [142] Very deep network of 152 layers 77.8% 93.8% 60 million

DenseNet-121 2016 Gao Huang et al. [144] -Has 120 convolutions and 4 AvgPool
-Each layer has connection to every other layer 74.98% 92.29% 8 million

DenseNet-264 2016 Gao Huang et al. [145] -Has 264-layer DenseNet 77.85% 93.88% 34 million

YOLOv2/YOLO9000 2016 Joseph Redmon and
Ali Farhadi [148]

-Improvement from YOLOv1 in variety of ways
-Uses Darknet-19 as a backbone

-Real-time object detection model with a single stage
86% - 59 million
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Table 1. Cont.

CNN Architecture Year Developed by Characteristics ImageNet Top Accuracy ImageNet
Top-5 Accuracy Number of Parameters

YOLOv3 2018 Joseph Redmon and
Ali Farhadi [149]

-Improved version of YOLOv1 and v2
-Significant differences between the previous versions

in terms of speed, precision and class specifications
86.3% - 86 million

Big Transfer (BiT-L) 2019 Kolesnikov et al. [160] Pre-trains on large supervised source datasets and
fine-tunes the model on a target task 87.54% 98.5% 928 million

YOLOv4 2020 Alexey [150]
-Most recent YOLO series version for fast object

detection in a single image
-Uses CSPDarknet53 as a backbone

86.8% - 193 million

YOLOv5 2020 Glenn Jocher [154]
-Has three important parts: backbone, neck and

head model
-CSPNet is used as a backbone

87.1% - 296 million

Noisy Student Training
EfficientNet-L2 2020 Xie et al. [161] -A semi-supervised learning method that performs

well even when labeled data are plentiful 88.4% 98.7% 480 million

Meta Pseudo Labels 2021 Pham et al. [162]
Has a teacher network that generates pseudo labels

from unlabeled data in order to teach a
student network

90.2% 98.8% 480 million
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4.8. Performance Metric

Deep learning methods have overcome the agricultural issues in crop detection [163],
counting [98,164], classification [165], segmentation [166], disease diagnosis [118,167], etc.

After creating a model based on a deep learning technique and receiving some output
in the form of a class, the next step is to use test datasets to determine how effective the
technique is. The most crucial aspect in data science research is to evaluate the model,
which determines how accurate the prediction is. Deep learning algorithms are evaluated
using a variety of performance metrics. Each deep learning result generates accuracy
based on the percentage of accuracy, intersection of union (IoU), performance score (F1),
mean average precision (mAP) and correlation coefficient (R2). This study is focused on
these performance metrics that were employed in the previous studies in this article. It
is crucial to pick the right metrics to evaluate the deep learning technique used. The
metrics are used to determine how deep learning algorithm performance is evaluated and
compared. The simplest intuitive performance metric is accuracy, which is just the ratio
of properly predicted observations to the total observations. A high accuracy percentage
shows which model is the best and how good the model has performed. IoU, also known
as the Jaccard index, is the computation of the ratio of the intersection and the union of two
sets. These region-based measures do not examine the accuracy of the segmented region
boundaries, which is significant during automated tree training operations. In addition, IoU
measurements are strict because they penalize false positives and favor regional uniformity
over border accuracy [168,169]. The F1 score computes the performance of detection by
using recall and precision. Recall and precision measure the fraction of true-positive objects
that are successfully detected and objects in the prediction [106]. The F1 score is greatest
at 1 (perfect precision and recall) and lowest at 0. In other words, recall is the number of
well-predicted positives divided by the total number of positives. It shows the percentage
of positives that are well predicted. Precision is similar to recall as it shows the number
of positive predictions generated. It divides the number of predicted positives by all the
positives predicted. If the value of precision is high, this means the majority of the positive
predictions for the objects are correctly predicted as positive. The calculations of accuracy,
precision, recall, F1 score, IoU and class accuracy are shown in (4)–(8). True positive is
the annotation that is correctly drawn with an IoU of > 0.5, true negative is every part of
an image that does not predict an object, false positive is a missing annotation and false
negative is an annotation that has an IoU score of < 0.5.

Accuracy =
True Positive + True Negative

True Positive + False Positive + True Negative + False Negative
(4)

Precision =
True Positive

True Positive + False Positive
(5)

Recall =
True Positive

True Positive + False Negative
(6)

F1 =
2 × Precision × Recall

Precision + Recall
(7)

IoU =
True Positive

True Positive + False Positive + False Negative
(8)

5. Results and Discussion

Deep learning architecture is adaptable, which means it may be used to solve new
challenges in the future. Moreover, this method can be applied to a wide range of tasks
and data types. Therefore, this study summarizes the previous studies implementing a
deep learning algorithm in the agriculture sector, shown in Table 2. The application of
deep learning in agriculture is to detect and classify crops, disease, yield estimation, border
extraction, etc. The first step in those studies involves gathering a correctly annotated dataset



Agriculture 2022, 12, 1033 20 of 35

that is large enough for a complex model to produce satisfactory results when trained on it.
In order to perform successfully, a CNN requires a lot of training data. If the dataset is not
particularly large, though, image augmentation can be employed to make a small dataset
appear larger. It has been observed that augmentation of existing data, rather than collecting
new data, enhances the classification accuracy of a deep learning model. In fact, the data
augmentation technique is able to avoid overfitting problems and achieve high accuracy.

Basically, all the studies proposed smartphones to capture the object images due to
the advancement of the technology’s resolution, while also being simple and cost-effective.
The smartphone’s rapid evolution has elevated it to the foremost choice in the area of
the agriculture industry. Another ability provided by the smartphone is to detect the
object in real-time with the advancement of the deep learning employment method in
the application of object detection. Most methods to extract the border are based on the
utilization of satellite images due to the imagery captured, guaranteeing a powerful method
without physical contact, wide views and consisting of a big data revolution. The image
that is processed through a satellite is computationally intensive, therefore, deep learning
is very helpful in analyzing the image provided. In image processing, the images most
commonly used are red, green and blue (RGB). These images will generate a color image
on the screen when RGB images are stacked on top of each other.

According to the previous studies, many of the datasets were utilized to train the images
and annotated images of multiple regions have been proposed. Images are initially segmented
or bounded into multiple regions such as color, shape and texture features and are extracted.
Automatic image annotation aims to learn a semantic concept model from a large number of
datasets or image samples and apply it to new images. After the training, images are labeled
with semantic labels, and test images can be assessed using keywords, similar to how the
training of image features. As presented in the summary table, many studies on automatic
image annotation have applied deep learning-based approaches. Convolution procedures
extract image features and a deep neural network training model establishes the connection
between the images and labels. A deep learning algorithm is generated based on the image
features primarily using the supervised technique. The algorithm is tested with sample
images and the prediction performance is analyzed. The annotation result generates either
a bounding box or a segmentation with the predicted performance value. Deep learning
has made tremendous progress in image labeling by automatically annotating images to
recognize the plant species, maturity and health. The proposed deep learning technique is
tested with other techniques to test its performance. The best performance or higher accuracy
results indicate that the proposed technique is a better model to employ when detecting or
classifying an object. In addition, the capability of the proposed deep learning technique
is tested on a variety of datasets. Even when using the same technique, various datasets
generate different performances due to differences in dataset properties. However, during
the training process, the model’s performance can be improved by increasing the number
of epochs and iteration value. As proposed in [170], different datasets are used to detect
various diseases in different plants. The disease is successfully detected by implementing a
VGG-16-based deep learning method, which is compared to InceptionV3 and GoogLeNetBN.
VGG-16 outperforms the other techniques used with 98.8% accuracy. According to the study,
pre-training with plant-specific tasks reduced the impact of overfitting for a deeper Inception
model, but the VGG-16 model demonstrated better generalization when adapting to new
data. In addition, the fact that VGG-16 outperforms the Inception technique is because of a
lack of variability in the dataset, which limits the implementation of deeper architectures.
The summaries of the various techniques from the previous studies provide a wide overview
of the performance metric result when deep learning algorithms are used for the task. This
critical information about performance metric can help researchers choose a suitable deep
learning algorithm for their studies. In some circumstances, the model does not produce
particularly accurate predictions. Training the method also takes a long time. As a result, it is
crucial to improve accuracy while decreasing training time. The number of epochs, input
size, network depth and width or slow weight update can contribute to training time taken.
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Table 2. Summary of previous studies on deep learning implementation.

Authors Research Problem Dataset Collection Method Dataset Pre-Processing Method DL Method Datasets Used Result (Accuracy, Score,
Detection Time)

[171] Disease detection
Digital camera and smartphone
used to collect tomato images in

planting greenhouse
Bounding box Yolo V3 Tomato Accuracy = 92.39%

(20.39 ms)

[172] Disease detection

Collected RGB color images
using Nikon 7200d camera with

image resolution
4000 × 6000 pixels

- CNN
(SVM classifier)

4447
Turkey-PlantDataset

Accuracy score: 97.56%
(PlantDiseaseNet-MV)

96.83% (PlantDiseaseNet-EF)

[167] Disease detection
Collected RGB images using

Canon Rebel T5i DSLR
and smartphones

- CNN 3651 apple leaves Accuracy = 97%

[173] Disease detection
Image collected by two digital

cameras and five
smartphone cameras

-
GoogLeNet, Xception

and
Inception-RestNet-v2

4727 tea leaves Accuracy = 89.64%

[112] Disease detection Used initial version of the PV
dataset that is publicly available -

VGG-16
InceptionV3

GoogLeNetBN

14 crop
plants, 38 crop–disease

pairs, and 26 crop–
disease categories

Accuracy = 98.8%
(VGG-16)

[174] Disease detection Images are captured by hand Augmentation

Ensemble of pre-trained
DenseNet121

EfficientNetB7 and
EfficicentNet
NoisyStudent

3651 high-grade images
of apple leaves with

various foliar diseases

Ensemble of pre-trained DenseNet121,
EfficientNetB7 and EfficientNet

NoisyStudent:
Accuracy = 96.25%

DenseNet121:
Accuracy = 95.26%

EfficientNwtB7: Accuracy = 95.62%
NoisyStudent:

Accuracy = 91.24%

[136] Disease classification
Image source is online dataset

from Plant Pathology
2020-FGVC7

Data augmentation ResNetV2 1821 images of apple tree
leaves Accuracy = 94.7%

[175] Plant disease detection Mobile phone -

Baseline model of
ResNet18
ResNet34
ResNet50

54,305 leaf images,
PlantVillage and

1747 coffee leaves
Accuracy = 99%
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Table 2. Cont.

Authors Research Problem Dataset Collection Method Dataset Pre-Processing Method DL Method Datasets Used Result (Accuracy, Score,
Detection Time)

[170] Crop detection
Multirotor DJI Phantom 4 drone

using RGB camera with
4000 × 3000 pixels

Bounding box

EfficientDet-D1
SSD MobileNetv2

SSD ResNet50
Faster R-CNN ResNet50

197 images of
paddy seedlings

EfficientDet-D1:
Precision = 0.83

Recall = 0.71
F1 = 0.77

Faster R-CNN:
Precision = 0.82

Recall = 0.64
F1 = 0.72

[176] Fruit detection
Smartphone (Galaxy S9,

Samsung Electronics) with
5312 × 2988 pixels

Bounding box Canopy-attention-
YOLOv4

480 raw apple
tree images

Precision = 94.89%
Recall = 90.08%

F1 = 92.52%
(0.19 s)

[177] Fruit detection QG Rasberry Pi_Sony IMX477
and OAK-D color camera Bounding box SSD MobileNet-V1 1929 images of

grape bunches mAP = 66.96%

[178] Fruit detection Canon Powershot G16 camera Bounding box Improved YOLOv5 1214 apple images

Recall = 91.48%
Precision = 83.83%

mAP = 86.75%
F1 = 87.49%

[179] Fruit detection
Dataset obtained from

GrapeCS-ML and Open Image
Dataset v6

Bounding box
YOLOv3
YOLOv4
YOLOv5

2985 images of grapes

YOLOv5:
F1=0.76

YOLOv4:
F1=0.77

[49] Fruit detection
Image collected with

4032 × 3024-pixel smartphone
camera (iPhone 7 Plus, Apple)

Bounding box

AlexNet
RestNet101
DarkNet53,

Improve YOLOv3

849 apple images

Improve YOLOv3:
F1 = 95.0%

DarkNet53+YOLOv3:
F1 = 94.6%

AlexNet+Faster R-CNN:
F1 = 91.2%

[153] Fruit detection

Image captured by
3000 × 4000 pixel Sony

DSC-HX400 Camera and
40 million-pixel Huawei

mobile phone

Bounding box Improved YOLO-V4 400 images of
cherries fruit

F1 score = 0.947
Iou = 0.856

(0.467 s)



Agriculture 2022, 12, 1033 23 of 35

Table 2. Cont.

Authors Research Problem Dataset Collection Method Dataset Pre-Processing Method DL Method Datasets Used Result (Accuracy, Score,
Detection Time)

[103] Fruit position detection
and harvesting robot

Harvesting robot equipped with
stereo camera and robot arm -

SSD (VGGNet)
R-CNN
YOLO

169 images of apples
SSD (VGGNet):
Accuracy = 90%

(2 s)

[180] Fruit detection and
counting

Captured images by DJI MAVIC
Air2 drones, SLR cameras
(Panasonic DMC-G7) and
Honor 20 mobile phone

Bounding box YOLOv5-CS (citrus sort) More than 3000 original
images of green citrus

mAP = 98.23%
Precision = 86.97%

Recall = 97.66%

[98] Fruit counting Collected 128 × 128-pixel
images from Google Images Generate synthetic image Inception-ResNet 24,000 tomato images Average accuracy = 91%

[94] Olive fruit fly detection
and counting

Collected images from Dacus
Image Recognition Toolkit

(DIRT)
Bounding box Modified YOLOv4 848 images of olive

fruit fly

mAP = 96.68%
(52.46 h)

Precision = 0.84
Recall = 0.97

F1 score = 0.90

[181] Leaf counting Captured image by Cannon
Rebel XS camera Bounding box Faster R-CNN

Tiny YOLOv3
1000 images of

Arabidopsis plants F1 score =0.94

[102] Fruit count
Flatbed scanner (Plustek,

OpticPro A320) with
3600 × 5200 pixels

Patch classifier LeNet
DenseNet

2552 images of mature
inflorescences

DenseNet:
Precision = 91.8%

Recall = 92%
LeNet:

Precision = 77.8%
Recall = 76.2%

[182] Plant counting RGB images taken using UAV
with 256 × 256 pixels Segmentation Mask R-CNN Potato and lettuce plants

Potato:
Precision = 0.997

Recall = 0.825

[183] Crop classification Images captured by
Landsat-8 satellites Semantic segmentation DNN

Corn, soybean, barley,
spring wheat, dry bean,

sugar beet and
alfalfa area

F1=0.8476
Precision = 0.8463

Recall = 0.8536

[184] Crop classification
Dataset taken from previous

study in which the size of
images is 1280 × 1024 pixels

Augmentation
(crop) AlexNet 13,200 white

cabbage seedlings Accuracy = 94%
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Table 2. Cont.

Authors Research Problem Dataset Collection Method Dataset Pre-Processing Method DL Method Datasets Used Result (Accuracy, Score,
Detection Time)

[185] Fruit classification RGB images captured using
smartphone camera (LG-V20)

Data augmentation technique
(flipping, horizontal, vertical) VGG-16 1300 four classes of dates

Accuracy = 98.49%
Precision = 96.63%

Recall = 97.33%

[137] Fruit classification
Images captured using Nikon

D7500 camera with 3024 × 4032
and 6000 × 4000 pixels

Image augmentation (rotation, flip,
brightness, adjustment, contrast and

saturation enhancement)

Jujube classification
network based on DL

technique
SVM

AlexNet
VGG-16
ResNet

1700 images of 20 jujube
varieties

Jujube classification network-based DL
technique:

Accuracy = 84.16%
ResNet-18:

Accuracy = 78.25%
VGG-16:

Accuracy = 71.42%
AlexNet:

Accuracy = 65.36%
SVM:

Accuracy = 60.84%

[186] Classify fruit images Image taken by digital camera
(Nikon D7100) - VGG-16 440 images of litchi

and lychee Accuracy = 98.33%

[187] Freshness and fruit
classification

Real-world images from
the internet

Augmentation
(rotation and horizontal flipping)

RestNet-50
+ RestNet-101

Fresh and rotten fruits,
e.g., apple, banana,

orange, lemon, pear,
strawberry and others

RestNet-50+RestNet-101:
Average accuracy =
98.50% for freshness

97.43% for classification
VGG-16:

94.79% for freshness
94.90% for classification

[188] Classification of seedless
and seeded fruit

Images taken by a digital
camera (COOLPIX P520, Nikon)

with image size of
1600 × 1200 pixels

Augmentation (brightness changes,
rotation and horizontal and

vertical flip)

VGG16
RestNet-50

InceptionV3
InceptionResNetV2

599 images of seeded
and seedless fruit

VGG-16:
Accuracy = 89%

ResNet50:
Accuracy = 86%

InceptionV3:
Accuracy = 91%

InceptionResNetV2:
Accuracy = 85%

[189] Detection and classification
Recorded using video camera

with full HD definition
(1920 × 1080)

Bounding box Tiny YOLOv3

Unripe, ripe and
overripe coffee fruit at

density of
5000 trees hectare−1

mAP = 84.0%
F1 score = 82.0%

Precision = 82.0%
Recall = 83%
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Authors Research Problem Dataset Collection Method Dataset Pre-Processing Method DL Method Datasets Used Result (Accuracy, Score,
Detection Time)

[190] Detection, segmentation
and classification

Dataset taken from a previous
study [191] Segmentation R-CNN

1036 reproductive
structures (flower buds,
flowers, immature fruits

and mature fruit)

Average counting precision = 77.9%

[40] Detection and
segmentation Images captured using camera Bounding box CNN 300 images of grapes F1 score= 0.91

[106] Detection and
segmentation

Intel RealSense D-435 RGB-
camera and Logitech

C615 webcam
Semantic segmentation DaSNet-v2

1277 images of
apple trees

(fruit and branches)

Recall = 0.868
Precision = 0.88

Accuracy = 0.873

[168] Image segmentation RGB images and 3D point cloud
data (Kinect V2 sensor)

Semantic
segmentation SegNet Apple trees F1 score = 0.93

[93] Yield estimation Images from Google Images -

LSTM
GRU

BLSTM
BGRU

Tomato,
potato R2 = 0.97 to 0.99 (BLSTM)

[192] Yield estimation Image taken from UAV (DJI
Phantom 4 Pro) Bounding box Region convolutional

neural network 592 trees of apples R2 = 0.86

[72] Monitoring agricultural
area

Images collected by optical
satellite sensors of SPOT,

Landsat-8 and Sentinel-1A

Aumentation
(patch normalization)

Spatio-temporal–
spectral deep

learning
Paddy field area F1 score = 0.93

[193] Border extraction
Images collected by

Sentinel-2 and
Landsat-8 satellites

Semantic segmentation ResUNet Field border Accuracy = 85.60%

[194] Border extraction
RGB image and near-infrared-2
bands taken using WorldView-3

satellite image
Polygon

FCNN
(UNet, SegNet and

DenseNet)

Smallholder farm in
Bangladesh

Precision for all proposed FCNNs is up
to 0.8
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Based on the result, most of the previous studies presented deep learning implemented
for annotated image results as an accuracy percentage. This is because accuracy simply
gives a ratio of correctly drawn annotations to total predicted annotations. Therefore, it is
the most intuitive approach to evaluate a task’s performance. Accuracy is not just a simple
measurement, but it is also the least insightful when it comes to evaluating an annotation
task’s performance. In fact, most real-world annotation ignores false negatives and false
positives which could lead to prejudice and inaccurate conclusions about the quality of the
mission. In some cases, the authors prefer the F1 score because it elegantly summarizes a
model’s prediction effectiveness by merging two competing metrics: recall and precision.
The different usages of the performance for accuracy are employed when true positives
and true negatives are more important, while when false negatives and false positives are
critical, then the F1 score is used. Another case is if the class distribution is similar, then
the accuracy can be employed. Meanwhile, if there are imbalanced classes, then F1 is a
good choice. Overall, all these evaluation metrics help present the quality of the annotated
images proposed using the deep learning technique.

Based on the previous studies, the image annotation implemented in agriculture is
summarized in the pie chart shown in Figure 17. Most of the deep learning techniques are
applied to detect and classify plants and their diseases. Crop detection and classification
are difficult tasks due to the wide range of interclass forms, colors and textures. As a
result of these limitations, there is a shortage of automated fruit classification systems for
various groups. Crop detection and classification using an advanced information system
could effectively identify the right fruit with the right nutrition. On the other hand, plant
detection and classification are applied in harvesting robots to pick fruit and vegetables.
Robotic harvesting has a high potential to be used in crop detection by reducing the cost of
labor while improving fruit quality. In fact, the problems of plant diseases are a worldwide
issue related to food production. Plant diseases adversely affect the economy and incur
losses to farmers. Therefore, utilizing deep learning for annotating images in agriculture
helps earlier disease detection and prevents the plants from becoming worse.
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6. Conclusions

This study presented a comprehensive review of the application of image annotation
using the deep learning technique in the agriculture field. Image annotation is extremely
useful in the agriculture industry in increasing the crop production. It assists in recognizing
and classifying the plants and their diseases. The employment of deep learning in image
annotation generates a high performance on the dataset or image based on the accurate pre-
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diction. In previous studies, bounding boxes were one of the most popular and recognized
image annotation methods. Annotators are expected to outline the object in bounding boxes
in accordance with the specified deep learning requirements. In addition, bounding boxes
are also one of the least expensive and time-consuming annotation methods available.

The application of deep learning in agriculture industries, as well as the technologies
presented to improve agriculture productivity, are studied in this article. The CNN type of
deep learning has been widely used in the agriculture sector since it promises to recognize
features from images without the need for human interaction. Moreover, the technique
provided superior classification and precision accuracy when compared to other techniques.
In this article, the implementation of various architectures of deep learning is discussed
in order to evaluate the method’s effectiveness in terms of plant and disease detection,
classification, counting and segmentation of plants. This review has found that deep
learning has high performance in image processing techniques.

Despite the efforts of numerous researchers, the task of developing a rapid and reliable
fruit detection system remains under investigation. This is due to a wide range of colors,
shape, sizes, textures and reflectance qualities of the fruit in field settings. Many advance-
ments of the architecture network were created to improve image detection, classification
and segmentation accuracy. It is crucial to find a suitable deep learning architecture in
order to produce high accuracy, low error rate and shorter training time. The architectures
of deep learning that are commonly used are summarized in this study. The results reveal
that ConvNet’s accuracy has been gradually improving over time in most circumstances.
Each learning-based algorithm evaluation is an important aspect of any project. The model
will generate satisfactory results when tested using a performance metric. Performance
metrics assist in identifying how effectively the model generalizes to new data. The major-
ity of the previous studies in this article employed the accuracy metric to evaluate model
performance. However, accuracy is inappropriate when interacting with imbalanced data,
in which the number of points in one class is significantly more than the number of points
in another. Other performance metrics, including the F1 score, recall and precision, can
help to overcome this accuracy issue. For recommendations, the training time and inac-
curacy in future studies on deep learning in agriculture should be reduced by employing
advancement of deep learning architecture.

The technique of deep learning can be used more widely in agriculture industries to
improve plant productivity and quality. To encourage the usage of greater intelligence,
deep learning can be integrated with other technologies such as robotics and the Internet of
Things (IoT). The use of deep learning in robotic harvesting, planting and logistics could be
beneficial. Using IoT technologies, farmers can boost yields by controlling every variable
in crop production, such as moisture levels, soil conditions, pest stress and microclimates.
Precision agriculture allows farmers to enhance efficiency and minimize expenses by pro-
viding more precise strategies for planting and growing crops. However, these technologies
may include all levels of security. It also addresses new particular security concerns such as
accuracy, device and data integrity. Security issues could consist of hijacking autonomous
devices such as UAVs and robots. If a malicious agent hijacks an autonomous system, the
hijacker can control and direct the device remotely without authorization. This type of
violence could have several consequences, including the inability of the system to fulfill a
task. The malfunction could result in significant losses due to incorrect crop management,
equipment damage and the autonomous system itself. Security concerns must be integrated
into the system to maximize their effectiveness. It is critical to create security schemes to
detect incidents and avoid corrupt or inconsistent data. As a result, advancing to the next
levels of robots and IoT technologies necessitates solutions with security measures that
provide dependability and accuracy in implementing these systems.

In addition, the requirement for massive amounts of labeled data remains a major
obstacle for supervised deep learning methods. This problem is particularly apparent in
the agriculture industry, where hundreds of images must first be annotated by humans
before training. In addition, the labeling process frequently needs the participation of some
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field experts who are in short supply. If there are not enough labeled data for supervised
learning algorithms to work, semi-supervised learning can be utilized in the agriculture
sector to solve real-world problems. Semi-supervised learning is an excellent compromise
between supervised and unsupervised learning. Researchers have spent the majority of
their time on organizing the data, therefore, semi-supervised learning allows working with
limited data. This learning is typically employed when labeling or acquiring data is too
complex or expensive. Additionally, it is also feasible to use it if the quality of labeled data
is poor.
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