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Abstract: Genotype environment interaction and stability performance were investigated on grain
yield per plot in eight environments during Rabi (here, rabi means that a crop has been grown in
Rabi season: crops that are sown in winter and harvested in spring in the Indian subcontinent)
2019–2020 and 2020–2021 using 100 diverse wheat genotypes. Research was conducted at Chaudhary
Charan Singh Haryana Agricultural University, Hisar, Haryana in India. The analysis of variance
revealed that genotype, environment and their interaction had a highly significant effect on the
yield as reflected in Eberhart and Russel model and The Eberhart and Russell model indicated the
suitability of the genotypes WH 1142, PBW 661, PBW 475 and DBW 17 with high mean, bi > 1
and non-significant deviation from regression to favorable environment, whereas the genotypes UP
2660 and DBW 88 with high mean, bi < 1 and non-significant deviation from regression were found
suitable for poor environment. The Additive Main Effects and Multipicative Interaction (AMMI)
analysis of variance for grain yield per plot across the environments showed that 26.41% of the
total variation was attributed to genotypic effects, 70.22% to environmental effects and 3.37% to
genotype × environment interaction effects. AMMI biplot study indicated the genotypes PBW 750,
DPW 621-50, WH 542, PBW 486, PBW 661 and WH 1192 stable across the environments as they did
not exert strong interactive forces; hence, they were selected as potential candidates for possible
release in the study areas. Furthermore, the which-won–where model indicated the adaptation of
genotypes PBW 706, PBW 769, DBW 116, WH 1157, WH 789 and WH1186 to first mega-environment
and genotypes DBW 16, WH 1152, WH 1105 and PBW 503 in the second. These genotypes could
be utilized in breeding programs to improve grain yield in bread wheat and may be used as stable
breeding material for commercial cultivation.

Keywords: AMMI biplot analysis; Eberhart and Russel model; GGE biplot; grain yield; stability; wheat

1. Introduction

Wheat is a staple food crop of many countries across the globe, including India, which
plays an important role in nutritional as well as food security. Additionally, it is an indus-
trial crop because the grain, along with stalk and chaff, serves as industrial raw materials,
which are also used as mulch, construction material and animal bedding. It contains good
nutrition profile with 12.1% protein, 1.8% lipids, 1.8% ash, 2.0% reducing sugars, 6.7% pen-
tosans, 59.2% starch and 70% total carbohydrates and provides 314 Kcal/100 g of food [1].
In India, wheat was cultivated over 31.45 million hectares with a record production of
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107.6 million tons during 2019–2020 [2]. It can be grown not only in tropical and sub-
tropical zones but also in temperate zone and the cold tracts of the far north, even beyond
the 600 North, Central Zone and Peninsular Zone due to its versatile genotype, which
has wide adaptation to diverse agro-ecological conditions. There are many constraints
in the breeding of wheat. Among them, droughts and high temperatures are the most
important limiting factors for crop production in the world [3]. Yield instability in wheat
under heat and moisture stress can be caused by accelerated phasic development, increase
in respiration [4], reduction in photosynthesis [5] and inhibition of starch synthesis in de-
veloping kernels, which affects both grain setting and grain filling. With looming negative
climate change impacts on crop productivity, there is a need to develop high buffering
wheat genotypes that adapt to diverse environmental conditions—more productive and
with more stable yield in changing climate conditions.

For the development of stable varieties, there must be a presence of large genetic di-
versity in the populations under study. From these populations, one can identify genotypes
showing wide stability under different environmental conditions. This is performed by un-
derstanding the interaction of genotype with the environment [6]. Genotype × Environment
Interaction (GEI) is a phenomenon related to the inconsistent performance under di-
verse environmental conditions, and it plays an important role in the performance of
genotypes under different environments [7]. G × E interaction reduces the efficiency
of selection and accuracy of varietal recommendation [8]. Due to this interaction of the
genotype × environment, it is necessary to study the genotype in the environment in-
teraction before introducing new high-yielding genotypes with high stability in different
environments. To reveal patterns of G × E Interaction, several statistical methods have been
developed, which are usually divided into two groups, parametric and non-parametric.
The parametric methods themselves are divided into two groups: univariate and multivari-
ate. Univariate methods include stability factor [9], a regression-based approach [10–13],
whereas multivariate methods include the AMMI (Additive Main Effects and Multipicative
Interaction) model [14] and Genotypic Main Effect plus Geotype by environment (GGE)
biplot analysis [15]. Eberhart and Russell (1966) suggested that regression coefficient ‘b’
and deviation from regression coefficient ‘S2d’ might predict stable genotype. A cultivar
with b = 1 and S2d = 0 might be stable across divergent environmental conditions [16]. In
addition, additive main effects and multiplicative interaction (AMMI) analysis has been
proved as a useful analytic approach for linear and non-linear response of genotypes over
the environmental conditions [17], which combines ANOVA (with additive parameters)
and principal component analysis (with multiplicative parameters) into a single analy-
sis [18] and interprets multi-environment data structure in breeding programs [19]. It is also
an effective tool to diagnose genotype environment interaction patterns graphically [20].
Furthermore, the GGE (genotype plus genotype by environment interaction) biplot pro-
cedure is an effective tool based on principal component analysis (PCA) to fully explore
multi-environment trials (METs) by partitioning G + GE into principal components through
singular value decomposition of environmentally centered yield data [21]. So, for the breed-
ers to develop a variety suitable for different environments, the analysis of the stability of
genotypes is the most important tool. In this study, 100 wheat genotypes were evaluated
for grain yield across different environments to identify stable genotypes for general and
specific adaptation in different sowing conditions and to estimate genotype × environment
interaction and stability parameters.

2. Material and Methods
2.1. Field Experimentation

The field experiment was conducted in four environments viz. irrigated, rainfed,
timely sown and terminal heat stress during two consecutive years of Rabi (here, Rabi
means a crop that has been grown in the Rabi season: crops that are sown in winter and
harvested in spring in the Indian subcontinent) 2019–2020 and 2020–2021 at Chaudhary
Charan Singh Haryana Agricultural University, Hisar, Haryana, India. The field, in timely
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sowing conditions, was sown in the third week of November (18 November) to provide
normal temperature to wheat crop in the reproductive and ripening stage. In the field of
terminal heat stress, sowing was delayed by a month (4th week of December; 22 December)
to provide higher temperature to wheat crop in the reproductive and ripening stage, which
causes heat stress. Table 1 represents codes used for different production environments.

Table 1. Codes used for production environments during 2019–2020 and 2020–2021.

Timely Sown (18 November) Late Sown (22 December)

Irrigated Rainfed Irrigated Rainfed

2019–2020 E1 E2 E3 E4

2020–2021 E5 E6 E7 E8

2.2. Plant Materials

The research was conducted with 100 wheat genotypes (Table 2) at research area,
Wheat and Barley section, Department of Genetics & Plant Breeding, CCS Haryana Agri-
cultural University, Hisar, India. The 100 wheat genotypes included in the experiment were
chosen on the basis of previous yield data, and the samples include both old cultivars that
were previously widely cultivated and newly bred genotypes having great importance for
today’s wheat production.

Table 2. List of 100 bread wheat genotypes used in the present study.

Serial No. Name of
Genotype

Serial
No.

Name of
Genotype

Serial
No.

Name of
Genotype

Serial
No.

Name of
Genotype

1 WH1182 26 PBW693 51 WH1184 76 WH789
2 PBW725 27 WH1188 52 WH1021 77 PBW750
3 WH1061 28 WH714 53 PBW503 78 DPW621-50
4 PBW729 29 PBW698 54 WH1158 79 WH542
5 PBW560 30 WH1062 55 WH1164 80 PBW486
6 PBW728 31 WH1105 56 WH1129 81 WH147
7 PBW721 32 DBW88 57 UP2902 82 WH1120
8 WH1139 33 PBW527 58 WH1166 83 PBW769
9 UP2565 34 PBW676 59 WH711 84 PB934
10 DBW136 35 WH283 60 WH1181 85 WH1192
11 WH1025 36 WH1138 61 DBW90 86 HD3086
12 WH1152 37 WH1153 62 WH1140 87 PBW163
13 PBW752 38 WH1175 63 WH1132 88 PBW712
14 PBW475 39 WH1235 64 PBW158 89 DBW129
15 PBW621 40 DBW233 65 PBW502 90 WH1124
16 PBW730 41 PBW528 66 UP2338 91 WH1264
17 WH1136 42 PBW88 67 DBW17 92 PBW762
18 WH730 43 PBW706 68 PBW123 93 WH1142
19 PBW343 44 WH1063 69 UP2906 94 WH1186
20 DBW116 45 WH1157 70 PBW681 95 DBW95
21 HD2967 46 PBW550 71 PBW677 96 PBW540
22 WH1151 47 UP2473 72 PBW763 97 PBW542
23 UP2660 48 UP2865 73 WH1123 98 PBW661
24 PBW695 49 PBW726 74 WH1080 99 WH1131
25 PBW709 50 C306 75 DBW16 100 PB533
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2.3. Experimental Design and Layout

The experiment was laid out in a Randomized Block Design (RBD) with 3 rows of 2 m
length each, in two replications. A row to row distance of 20 cm was maintained for both
dates of sowing. The observations were recorded on five randomly selected competitive
plants from each genotype in each replication.

2.4. Statistical Analysis

The combined analysis of variance of yield data over all environments, using genotype–
environment interaction data for stability analysis using the Eberhart and Russell model
(Tables 3 and 4), AMMI model and GGE biplot analysis was performed with the help of
INDOSTAT 8.1, Hyderabad, India and PB tools developed at IRRI, Philippines.

Table 3. Data collected from separate trials were analyzed as combined over the environments using
the following ANOVA outline:.

Source Df MSS F

Total (ger-1)

Treatment (ge-1)

Genotypes (g-1) MS1 MS1/MS3

Environment (e-1) MS2 MS2/MS3

Genotype Environment (g-1)(e-1) MS3 MS3/Mse

IPCA1 (G + E-1-2n) MS4 MS4/Mse

IPCA2 (G + E-1-2n)

Residual

Blocks (r-1)

Error (r-1)(ge-1) Mse
Here, Df = degree of freedom; MSS = mean sum of squares; g = genotypes; e = environment; ge = genotype by
environment, Mse = mean squared error; r = replication.

Table 4. Analysis of variance for stability based on Eberhart and Russell model.

Source of Variation Df MS F Value

Genotype (G) (g-1) MS1 MS1/MS3

Environment (E) (n-1) MS2 MS2/MS3

G × E (g-1) (n-1)

Environment (linear) 1

Genotype × Environment (linear) (g-1) MS3 MS3/MS4

Pooled Deviation g (n-2)

Genotype 1 (n-2)

Genotype 2 (n-2)

Pooled error n(g-1)(r-1) MS4

Total (ng-1)

The AMMI model equation is:

Yij = µ + gi + ej + Σλnαinγjn + θij

where
Yij = mean yield of ith genotype in the jth environment
µ = general mean
gi = ith genotypic effect
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ej = jth location effect
λn = eigen value of the Principal Component Axis n
αinγjn = ith genotype, jth environment Principle component analysis (PCA) scores for

the PCA axis
θij = residual
n = number of PCA axes retained in the model.
The equation for Eberhart and Russell model is:

Yij = µi + βiIj + Sij

where
Yij = Mean of the ith variety at the jth environment
µi = Mean of ith variety over all environments
βi = The regression coefficient that measures the response of ith variety to

varying environments
Sij = The deviation from regression of the ith variety at the jth environment
Ij = The environmental index obtained by subtracting the grand mean from the mean

of all varieties at the jth environment
Simultaneous study of the genotype plus genotype–environment interaction was per-

formed using GGE biplot, where GGE biplot used principal component consisting of a set of
elite lines scores multiplied by environment scores, which gives a two-dimensional biplot.

3. Results
3.1. Eberhart and Russell Model

The genotype–environment interaction component (GEI) was elaborated by using the
joint regression model of stability analysis [11]. The mean grain yield per plot among the
genotypes ranged from 394.30 to 841.60, with an overall population mean of 576.27. PBW
729 gave the maximum grain yield per plant (841.6), whereas minimum grain yield per
plot was observed in DBW 90 (394.3) (Table 5). Considering Eberhart and Russell’s model
of analysis, significant differences were revealed by a pooled analysis of variance for both
the main effects, genotypes and environments, as well as for interaction effects (Table 6).
No genotype had bi = 1 and S2di = 0; however, some genotypes, HD 3086, DBW 16, PBW
527, PBW 528, PBW 502 and PBW 503, had bi values near to one, showing that most of
these genotypes almost produced similar grain yield per plot under all the environments
(Table 5). Genotypes WH 1142 (µ = 622, bi = 1.158**, S2di = −1135.98), PBW 661 (µ = 609.50,
bi = 1.13**, S2di = −1299.38), PBW 475 (µ = 810.80, bi = 1.11*, S2di = −1056.61) and DBW
17 (µ = 606.70, bi = 1.10*, S2di = −1431.94) were observed to be stable in a rich (E5)
environment (Table 5), whereas for genotypes UP 2660 (µ = 594.10, bi = 0.99**, S2di = 341.71)
and DBW 88 (µ = 664.10, bi = 0.97*, S2di = 44.95), high means with lower bi values were
detected. The lower values of bi indicate that these genotypes show more resistance to the
unfavorable (E4) environment. The performance was unpredictable for the genotypes WH
1182, PBW 677, WH 1061, PBW 729, PBW 560, PBW 728 and PBW 721, as these genotypes
had significant deviations from regression.

Table 5. Stability parameters as per Eberhart and Russell, 1966 model for grain yield per plot of
100 wheat genotypes tested across the environments.

S. No Genotypes Grain Yield per Plot

Mean bi S2di

1 C 306 521.30 0.788 −1431.7637

2 HD 2967 668.40 0.968 700.1297

3 HD 3086 591.10 1.002 −1423.8511

4 DBW 16 562.30 1.008 −1431.7638
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Table 5. Cont.

S. No Genotypes Grain Yield per Plot

Mean bi S2di

5 DBW 17 606.70 1.108 ** −1431.9366

6 DBW 88 664.10 0.965 ** 44.9539

7 DBW 90 394.30 0.897 155.1777

8 DBW 95 415.10 0.990 −265.7533

9 DBW 116 551.80 1.008 703.1385

10 DBW 129 538.50 0.977 −1378.6330

11 DBW 136 776.30 0.965 −245.7541

12 DBW 233 655.10 0.945 44.9539

13 DPW 621-50 688.50 1.002 −1423.8439

14 PB 533 482.10 1.109 * −1208.4167

15 PB 934 498.50 1.002 −1423.8433

16 PBW 88 511.60 0.965 44.9544

17 PBW 123 543.20 0.957 −1207.4127

18 PBW 158 622.30 1.008 −1431.7640

19 PBW 163 545.00 1.002 −1423.8487

20 PBW 343 396.50 0.767 * −472.6532

21 PBW 475 810.80 1.105 ** 1056.6122

22 PBW 486 595.90 1.002 −1423.8325

23 PBW 502 599.60 1.007 −1432.1440

24 PBW 503 528.70 1.008 −1431.8938

25 PBW 527 656.50 0.965 54.0440

26 PBW 528 691.80 0.966 36.5229

27 PBW 540 454.00 1.039 −858.3855

28 PBW 542 569.50 1.130 ** −1299.3752

29 PBW 550 396.20 0.924 −411.0996

30 PBW 560 482.40 1.092 7855.5913 ***

31 PBW 621 408.10 0.823 659.4150

32 PBW 661 609.50 1.130 ** −1299.3753

33 PBW 676 616.10 0.965 44.9540

34 PBW 677 550.70 1.008 −1431.9195

35 PBW 681 614.60 1.008 −1432.0705

36 PBW 693 659.60 0.965 44.9539

37 PBW 695 710.70 0.935 40.9461

38 PBW 698 589.60 0.932 44.9541

39 PBW 706 398.80 0.806 * −706.5090

40 PBW 709 702.70 0.965 41.7894

41 PBW 712 562.50 1.002 −1423.8435

42 PBW 721 582.10 1.104 8679.9017 ***

43 PBW 725 517.40 1.061 7269.3556 ***

44 PBW 726 704.90 0.986 −1093.2270
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Table 5. Cont.

S. No Genotypes Grain Yield per Plot

Mean bi S2di

45 PBW 728 491.60 1.104 8679.9020 ***

46 PBW 729 841.60 1.104 8679.9007 ***

47 PBW 730 512.10 1.101 484.4683

48 PBW 750 735.10 1.060 2215.0743 *

49 PBW 752 708.50 1.002 −1423.8440

50 PBW 762 560.90 0.875 198.7622

51 PBW 763 601.60 0.978 −1372.5130

52 PBW 769 549.10 1.002 −1423.8500

53 UP 2338 669.40 1.008 −1431.4475

54 UP 2473 534.60 0.965 44.9543

55 UP 2565 708.80 0.965 −245.7539

56 UP 2660 594.10 0.987 ** 341.7076

57 UP 2865 528.20 0.965 42.4225

58 UP 2902 588.30 1.008 −1431.7639

59 UP 2906 524.60 1.008 −1432.0702

60 WH 147 522.90 1.002 −1423.8077

61 WH 283 689.60 0.965 44.9538

62 WH 542 636.50 1.002 −1423.8437

63 WH 711 475.20 1.008 −1431.9700

64 WH 714 542.20 0.965 43.0552

65 WH 730 661.10 1.101 484.4678

66 WH 789 503.90 1.005 −1431.1050

67 WH 1021 582.20 1.008 −1432.0206

68 WH 1025 644.20 1.012 −695.7495

69 WH 1061 478.80 1.053 6991.1393 ***

70 WH 1062 572.10 0.965 44.9542

71 WH 1063 432.80 0.623 * 1789.4185 *

72 WH 1080 556.40 1.008 −1431.4750

73 WH 1105 567.50 0.965 50.8702

74 WH 1120 530.00 1.002 −1423.8434

75 WH 1123 545.80 1.008 −1431.7638

76 WH 1124 751.20 1.047 −1279.7099

77 WH 1129 571.10 1.007 −1432.2321

78 WH 1131 509.00 1.130 ** −1299.5106

79 WH 1132 618.30 1.008 −1431.7640

80 WH 1136 498.60 1.101 484.4683

81 WH 1138 532.70 0.966 338.6289

82 WH 1139 535.90 1.035 388.8467

83 WH 1140 568.10 1.007 −1432.1681

84 WH 1142 622.00 1.158 ** −1135.9830
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Table 5. Cont.

S. No Genotypes Grain Yield per Plot

Mean bi S2di

85 WH 1151 772.40 1.008 700.1294

86 WH 1152 651.50 1.060 2199.6990 *

87 WH 1153 674.60 0.965 44.9539

88 WH 1157 409.60 0.965 44.9547

89 WH 1158 471.80 0.983 −1389.8129

90 WH 1164 467.50 0.997 −1405.2532

91 WH 1166 545.40 1.008 −1431.3627

92 WH 1175 589.60 0.965 44.9541

93 WH 1181 697.30 1.008 −1431.7643

94 WH 1182 791.60 1.104 8679.9009 ***

95 WH 1184 507.30 1.008 −1431.7637

96 WH 1186 459.20 1.028 −746.4416

97 WH 1188 518.50 0.965 55.5269

98 WH 1192 444.70 1.002 −1423.8488

99 WH 1235 579.60 0.965 44.9542

100 WH 1264 504.80 1.092 −882.0992

MEAN 576.30

STANDARD
ERROR 0.10

*, ** and *** = significance at 0.05, 0.01 and 0.001 level.

Table 6. Pooled analysis of variance of 100 genotypes across eight environmental conditions for grain
yield per plot in wheat (Eberhart and Russell, 1966 model).

Source DF Grain Yield
per Plot (g)

Genotype (Gen.) 99 77,289.410 ***

Environment (Env.) 7 2,906,548.000 ***

Gen. × Env. 693 1410.637 ***

Env. + (Gen. × Env.) 700 30,462.010 ***

Env. (Linear) 1 20,345,830.000 ***

Env. × Gen. (Linear) 99 1112.672 **

Pooled Deviation 600 1445.695 **

Pooled Error 792 891.864

Total 799 36,264.150
** and *** = significance at 0.01 and 0.001 level.

3.2. Environmental Indices

The environment index reveals the suitability of an environment at a particular loca-
tion. Estimates of environment index can provide the basis for identifying the favorable
environment for the expression of maximum potential of the genotype. The positive values
of environment indices conclude the favorable environment for genotypes. As indicated
by the environment index, E5 (260.03) showed highest yield and was found to be most
favorable production environment (Table 7).
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Table 7. Environmental indices for grain yield per plot across the environment in 100 wheat genotypes.

Trait
Environmental Index

Mean
E1 E2 E3 E4 E5 E6 E7 E8

GYP 225.028 −23.472 −144.559 −199.442 260.028 70.524 −68.416 −119.691 576.27

3.3. AMMI Biplot Analysis

G × E interaction study in multi-environment trials was also carried out by AMMI
model to increase the reliability of the multi-location trial analysis. The results of the
analysis of variance of the AMMI model revealed that grain yield is significantly (p < 0.001)
affected by environment, genotype and genotype–environment interaction, which ex-
plained 70.22%, 26.41% and 3.37% of the occurred variation, respectively. Furthermore, it
showed that two PC with significant differences cumulatively captured 93.14% of total GEI
as the first principal component of AMMI, explaining 80.52% of the genotype–environment
interaction, whereas the second principal component explained 12.62% of the genotype–
environment interaction (Table 8).

Table 8. Pooled analysis of variance for grain yield per plot of 100 wheat genotypes across different
environments using AMMI model.

Source Degree of
Freedom

Grain Yield
Per Plot % Explained

Trials 799 36,264.17 ***

Genotypes 99 77,289.54 *** 26.41

Environments 7 2,906,549.42 *** 70.22

G × E interaction 693 1410.62 *** 3.37

PCA I 105 7496.20 *** 80.52

PCA II 103 1197.47 * 12.62

PCA III 101 443.23 4.58

Pooled error 800 935.70
* and *** = significance at 0.05 and 0.001 level.

3.4. The AMMI 1 Model

The AMMI biplot has the main effect as grain yield per plot in the abscissa and the
IPCA1 as the ordinate where the genotypes or environments that lie on the same vertical
line have the same yield, and those that lie on the same horizontal line have the same
interaction pattern. In the AMMI 1 biplot, the elite wheat genotypes PBW 750, DPW 621-50,
WH 542, PBW 486, PBW 661 and WH 1192 are relatively stable genotypes in yield that are
broadly adapted lines (Figure 1).

The wheat genotypes HD 2967, WH 1151, UP 2660, PBW 676, WH 1182, PBW 729,
WH 1061, PBW 560, PBW 725 and PBW 721 are relatively unstable in yield because these
lines are far from the origin and can be specifically adapted to particular environment.
Especially, genotypes HD 2967, WH 1151, UP 2660 and PBW 676 were likely to perform
better in the E6 environment, whereas the genotypes WH 1182 and PBW 729 were identified
as specially adapted to environments E1 and E5, respectively. E8 was the most responsive
environment for genotypes WH 1061, PBW 560, PBW 725 and PBW 721 (Figure 1).

3.5. The AMMI2 Model

In AMMI2 biplot, the Interaction Principal Component Axes 1(IPCA1) and Interaction
Principal Component Axes 2 (IPCA2) scores are reported as the representation of the
stability of the lines across the environment; that is, the lines with the least PC scores
have high stability and vice versa, i.e., the more IPCA scores that approximate to zero,
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the more stable the genotypes are across all the locations. The environments E1 and E5
had comparatively short spokes, and they did not exert strong interactive forces, while
environments E2, E3, E4, E6, E7 and E8 had long spoke exert strong interaction (Figure 2).
Similarly, genotypes WH 1158, WH 1164 and PBW 726 were near the origin, so they were
non-sensitive to environmental interactive forces, while genotypes PBW 706, WH 1063,
PBW 343 and PBW 762 were away from the zero line, so they were the most responsive.
In this case, the best-adapted genotype with respect to site E4 was WH 1063, whereas the
genotypes WH 1152, PBW 752 and PBW 475 were tightly grouped in the sites E1, E2 and E5.
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3.6. GGE Biplot Analysis
Which-Won-Where Model

GGE biplot analysis, the most effective way of summarizing the genotype and genotype–
environment interaction of the dataset was used to identify the best line of each environment
and assess the stability of the lines. The most attractive feature of GGE biplots is the
polygon view, which addresses the ‘which-won-where’ pattern of multi environment data,
in which there is a graphical representation of crossover GE interaction, mega-environment
differentiation and specific genotype adaptation. The polygon is drawn by joining the
genotypes located farthest from the origin, such that all other genotypes are included
within the polygon. A genotype located at the edge is called a vertex genotype, and vertex
genotypes were the most responsive. In this biplot, genotypes DPW 621-50, DBW 16, PBW
88 and PBW 706 were the most responsive genotypes. The equality line divides the graph
into six sectors, and eight environments were retained in two sectors and partitioned into
two mega-environments, one with E1, E2, E3, E4 and E5, and the second with E6, E7 and
E8 (Figure 3). In the first mega-environment, the genotypes PBW 706, PBW 769, DBW 116,
WH 1157, WH 789 and WH1186 were the winning genotypes, and genotypes DBW 16,
WH 1152, WH 1105 and PBW 503 were those in the second (Figure 3).
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4. Discussion

A major goal of plant breeding programs is to increase stability and stabilize crop
yield over a range of environments. The most appropriate methods include identifying
desirable cultivars with high productivity genetic potential and testing wide adaptability
to most conditions by multi-condition experiments in target environments. The results of
pooled analysis of variance for stability as devised by Eberhart and Russell [11] and the
AMMI model showed that variance due to genotypes and environments was significant
for grain yield per plot, indicating that the performances of genotypes as well as the
environments were different; the genotypes also had differential responses to the changes
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in the environmental conditions. Similar results were reported by Dhiwar et al. [22] and
Attia et al. [23]. In this study, the four genotypes WH 1142, PBW 661, PBW 475 and DBW
17 had regression coefficients of 1.158, 1.13, 1.11 and 1.10 and were observed to be stable
in the rich (E5) environment. According to the E-R model, a slope of >1.0 with high mean
and non-significant squared deviation are suitable for a favorable environment [24]. Suresh
and Munjal [25] found four genotypes, namely HD 3059, WH 1105, HTW 66 and WH 1124,
with bi values significantly greater than 1 and with higher average productivity than the
overall mean; these conditions are suitable for high input and timely sowing conditions.

It is interesting to note that no genotype was stable for grain yield; however, some
genotypes, HD 3086, DBW 16, PBW 527, PBW 528, PBW 502 and PBW 503, almost produced
a similar grain yield per plot under all the environments. Similar results were reported
by Kumar et al. [26], who observed that the genotypes LOK-1, NI-5439 and HUW-468
were found stable across the environments with high mean value, bi values close to 1 and
non-significant deviation from regression. In this study, genotypes UP 2660 and DBW
88 were determined to be suitable for unfavorable environments, as genotypes with less
than unity regression value and non-significant squared deviation indicate suitability for
a poor environment [27]. The performance was unpredictable for genotypes WH 1182,
PBW 677, WH 1061, PBW 729, PBW 560, PBW 728 and PBW 721 with significant squared
deviation. For the genotypes exhibiting non-significant deviations from regression (S2di),
their performance can be predicted well, as the genotypes are within the range of minimum
deviation from regression [28].

The AMMI model explains the genotype–environment interaction [29], which is used
for reliable yield estimates [30], and provides a base of better use for other models [19].
AMMI revealed that a major part of the variation in yield is explained by environment,
which indicates that the environments were diverse. The results are line with the findings
of Ljubičić et al. [31] and Hanif et al. [32].

The AMMI1 biplot analysis revealed variation due to the main effect (grain yield) and
the interaction effect [33]. Genotypes and environments with IPCA1 scores close to zero
were characterized with low interaction effects, being considered stable [34]. In this study,
the wheat genotypes PBW 750, DPW 621-50, WH 542, PBW 486, PBW 661 and WH 1192
were identified as stable genotypes in yield, and the genotypes HD 2967, WH 1151, UP 2660,
PBW 676, WH 1182, PBW 729, WH 1061, PBW 560, PBW 725 and PBW 721 were unstable.
Similar to this research, Dabi et al. [35] also identified high-yielding and stable genotypes
ETBW 9080, ETBW 9172, ETBW 9646, ETBW 9396, ETBW 9452, ETBW 9136 and ETBW 9139,
inferring little interaction with the environment. Genotypes HD 2967, WH 1151, UP 2660
and PBW 676 far from the IPCA origin appeared to be adapted to a timely sown rainfed
environment, whereas the genotypes WH 1182 and PBW 729 were specially adapted to a
timely sown irrigated environment. Additionally, Bishwas et al. [36] identified the high-
responsive genotypes of wheat in irrigated and heat-stressed environments. Especially, NL
1179 was specifically adapted to an irrigated environment, and Gautam, NL 1404 and NL
1381 were specifically adapted to a terminal heat-stressed environment.

An AMMI2 biplot was devised using genotypic and environmental scores (IPCA1 ver-
sus IPCA2 scores), providing a good explanation of the data pattern to interpret genotypic
behaviors across different environments [37]. The IPCA 1 and IPCA 2 scores delineated the
stability of the lines across the environment—that is, the lines with the least PC scores do
not show an association with any environment, whereas a lower PC score means genotypes
show specific adaptation to a particular environment [38]. In the present study, genotypes
WH 1158, WH 1164 and PBW 726 were highly stable, while the genotypes PBW 706, WH
1063, PBW 343 and PBW 762 were the most responsive. According to the AMMI2 biplot,
timely sown irrigated environment was determined as the most favorable environment,
with the least interactive forces, and WH 1025 was highly adapted to this environment.
Similarly, Attia et al. [23] concluded East Barrani as most favorable environment for all
cultivars according to AMMI2 bi-plot and Sakha 94 was the superior cultivar in this envi-
ronment. Similar results were further confirmed by Verma and Singh [17] while analyzing
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the stability of wheat genotypes by AMMI in the Peninsular Zone of India. Therefore, the
above-mentioned genotypes were found most stable for grain yield and can be incorporated
as breeding stocks in any future breeding programs aiming to produce high yielding lines
of bread wheat.

The GGE biplot is a data visualization tool that allows an evaluation of environments
due to the discriminative ability and representativeness of the GGE view, which is an ad-
vantage over the AMMI biplot analysis [39]. The GGE biplot analysis is the most effective
way for a precise and useful interpretation of genotype–environment interactions as well
as interrelationships among various test environments and genotypes and identifies the
best line of each environment [40]. Genotypes and environments were analyzed together
through the which-won-where model of the GGE-biplot. The vectors were connected
furthest from the origin of the biplot, and a polygon was obtained. In this biplot, geno-
types DPW 621-50, DBW 16, PBW 88 and PBW 706 were the most responsive genotypes,
with crossover GE interaction, mega-environment differentiation and specific genotype
adaptation [41]. These vertex genotypes were the most responsive, located at the greatest
distance from the biplot origin [40]. The graph was then divided into six sectors, and eight
environments were retained in two sectors and partitioned into two mega-environments,
probably due to latitudinal and longitudinal differences [42]. Variation in the genotypic
performance within environments indicated the strong influence of environments and the
existence of a mega-environment [40,43,44].

5. Conclusions

This study indicated that genotype, environment and their interaction have a signifi-
cant effect on the yield stability as per the Eberhart and Russell model, AMMI and GGE
biplot. Further analysis of stability through the Eberhart and Russell model concluded that
elite wheat genotypes WH 1142, PBW 661, PBW 475 and DBW 17 were specifically adapted
to a timely sown irrigated environment during Rabi 2020–2021, whereas UP 2660 and DBW
88 were specifically adapted to late sown rainfed environment during Rabi 2019–2020. In
this experiment, PBW 750, DPW 621-50, WH 542, PBW 486, PBW 661 and WH 1192 were
found to be the most stable and high-yielding genotypes across all the test environments as
per AMMI biplot. All in all, these genotypes can be used as high-yielding lines, which are
stable too, and for farmers, WH 1142, PBW 661, PBW 475 and DBW 17 can be used for high
yield with adaptability in a timely sown irrigated environment, whereas genotypes UP 2660
and DBW 88 were adapted to a late-sown rainfed environment. These genotypes need to
be further tested in heat- and drought-stressed environments to ensure their performance
over the years.
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