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Abstract: In view of the difficulty in diagnosing and discriminating fault conditions during the
operation of combine harvesters, difficulty in real-time processing of health status, and low timeliness
of fault processing, a comprehensive operation and maintenance platform for combine harvesters
was developed in this study which realized the functions of data monitoring and the full operation
and maintenance of a combine harvester. At the same time, through the comprehensive operation
and maintenance platform, the harvester information was obtained in real-time, the diagnosis results
were obtained, and the maintenance service was effectively carried out through the platform. The
IPSO-SVM fault diagnosis algorithm was proposed, and the performance of the fault diagnosis of the
combine harvester was verified by the simulation test. The experimental verification showed that
the system met the requirements of remote monitoring of combine harvesters, and the prediction
accuracy of this method was 97.96%. Compared with SVM (87.51%), GA-SVM (89.44%), and PSO-
SVM (92.56%), this system had better generalization ability and effectively improved the management
level of the comprehensive operation and maintenance of the combine harvester. A theoretical basis
and technical reference will be provided for the follow-up research for the comprehensive operation
and maintenance platform of the combine harvester in this paper.

Keywords: fault diagnosis; comprehensive operation and maintenance; platform system simulation
analysis; model comparison

1. Introduction

Due to the harsh operating environment of the combine harvester in the field, and the
long-term centralized and continuous operation in cross-regional operations, it is easy for
harvester malfunctions to occur [1,2] which will affect harvesting quality and efficiency. The
traditional fault diagnosis of combine harvesters relies on the experience of the harvester
and agricultural machinery operator to predict and diagnose the fault [3,4]. However, it is
difficult to accurately judge the types of failure. Therefore, fault diagnosis technology has
been developed as support to keep the harvesting machinery running normally. Research
on fault diagnosis [5–7] can effectively carry out operation and maintenance service of
combine harvesters.

Fault diagnosis technology is widely used in rolling bearings [8], agricultural ma-
chinery operation [9], and other machinery [10,11]. In recent years, relevant research on
fault diagnosis has also been increasing [12–14]. In view of the fault diagnosis of combine
harvesters [15–17], experts and scholars adopted SDAE [18,19], random forest [20–22],
and SVM [23,24] to carry out the analysis and fault diagnosis of the combine harvester
by obtaining the monitoring data of combine harvesters. Due to the complex structure of
the equipment and the large number of parts to be diagnosed [25–27], the fusion of multi-
sensor signal features can increase the diversity and integrity of fault information [28,29].
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Zhou et al. [30] adopted the multi-parameter intelligent fault diagnosis method based on a
modified random forest algorithm (RFNB algorithm) which improved the fault diagnosis
accuracy and effectively reduced the impact of blockage fault on the operation of the forage
harvester. Qiu et al. [31] designed a remote monitoring system of combine harvester based
on multi-source information fusion which can not only realize effective monitoring of
combine harvester but also realize the functions of fault diagnosis and remote scheduling
guidance. Zhang et al. [32] established a bearing fault diagnosis method based on a stacked
denoising autoencoder network (SDAE) and support vector machine (SVM) which can
effectively improve the bearing fault identification accuracy of presses. Zhang et al. [33]
proposed a particle swarm optimization algorithm based on improved inertia weight and
acceleration factor to optimize SVM parameters. XIA et al. [19] proposed a fault diagnosis
framework for machine intelligence based on DT and deep transfer learning under the
condition of limited measured data. XU et al. [34] developed a novel depth structure
based on a novel sparse denoising autoencoder (NSDAE). Based on the improved particle
swarm optimization (IPSO-LSSVM), an intelligent diagnosis method for bearing faults was
proposed which can effectively improve the recognition accuracy and convergence rate.
There are many fault diagnoses for various types of equipment, but there is little feedback
and application of the output after fault diagnosis [35], such as system platform [36,37],
intelligent maintenance [38], maintenance response after fault diagnosis, and how to carry
out maintenance work [39].

A joint harvester fault diagnosis system was designed in this study and a comprehen-
sive operation and maintenance platform was developed. The purpose was to monitor and
diagnose the fault problems during the operation of the joint harvesting machine through
information technology and quickly realize the maintenance through the platform, which
also laid a foundation for the follow-up research of the comprehensive operation of the joint
harvester, so maintenance plans and repair services can be pushed to users in real-time.

2. Comprehensive Operation and Maintenance Structure Design for Combine
Harvester Fault Diagnosis
2.1. Fault Diagnosis Structure of Combine Harvester Operation

The combined harvester operation fault monitoring system based on comprehen-
sive operation and maintenance mainly included the Senke SK-15GB industrial computer
in Shanghai, China, and Advantech (ADVANTECH) USB-4761 data acquisition mod-
ule in Kunshan, China, Soway Technology’s SPH-318 speed sensor in Shenzhen, China,
TYHC/Tianyu Hengchuang CYT-302 dynamic torque sensor in Beijing, China and Hangya
YS-BJ02 industrial sound and light alarm device in Hangzhou, China, etc. Among them,
the SPH-318 speed sensor had an accuracy of less than 1%, linearity of less than 0.1%, a
detection distance of 0.5–3 mm, and a response frequency of 10 kHz. The dynamic torque
sensor had an accuracy of ±0.3% in the ambient temperature range of −20~60 ◦C, the
torque range was 0~1000 Nm, and the response frequency was 3 ms. The structure of the
fault diagnosis and monitoring module of the combine harvester is shown in Figure 1.

The fault diagnosis system of the combine harvester was mainly composed of a data
acquisition module and a fault diagnosis module. Among them, the acquisition module
mainly used sensors to collect information, such as the speed and torque changes during
the operation of the combine harvester, and stored and processed the collected information;
the fault diagnosis module mainly compared the collected signal with the normal signal
through the extraction of signal characteristics, realized the automatic fault diagnosis, and
output the diagnosis result. The fault diagnosis structure is shown in Figure 2.
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2.2. Comprehensive Operation and Maintenance Structure

Fault information is the basis of fault diagnosis, and comprehensive operation and
maintenance are the purposes of fault diagnosis. This includes the agricultural machinery
user client, maintenance personnel server, vehicle terminal, information collection and
operation, and maintenance platform.

On the service demand side, agricultural machinery users mainly use the APP to send
maintenance requests, reserve maintenance plans, and check maintenance instructions on
the operation and maintenance platform. Maintenance personnel are technicians of agri-
cultural machinery operation and maintenance service providers, providing door-to-door
service for harvester maintenance and receiving and sending maintenance instructions.

As the driving computer of agricultural machinery, the onboard terminal can view the
operating parameters, the positioning information, and the quality information of the har-
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vester in real-time. The information collected on the combine harvester is used to monitor
and send the information of key components of the harvester by the installation of sensors.

The comprehensive operation and maintenance platform provides application services
to service providers, operation and maintenance personnel, and agricultural machinery
users of manufacturing enterprises in the form of web applications and can be accessed
through browsers. Then, the operation and maintenance information can be received
and sent to agricultural users and technicians by the management in real-time. The fault
diagnosis model is the core of the harvester fault diagnosis. The collected monitoring data
and operating status data of each module of the harvester are determined through the
fault diagnosis model to determine the fault type. The fault information statistics are used
to realize the interaction with the system operation and maintenance management users,
realize the functions of fault information statistics, management, display, alarm, etc., and
provide services such as fault statistics and query. The overall operation and maintenance
architecture of the combine harvester is shown in Figure 3.

Agriculture 2022, 12, x FOR PEER REVIEW 4 of 17 
 

 

monitor and send the information of key components of the harvester by the installation 

of sensors. 

The comprehensive operation and maintenance platform provides application ser-

vices to service providers, operation and maintenance personnel, and agricultural ma-

chinery users of manufacturing enterprises in the form of web applications and can be 

accessed through browsers. Then, the operation and maintenance information can be re-

ceived and sent to agricultural users and technicians by the management in real-time. The 

fault diagnosis model is the core of the harvester fault diagnosis. The collected monitoring 

data and operating status data of each module of the harvester are determined through 

the fault diagnosis model to determine the fault type. The fault information statistics are 

used to realize the interaction with the system operation and maintenance management 

users, realize the functions of fault information statistics, management, display, alarm, 

etc., and provide services such as fault statistics and query. The overall operation and 

maintenance architecture of the combine harvester is shown in Figure 3. 

Agricultural machinery 

users

Request for 

service

Service 

Appointment

Combine harvester information 

collection

Combine harvester comprehensive 

operation and maintenance platform

Fault 

Statistics

Fault warning 

information

Maintenance 

guidance

Fault 

judg-

ment

Hardware device failure 

information

Harvester running status 

information

Online real-time diagnostic tips

GPRS module

Vehicle-mounted 

industrial computer

Combine Harvester 

Fault Diagnosis 

Model

Maintenance 

program

Maintenance staff

Power supply 

equipment

Work order 

information

service 

response

Request information for 

maintenance orders

Historical operation 

and maintenance data

positioning 

module

Operation and 

maintenance task 

statistics

Operation and 

maintenance personnel 

management

vehicle terminal

Path 

optimization

 

Figure 3. Overall operation and maintenance framework of combine harvester. 

3. Principle and Realization Process of Fault Diagnosis Algorithm 

3.1. SVM Classifier 

SVM is a machine learning algorithm based on the principle of structural risk mini-

mization, which was first used in pattern recognition. SVM has strong generalization per-

formance in solving fault diagnosis problems with few samples, while the problem of fault 

diagnosis in the operation process of combine harvesters is the lack of fault samples. 

Therefore, SVM was chosen as the fault classification algorithm under the actual situation 

of a few fault samples of combine harvesters. 

The basic idea of designing a nonlinear SVM model is to map the input vector x ∈ Rn 

to the high-dimensional feature space F through the pre-selected nonlinear mapping func-

tion and create the optimal classification hyperplane in this high-dimensional feature 

space F. As shown in Figure 4, it is supposed that the given dataset is {xi, yi}, i = 1, 2, ..., N, 

Figure 3. Overall operation and maintenance framework of combine harvester.

3. Principle and Realization Process of Fault Diagnosis Algorithm
3.1. SVM Classifier

SVM is a machine learning algorithm based on the principle of structural risk min-
imization, which was first used in pattern recognition. SVM has strong generalization
performance in solving fault diagnosis problems with few samples, while the problem of
fault diagnosis in the operation process of combine harvesters is the lack of fault samples.
Therefore, SVM was chosen as the fault classification algorithm under the actual situation
of a few fault samples of combine harvesters.

The basic idea of designing a nonlinear SVM model is to map the input vector x ∈ Rn to
the high-dimensional feature space F through the pre-selected nonlinear mapping function
and create the optimal classification hyperplane in this high-dimensional feature space
F. As shown in Figure 4, it is supposed that the given dataset is {xi, yi}, i = 1, 2, . . . , N,
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yi ∈ {−1, +1}, xi ∈ Rd, with triangles and crosses on the plane, respectively, represents the
two samples to be classified.
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The decision function of the optimal classification hyperplane is as follows:

y = sgn[(w · x) + b] (1)

In the formula: sgn(·) is the symbolic function, w is the weight vector, x is the input
vector, and b is a constant. After the data is mapped to the high-dimensional feature space
through the nonlinear mapping function ϕ(x), the classification decision function is

y = sgn[(w · ϕ(x)) + b] (2)

Constraints are

yi[(w · ϕ(xi)) + b]− 1 > 0; i = 1, 2, · · · , n (3)

xi refers to the i th training data, yi = ±1.
According to the VC dimension theory, to minimize the structural risk under the

above constraints, the mathematical process can be expressed as the following quadratic
programming problem:

minφ(w) = w · wT/2 (4)

Introducing the slack variable ξi ≥ 0. If the sample is accurately classified, then ξi = 0,
otherwise ξi > 0. Equation (3) becomes

yi[(w · ϕ(xi)) + b]− 1 + ξi > 0 (5)

The classification hyperplane should maximize the minimum distance between the
two types of samples and the hyperplane so the optimized objective function is as follows:

maxW(α) =
1
2

n

∑
j=1

aj −
1
2

n

∑
i=1

n

∑
j=1

aiajyiyj(xi, xj) (6)

In Equation (6), the penalty factor C represents the degree of penalty for misclassified
samples. Lagrange multipliers and quadratic programming optimization methods are used
in the minimization process, and the transformed dual problem is

maxW(α) =
1
2

n

∑
j=1

aj −
1
2

n

∑
i=1

n

∑
j=1

aiajyiyj(xi, xj) (7)
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s.t.
n

∑
i=1

aiyi = 0, 0 ≤ ai ≤ C(i = 1, 2, . . . , n) (8)

where αi is the Lagrange multiplier. Then the optimal decision function can be expressed as

f (x) = sgn

(
I

∑
i=1

yiai(xi, x) + b

)
(9)

In the formula: I is the number of support vectors. For nonlinear problems, it is neces-
sary to map the data to a higher-dimensional feature space through nonlinear mapping.
Assuming that the kernel function K (xi, x) is a nonlinear mapping function, the decision
function for

f (x) = sgn

(
I

∑
i=1

yiaiK(xi, x) + b

)
(10)

Since radial basis kernel function (RBF) only needs to determine one parameter, which
is beneficial to parameter optimization, RBF is selected as the kernel function in this paper:

K(xi, x) = exp
{
− x− xi

2

σ2

}
(11)

where σ is the kernel function parameter.
It is shown that the penalty parameter c and the kernel function parameter σ are the

main factors affecting the performance of SVM. In order to obtain a better generalization
ability of SVM, the particle swarm algorithm based on global optimization is used to find
the optimal penalty function parameters and kernel function parameters.

3.2. Improved PSO Optimization Algorithm

The particle swarm optimization algorithm is a global search algorithm evolved
from bird flock foraging. The “velocity-position” search method is adopted by POS,
which treats particles as points with only speed and position, ignoring the influence of
their mass and volume. Due to its simple concept and fast convergence, it has been
successfully applied in many fields [40,41]. The basic idea is that each particle flies at a
certain speed in the D-dimensional search space, and the particle’s own speed and optimal
position are dynamically adjusted by the fitness value function, individual particle flight
experience, and other particle flight experience, so as to obtain the optimal solution of the
optimization problem.

3.2.1. Improvement of Inertia Weight Search Method

The standard PSO algorithm linearly reduces the inertia weight w during the operation.
At this time, the search step size will become smaller and the iteration will gradually
converge to the extreme point. However, by only linearly reducing w, it will be difficult for
the algorithm to jump out once the algorithm enters the neighborhood of the local extreme
value, which will make the global optimization more difficult. To solve the problem, in
the iterative process, the global search ability and local search ability in the optimization
process can be balanced by the nonlinear reduction in parameter W. The inertia weight w is
improved as follows:

w =
s2

maxwmax − (wmax − wmin)× s2
maxs2

s2
max

(12)

where: wmax is the initial inertia weight, wmin is the final inertia weight, s is the current
number of iterations, and smax is the maximum number of iterations.
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3.2.2. Judgment of Premature Convergence

When there was no change in the historical optimal value Pbj of the particle itself during
X iterations or the global maximum Gbj within the particle swarm during Y iterations, it
was considered that the population has fallen into premature convergence, which indicates
that the swarm had fallen into or was about to fall into local optimal value. The larger
the value of X and Y, the looser the conditions for judging premature stagnation. The
premature stagnation calculators K1 and K2 were added to the PSO algorithm to calculate
the stagnation times. If the value of Pb or Gb was the same as the previous one, the value
of K1 or K2 was incremented by 1; otherwise, it was cleared to zero when the value of K1
and K2 reached the limit. X, Y, Pb and Gb were reset to make the particles jump out of the
local optimum.

Improvements to Pb:
Pb = rand× 2× Pb (13)

Improvements to Gb:

Gb =
1
m

m

∑
i=1

Gb (14)

The velocity and position equations of the swarm particles in the improved algorithm
are obtained as follows:

vij(t + 1) = w× vij(t) + rand(0, c1)× [Pbj(t)− xij(t)] + rand(0, c2)× [Gbj(t)− xij(t)] (15)

xij(t + 1) = xij(t) + vij(t + 1) (16)

In the formula, i is the i th particle; j = 1, 2, . . . , d, d represents the dimension of the
particle; w is the inertia weight; t is the number of iterations; c1, c2 are learning factors.

It can be seen from the theoretical analysis that invalid iterations can be reduced and
the convergence speed and optimization accuracy can be greatly improved by the algorithm.

3.3. IPSO-SVM Algorithm Implementation

The PSO optimization SVM algorithm has been widely used in the fault diagnosis of
combine harvesters, but after a lot of experiments, it was found that the particles in the
PSO-SVM optimization algorithm were prone to the phenomenon of “prematurity”, that
is, in the process of fault classification and diagnosis, the particles will gather in a specific
position. The implementation process of IPSO-SVM is shown in Figure 5.

Through the IPSO Algorithm 1, the optimal values of the penalty parameter c and the
kernel function parameter σ that minimize the SVM error are obtained, which are used for
SVM training and classification prediction.

Algorithm 1 Steps

Step 1: The penalty parameter c and the kernel parameter σ of the SVM are used as the variables
to be optimized, and real coding is performed.
Step 2: In the d-dimensional parameter space, m particles are randomly initialized, and their
positions and velocities are determined, that is, the SVM parameters are determined, and certain
input samples are selected to establish the SVM model.
Step 3: It is judged whether the termination condition is met. If so, the optimal individual is
output and assigned to the penalty parameter c and kernel parameter σ of the SVM.
Step 4: If it was not suitable, the SVM was trained to calculate and evaluate the particle fitness
value. After the suspension condition is met, the optimal parameters are output and classified.
Step 5: If the optimal parameters are not output, the speed and position of the particles will be
iteratively searched and updated, the SWM will be retrained, and r the fitness of the particles will
be re-evaluated. After the suspension conditions are met, the optimal parameters will be output
and classified; otherwise, the velocity and position of particles will be iteratively searched and
updated all the time.
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3.4. Comprehensive Operation and Maintenance Architecture

The comprehensive operation and maintenance consist of the perception layer, the
network layer, and the application layer, as shown in Figure 6.

 

 
 
 
 Figure 6 and Figure 7(a)  

Figure 6. Overall operation and maintenance system diagram.
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Perception layer: the sensor was installed on the monitoring object of the combine
harvester to monitor the operation status, operation quality, operation status, and other
data of the combine harvester.

Network layer: The operation and maintenance platform of agricultural machinery
was deployed in the service provider center of agricultural machinery enterprises, including
the oracle database system, JRE operating environment, and security control equipment.
As shown in Figure 7, the platform was provided in the form of a B/S application system
and was realized by a multi-layer hierarchical structure which mainly included: service
order management, service maintenance network management, maintenance personnel
work management, agricultural machinery user reporting management, operation and
maintenance data upload, maintenance guidance automatic push management, and data
import and export modules.
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Application layer: The data was shared between the handheld terminal of agricultural
machinery users, the comprehensive operation and maintenance platform, and the data
monitoring vehicle terminal of the harvester. As shown in Figure 8, the mobile terminal
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system operated based on the service provided by the mobile device communication
operator. The agricultural machinery user terminal can actively apply to the platform
for repairs, harvester status information, service network viewing, path planning, service
maintenance evaluation, etc., which was convenient for agricultural machinery users to
understand the condition of the harvester in real-time and, at the same time, it can receive
information on the operation and maintenance platform and optimal maintenance services
program. Combined with the results of condition monitoring and diagnosis, and self-
selected service and maintenance methods and time, it can interact with the platform
information in real-time to obtain optimal service plans and provide technical guarantees
for operation, maintenance, overhaul, and equipment supervision.
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4. Results and Discussion
4.1. Experiment Material

In order to test the performance of the model in the actual operating environment, a
combined harvesting mechanism test was conducted in Wulian District, Rizhao City in
March 2022, as shown in Figure 9. The test model is the Wuzheng 4YZP-4X corn harvester,
with a variety of R1377, a grain-grass ratio of 1.06, grain moisture of 23.7%, and stem
moisture of 32.4%. The cutting width of the combine is 4.75 m and the feeding amount is
6 kg/h. Due to the unpredictability and infrequent occurrence of natural failures, manual
intervention was used to fail during testing, resulting in specific failures of the harvester,
according to the transmission roadmap and the failure situation of the combine harvester.

According to GB/T 8097-2008 “Test Method for Harvesting Machinery Combine
Harvester”, the performance of the designed IPSO-SVM model was investigated, and the
fault identification accuracy was selected as the test index.

accuracy =
ρ

total
× 100% (17)

where accuracy is the fault recognition accuracy rate of the IPSO-SVM model, %; ρ is the
number of samples that are correctly diagnosed by the model; and the total is the number
of samples that the model has diagnosed accumulatively.



Agriculture 2022, 12, 893 11 of 17

Agriculture 2022, 12, x FOR PEER REVIEW 11 of 17 
 

 

In order to test the performance of the model in the actual operating environment, a 

combined harvesting mechanism test was conducted in Wulian District, Rizhao City in 

March 2022, as shown in Figure 9. The test model is the Wuzheng 4YZP-4X corn harvester, 

with a variety of R1377, a grain-grass ratio of 1.06, grain moisture of 23.7%, and stem 

moisture of 32.4%. The cutting width of the combine is 4.75 m and the feeding amount is 

6 kg/h. Due to the unpredictability and infrequent occurrence of natural failures, manual 

intervention was used to fail during testing, resulting in specific failures of the harvester, 

according to the transmission roadmap and the failure situation of the combine harvester. 

Normal rotation Belt loose, idling

Data 

generation

Normal 

rotation
Broken chain

Data 

collection

Normal Blocking

WODE

 

Figure 9. Fault diagnosis and monitoring test of combine harvester. 

According to GB/T 8097-2008 “Test Method for Harvesting Machinery Combine Har-

vester”, the performance of the designed IPSO-SVM model was investigated, and the fault 

identification accuracy was selected as the test index. 

 accuracy 100%
 total


=   (17) 

where accuracy is the fault recognition accuracy rate of the IPSO-SVM model, %; ρ is the 

number of samples that are correctly diagnosed by the model; and the total is the number 

of samples that the model has diagnosed accumulatively. 

4.2. Data Extraction and Processing 

4.2.1. Data Extraction 

Through the data acquisition system, the information on the main working parts of 

the combine harvester in the field was collected, mainly including the speed of the feeding 

auger, the speed of the conveyor chain rake, the speed of the threshing drum, the speed 

of the fan, and the speed of the drafter. Table 1 shows the working data during the failure 

experiment. 

Table 1. Collected data of fault diagnosis tasks. 

Number 
Feeding Auger 

Speed/(r·min−1) 

Fan 

Speed/(r·min−1) 

Conveyor Chain Rake 

Speed/(r·min−1) 

Threshing Drum 

Speed/(r·min−1) 

Stepper 

Speed/(r·min−1) 

1 247.69 1533.45 559.72 738.91 173.68 

2 234.59 1485.25 581.22 758.33 174.18 

3 259.38 1496.25 545.33 749.35 174.68 

4 232.65 1280.33 521.45 759.33 175.18 

Figure 9. Fault diagnosis and monitoring test of combine harvester.

4.2. Data Extraction and Processing
4.2.1. Data Extraction

Through the data acquisition system, the information on the main working parts
of the combine harvester in the field was collected, mainly including the speed of the
feeding auger, the speed of the conveyor chain rake, the speed of the threshing drum, the
speed of the fan, and the speed of the drafter. Table 1 shows the working data during the
failure experiment.

Table 1. Collected data of fault diagnosis tasks.

Number Feeding Auger
Speed/(r·min−1)

Fan
Speed/(r·min−1)

Conveyor Chain Rake
Speed/(r·min−1)

Threshing Drum
Speed/(r·min−1)

Stepper
Speed/(r·min−1)

1 247.69 1533.45 559.72 738.91 173.68
2 234.59 1485.25 581.22 758.33 174.18
3 259.38 1496.25 545.33 749.35 174.68
4 232.65 1280.33 521.45 759.33 175.18
5 241.34 1652.15 529.12 744.52 175.68
6 238.73 1435.95 535.18 759.74 171.18
7 237.24 1399.16 536.65 724.96 176.68
8 141.19 1533.45 159.71 146.18 48.24
9 85.81 1533.45 66.12 0 13.28

10 41.22 1533.45 0 0 23.56
11 231.18 1507.34 533.18 755.84 176.15
12 239.94 1518.65 545.18 721.06 176.61
13 258.49 1529.54 531.65 746.44 177.07
14 243.24 1540.13 554.98 751.54 177.53
15 235.57 1551.64 523.31 748.22 177.99
16 230.34 1562.36 535.18 725.24 178.45
17 41.22 1521.45 0 0 23.85
18 235.81 1584.65 527.98 732.38 179.37
19 234.34 1495.28 571.68 747.34 179.83
20 232.82 1606.54 541.14 742.82 180.29

4.2.2. Data Preprocessing

Due to the interference of the system in the test, the raw speed data collected had
0 values, abnormal values, and missing values, so it was necessary to preprocess the
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test data. If all attributes in a sample were 0, the sample would be deleted; for outliers
exceeding the maximum speed of the corresponding part, they would be replaced by linear
interpolation; for missing values, they would be filled by spline interpolation. The collected
data were divided into five types of fault samples. After data preprocessing, a total of
2700 data samples were obtained, including 1650 data samples of the normal operation of
combine harvesters, 178 data samples of feeding auger clogging, 163 data samples of fan
clogging, 229 data samples of conveyor chain rake clogging, 180 threshing drum clogging
data samples, and 300 scraper belt slip data samples. The data distribution is shown
in Table 2.

Table 2. The distribution of the number of training and test sets.

Data Total
Data Normal Feeding Auger

Clogged
Fan

Failure
Conveyor Chain

Rake Clogged
Threshing

Drum Clogged
The Scraper
Belt Is Loose

Training set 2000 1350 140 127 185 140 247
Test set 700 300 38 36 44 40 53

For six data types, 100 groups of samples were collected for each category, and a total
of 600 samples were selected. They were then randomly divided into two parts, 60 of
each data type were selected as training samples, and the remaining 40 as test samples,
and normalized. Five main types of combine harvester failure data were set, and six
data types were selected for data collection and testing, namely, the auger drive chain
was broken, the breakaway drum was broken, the scraper was broken, the transmission
chain and the drive chain of the rake were broken, and the fan pulley belt was loose and
normal. The corresponding main fault parameter changes are shown in Table 3 when the
above-mentioned faults occurred in the harvester.

Table 3. Changes of main parameters of five types of combine harvesters.

Fault Location Fault Type Changes

Feed the auger Broken auger drive chain Header auger does not turn
Threshing drum Threshing drum clogged Unable to thresh off the drum

stepper The stepper is clogged The stepper does not move

Conveyor chain rake Conveyor chain rake drive
chain broken

Conveyor is blocked or
does not turn

Fan Loose and broken fan pulley belt Fan does not turn

4.3. Fault Diagnosis Modeling and Verification

The sample data collected by the water combine harvester fault information in the
Matlab R2018a software were selected for fault diagnosis. A total of 300 samples were
selected and were randomly divided into two parts in which 30 samples were selected
as training samples and the remaining 20 samples as test samples. It can be seen from
Figure 10 that the diagnostic errors mainly occurred in the second to sixth types of faults.
Among them, IPSO-SVM classifier diagnosis errors occurred three times, respectively, one
data error of the second type of fault was wrongly divided into the third type, one data
error of the third type of fault was wrongly divided into the fourth type, and one data
error of the fifth type of fault was wrongly classified into the sixth category, which mainly
improved the diagnostic accuracy of the fourth and sixth categories of faults compared
with the GA-SVM and PSO-SVM classifiers.

The test results of the IPSO-SVM model in the experimental data test set are shown in
Table 4. Two of the feed auger clogging samples were mistaken as threshing drum clogging,
and one fan failure was mistaken as conveyor chain rake clogging. The reason for the
identification error was that the feeding auger and the disengaging drum belonged to the
same transmission structure, and the fan and the conveyor chain rake belonged to the same
transmission belt transmission system.
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Figure 10. Classification results of four classifiers for combine harvester failures. (a) SVM diag-
nostic result, (b) PSO-SVM diagnostic result, (c) GA-SVM diagnostic result, and (d) IPSO-SVM
diagnostic result.

Table 4. The fault identification results of the IPSO-SVM model on the test set data.

Operation Faults Number of
Samples

Number of
Correct Classification

Number of
Error Classification

Accuracy
Rate/%

Normal 364 364 0 100
Feeding auger clogged 55 53 0 96.36

Fan failure 37 36 1 97.30
Conveyor chain rake clogged 25 25 0 100

Threshing drum clogged 17 16 1 94.11
Scraper belt is loose 72 72 0 100

Average recognition accuracy 97.96

The experimental results showed that the average recognition rate of the system was
97.96%. Among them, the failure recognition rate of the threshing drum was only 94.11%,
which was mainly due to the accelerated rise and sudden decrease in the engine speed
of the combine harvester during the data collection process and the idling process of the
speed of the threshing drum, resulting in fuzzy judgment. For the fan and the feeding
auger, the recognition rates were 97.30% and 96.36%, respectively. The fan was driven by
the fan pulley, and the feeding auger was driven by the intermediate shaft of the header,
relatively independent.

The classification accuracy was selected as the performance evaluation index, and four
methods of SVM, PSO-SVM, GA-SVM, and IPSO-SVM were used to classify the faults of
the selected dataset. The parameter was set to m as 20, and the maximum value of inertia
weight w was 1.40; the minimum value of w was 0.4, the acceleration parameter c1 was
1.6, c2 was 1.8, the number of iterations X was 4, Y was 6, the improved IPSO optimization
parameters were better than the PSO algorithm, and the IPSO optimization results were
the best. When the optimal parameters c and σ were 3.281 and 0.407, respectively, the
IPSO-SVM model had the best performance, and the recognition accuracy was 97.96%,
better than that of the PSO-SVM model.

In this study, SVM, PSO-SVM, GA-SVM, and IPSO-SVM were used to classify the
faults of the selected data set. In order to ensure the accuracy of the experimental results,
2700 data samples were selected for the experiment. The prediction accuracy of the four
methods is shown in Table 5. The correct samples and the wrong samples were classified,
respectively, to judge the accuracy.
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Table 5. The diagnosis results from the fault diagnosis system of the combine harvester.

Method

Optimized Model Parameters
Classification

Time/s
Normal Sample

Accuracy/%
Fault Sample
Accuracy/%

Average
Accuracy/%Penalty

Factor c
Kernel

Function σ

IPSO-SVM 3.281 0.407 7.9524 97.99 97.91 97.96
PSO-SVM 3.674 0.571 100.0000 90.57 94.55 92.56
GA-SVM 2.455 4.523 9.8772 89.93 88.95 89.44

SVM 21.2399 5.158 8.2145 86.67 88.35 87.51

It can be seen from Table 5 that the accuracy of IPSO-SVM was higher than that of
the other three algorithms, and compared with PSO-SVM, the recognition accuracy of
IPSO-SVM reached 97.96%. Therefore, judging from the accuracy of model classification,
the classification performance of the IPSO-SVM classifier was more stable; it was not as
easy to fall into the local optimal solution as the PSO-SVM classifier, which led to a decrease
in classification accuracy.

4.4. Discussion

First, a combine harvester fault diagnosis and remote operation and maintenance
system was developed, and the fault diagnosis of the harvester operation was carried out.
At the same time, based on the smart agricultural scenario, a comprehensive operation and
maintenance platform for combine harvesters was developed, and a ladder-type operation
and maintenance method was realized based on fault diagnosis technology, including
fault maintenance push, etc., so as to provide a basis for the further development of
comprehensive operation and maintenance technology of combine harvesters.

In view of the fault diagnosis method proposed in this paper, based on the developed
speed sensor for the harvester operation data monitoring and acquisition system, the
application verification and comparative analysis were carried out through the data set,
which effectively improved the fault diagnosis accuracy of the combine harvester, but the
method as well. However, there are some problems, such as: in the diagnosis process, the
fault type was wrongly judged and the problems of separation from the drum and the
auger were wrongly judged to be the same fault type. The main problem was that only
one factor was considered. Because the transmission structure of the combine harvester
was connected, in the future research process, a variety of different sensors should be
used to study the failure problems of the combine harvester, and the machine learning
algorithm could be used to adjust the monitoring data types and weight ratio to achieve
better discrimination.

In this study, the design of the combine harvester data acquisition system, the design
of the fault diagnosis system, and the construction of the comprehensive operation and
maintenance platform of the combine harvester were carried out. Based on the full-cycle
operation and maintenance service technology of the combine harvester, later researchers
can mainly carry out fault information transmission, service, and maintenance resource
allocation and scheduling, which will be the most important part of future research.

5. Conclusions

The goal of this research was to provide a fault diagnosis system for combine har-
vesters, and at the same time, an operation and maintenance service platform was devel-
oped to feed back information to the manufacturer’s management center in real time, so as
to provide reliable maintenance measures for agricultural machinery operators in advance,
diagnose the failure of combine harvesters accurately, send failure information quickly, and
push maintenance plans to agricultural machinery users.

The SVM classifier has been widely used in the research of fault diagnosis, but its
classification accuracy is largely related to the selection of the penalty parameter c and
the kernel function parameter g. In this paper, an improved particle swarm algorithm
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was proposed to optimize the SVM penalty factor and kernel function width. In the
improved algorithm, the inertia weight was gradually reduced in the iteration to balance
the global search ability and local search ability of the population. The fault diagnosis of the
combine harvester was taken as the research object and, through the collected combined
harvesting, the fault diagnosis effect was verified by using the machine operation data set,
and the penalty factor c of the support vector machine and the parameter σ of the kernel
function were optimized. The final fault diagnosis rate of IPSO-SVM was 95.58%. The
IPSO-SVM algorithm improved the accuracy of combine harvester failure prediction, and
the effectiveness of the algorithm was verified in practice.

Based on the comprehensive operation and maintenance system platform of the
corn combine harvester fault diagnosis method, the simulation and comparison of IPSO-
SVM with SVM, GA-SVM, and PSO-SVM were carried out. The verification showed
that the accuracy of the failure prediction of the combine harvester was improved, and a
new method was provided for research of the failure diagnosis of the combine harvester.
However, we only used artificial faults to simulate field conditions. Compared with field
operations, there may be a certain accuracy error. We will continue to carry out related
technical research in a later stage.
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