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Abstract: Most convolutional neural network (CNN) models have various difficulties in identifying
crop diseases owing to morphological and physiological changes in crop tissues, and cells. Further-
more, a single crop disease can show different symptoms. Usually, the differences in symptoms
between early crop disease and late crop disease stages include the area of disease and color of
disease. This also poses additional difficulties for CNN models. Here, we propose a lightweight CNN
model called GrapeNet for the identification of different symptom stages for specific grape diseases.
The main components of GrapeNet are residual blocks, residual feature fusion blocks (RFFBs), and
convolution block attention modules. The residual blocks are used to deepen the network depth
and extract rich features. To alleviate the CNN performance degradation associated with a large
number of hidden layers, we designed an RFFB module based on the residual block. It fuses the
average pooled feature map before the residual block input and the high-dimensional feature maps
after the residual block output by a concatenation operation, thereby achieving feature fusion at
different depths. In addition, the convolutional block attention module (CBAM) is introduced after
each RFFB module to extract valid disease information. The obtained results show that the identifica-
tion accuracy was determined as 82.99%, 84.01%, 82.74%, 84.77%, 80.96%, 82.74%, 80.96%, 83.76%,
and 86.29% for GoogLeNet, Vgg16, ResNet34, DenseNet121, MobileNetV2, MobileNetV3_large,
ShuffleNetV2_×1.0, EfficientNetV2_s, and GrapeNet. The GrapeNet model achieved the best classifi-
cation performance when compared with other classical models. The total number of parameters of
the GrapeNet model only included 2.15 million. Compared with DenseNet121, which has the highest
accuracy among classical network models, the number of parameters of GrapeNet was reduced by
4.81 million, thereby reducing the training time of GrapeNet by about two times compared with that
of DenseNet121. Moreover, the visualization results of Grad-cam indicate that the introduction of
CBAM can emphasize disease information and suppress irrelevant information. The overall results
suggest that the GrapeNet model is useful for the automatic identification of grape leaf diseases.

Keywords: convolutional neural network; residual block; attention mechanism; grape leaf disease

1. Introduction

Grapes are one of the most popular fruits in the world and also the main raw material
for the production of wine, thus the yield and quality of grapes are of substantial economic
value [1]. However, grape leaves are susceptible to various diseases that are influenced by
the weather as well as the environment, and mainly caused by fungi, viruses, and bacteria.
If the diseased leaves of grapes are not effectively controlled, the disease spreads to the
whole plant, thereby affecting the quality and yield of grapes. In the early days, grape
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leaf disease identification was mainly conducted by means of classic phytopathology [2];
however, manual identification is time-consuming and labor-intensive. The growing
area of land used for grape production makes manual identification methods unreliable.
Therefore, automatic identification of grape leaf disease is of great significance for the
future development of grape production [3].

With the rapid development of computer technology, a new visual recognition method
based on machine learning [4], has been employed for disease recognition. Using machine
learning methods to identify crop diseases generally involves three steps: spot segmen-
tation, feature extraction, and classifier recognition [5]. Majumdar et al. extracted wheat
disease characteristics and used artificial neural networks (ANNs) to classify diseases,
achieving an accuracy of 85% [6]. Guru et al. presented a novel algorithm for extracting
lesion areas and applying the probabilistic neural network (PNN) to classify seedling
diseases such as anthracnose and frog-eye spots on tobacco leaves, achieving an accuracy of
88.59% [7]. Rumpf et al. accomplished early disease identification of sugar beets using sup-
port vector machine (SVM) and hyperspectral techniques [8]. Their experiments showed an
accuracy of 97% for healthy and diseased leaves of sugar beets. Moreover, Padol et al. used
the SVM classification technique to detect and classify grape leaf diseases [9]. First, the
diseased region is identified using segmentation by K-means clustering, and then useful
features are extracted. Finally, SVM classification is used to classify the categories of grape
leaf diseases, achieving an accuracy of 88.89%. The abovementioned results indicate that
it is feasible to use machine learning to identify crop diseases. However, its cumbersome
steps lead to low recognition efficiency, and the artificially extracted features are subject to
a certain degree of subjectivity, resulting in low recognition accuracy.

Convolutional neural network (CNN) models have been widely used in various
application fields, such as facial recognition [10] and license plate detection [11]. The CNN
models use sliding window extraction to automatically extract image features and then
use fully connected layers for classification to implement an end-to-end disease detection
model. Recently, CNN models were used to detect and identify crop diseases instead
of traditional machine learning methods [12]. Liu et al. proposed a novel recognition
approach based on an improved CNN model for the diagnosis of grape leaf diseases [13].
In this approach, a dense connectivity strategy was introduced to encourage feature reuse
and strengthen feature propagation. Finally, a new CNN model named DICNN was built
and trained from scratch and achieved an accuracy of 97.22%. Tang et al. proposed a novel
method based on a lightweight CNN applying the channel-wise attention mechanism.
ShuffleNetV1 and ShuffleNetV2 were chosen as the backbones [14]. The results showed
that the proposed model achieved a best trained accuracy of 99.14%, and the model size
was only 4.2 MB. Mohanty et al. used GoogLeNet to identify plant disease images from
PlantVillage. After GoogLeNet was trained with two methods of training from scratch and
isomorphic transfer learning, the accuracy rates were 98.36% and 99.35%, respectively [15].
Pandian et al. proposed a CNN model for image-based plant leaf disease identification
using data augmentation and hyperparameter optimization techniques [16]. The results
show that the model achieved an accuracy of 98.41% and illustrate the importance of
data augmentation techniques and hyperparameter optimization techniques. Chan et al.
proposed an early diagnosis method for apple tree leaf diseases based on a deep CNN [17].
The CNN combines DenseNet and Xception, using global average pooling to replace fully
connected layers. It achieved an overall accuracy of 98.82% in identifying apple tree leaf
diseases. Gao et al. proposed a dual-branch, efficient, channel attention (DECA)-based crop
disease recognition model, and the recognition accuracy of the model was 86.65%, 99.74%,
and 98.54% on the datasets of PlantVillage, AI Challenger 2018, and Cucumber disease,
respectively [18]. Chen et al. introduced the Location-wise Soft Attention mechanism to the
pre-trained MobileNetV2 [19]. Furthermore, a two-phase progressive strategy was executed
for model training. The experimental results showed that the average accuracy of the model
was 99.71% on the open-source dataset. Zeng et al. proposed a lightweight dense-scale
network (LDSNet) for corn leaf disease identification under field conditions [20]. The
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accuracy of the optimized model on the test data was 95.4%. Kamal et al. proposed a novel
deep-separable convolution block, through which MobileNet was able to construct just a
few parameters with an accuracy of 98.34% on the PlantVillage dataset [21].

The findings of the abovementioned studies confirm that CNN models have advan-
tages in crop disease identification. However, the objectives of these studies were based
on the classification of different disease categories. The classification of different stages of
specific diseases was so far neglected. However, accurate identification of different symp-
tom stages of a distinct disease has potential value in modern agriculture. The objective of
this study was to examine three defined grape leaf diseases. To that end, the symptoms
of the same grape disease were divided into two stages (general symptoms and severe
symptoms). We present a well-designed CNN model to provide a novel method for the
identification of grape leaf diseases. The main objections of this study were as follows:

(1) Proposing a lightweight CNN model, named GrapeNet, based on residual feature fu-
sion block (RFFB) modules and convolutional block attention modules (CBAMs) [22],
for the identification of different symptom stages for specific grape diseases.

(2) Implementing ablation experiments and visualization of results of the model to verify
the effectiveness of the RFFB modules and the CBAM modules, respectively.

(3) Comparing GrapeNet with other classical network models to verify the performance
advantages of GrapeNet.

2. Materials and Methods
2.1. Image Acquisition

In this study, we obtained seven types of grape leaves in the AI challenger 2018 dataset,
for a total of 2850 grape leaf images, including 2456 in the training set and 394 in the test
set. Representative images are shown in Figure 1. As the same disease is divided into
general and serious symptoms, the inter-class variance in the dataset is small. Therefore, it
is challenging for a CNN model to identify the disease accurately.
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Figure 1. Examples of grape leaves. (a) Grape healthy leaf (GH). (b) Grape black rot fungus with
general symptoms (BRF_G). (c) Grape black rot fungus with serious symptoms (BRF_S). (d) Grape
black measles fungus with general symptoms (BMF_G). (e) Grape black measles fungus with serious
symptoms (BMF_S). (f) Grape leaf blight fungus with general symptoms (LBF_G). (g) Grape leaf
blight fungus with serious symptoms (LBF_S).
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2.2. Image Preprocessing

The number of grape disease samples was limited, and the number of samples of
different categories was not evenly distributed. To reduce overfitting during model training
and enhance the generalization ability of the model, the dataset had to be expanded. The
following operations were carried out. First, we redivided the training set into a training set
and validation set in the ratio of 9:1 and performed data augmentation on the new training
set through some operations such as rotation, color enhancement, contrast enhancement,
and Gaussian noise. Some of the expanded images are shown in Figure 2. Thereafter, the
validation set and test set did not need to be expanded. The validation set was used to
verify whether the model training fits, and the test set was used to test the performance of
the model. The sample distribution before and after augmentation is shown in Table 1.
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Figure 2. Some of the expanded images. (a) Original image. (b) Image expanded by Gaussian noise.
(c) Image expanded by contrast enhancement. (d) Image expanded by horizontal flip. (e) Image
expanded by a rotation of 90 degrees counter-clockwise. (f) Image expanded by a rotation of
60 degrees counter-clockwise.

Table 1. Sample distribution before and after augmentation. As the number of gaps between samples
was too large in the training set, we iteratively augmented the dataset with fewer samples to ensure a
comparable number of samples per class.

Sample Distribution before Augmentation Sample Distribution after Augmentation

Class Training set Validation set Test set Training set Validation set Test set
Grape healthy leaf (GH) 265 29 42 2650 29 42

Grape black rot fungus with
general symptoms (BRF_G) 343 38 54 2058 38 54

Grape black rot fungus with
serious symptoms (BRF_S) 416 46 66 2496 46 66

Grape black measles fungus
with general symptoms

(BMF_G)
453 50 74 2718 50 74
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Table 1. Cont.

Sample Distribution before Augmentation Sample Distribution after Augmentation

Grape black measles fungus
with serious symptoms (BMF_S) 378 41 59 2268 41 59

Grape leaf blight fungus with
general symptoms (LBF_G) 55 6 9 1980 6 9

Grape leaf blight fungus with
serious symptoms (LBF_S) 567 63 90 3402 63 90

Total 2477 273 394 17,572 273 394

2.3. GrapeNet Model Framework

In this study, we propose a lightweight CNN model named GrapeNet for grape leaf
disease recognition. GrapeNet extracts rich grape leaf disease features by using the RFFB
modules while introducing attention mechanisms to focus on useful disease features and
enhance the ability to identify grape leaf diseases. The network structure of the GrapeNet
model is shown in Figure 3. It consists of convolutional layers, residual blocks, RFFB
modules, CBAM modules, an adaptive average pooling layer, and a classifier. First, the
image size is resized to 224 × 224 when the image is input to the network model before.
Then, a convolutional layer with a stride of 2 and a convolutional kernel size of 3 are used
to extract shallow feature information such as the contour and color of the grape leaves.
Third, alternate structures of residual blocks, RFFB modules, and CBAM modules are used
to deepen the network structure while improving the model’s ability to extract disease
features, thereby improving the recognition accuracy. Next, the remaining convolutional
layers are used to integrate the high-dimensional feature information. Finally, the adaptive
average pooling layer integrates the shape of the feature map to 1 × 1 × 1280. The classifier
(the fully connected layer) adopts SoftMax for the classification of the extracted features.
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Figure 3. The network structure of the GrapeNet model. It consists of convolutional layers, resid-
ual blocks, residual feature fusion block (RFFB) modules, convolutional block attention modules
(CBAMs), an adaptive average pooling layer, and a classifier.

2.4. RFFB Module

The residual block is a network structure proposed in the ResNet model. It mainly
solves the problem of network degradation caused by the deep structure of the network
model through residual learning [23]. He et al. proposed two types of residual blocks in
ResNet34. As shown in Figure 4, Figure 4a represents the residual block when the stride
is 1. The feature maps of the input and output are added by a skip connection. Figure 4b
represents the residual block when the stride is 2. The input feature map is first subjected
to a convolution operation with a stride of 2 and a convolution kernel size of 1, and is then
added to the output feature map by a skip connection. When designing the GrapeNet
model, we found that the residual block when the stride was 2 lost some detailed features,
which made the model unable to capture more useful feature information. Therefore, we
designed an RFFB module based on this residual block. To preserve the feature information
to the greatest extent, we discarded the method of adding by skip connections in the
residual module and adopted the method of concatenating by skip connection while using
average pooling to replace the convolution operation with a kernel size of 1 on the shortcut
branch. In this way, the parameters of the module can be reduced, and more disease
characteristics can be preserved. The structure of an RFFB module is shown in Figure 5.
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Given an input Xh×w×c, where h, w, and c denotes the height, width, and number
of channels of the feature map, respectively. P(X) is the feature map obtained by the
convolution operation, which can be expressed as:

P(X) = Conv(X) (1)

H(X) is the feature map obtained by the average pooling operation, which can be
written as:

H(X) = Avergepool(X) (2)

The final output is obtained by concatenating the high-dimensional feature map P(X)
and the high-resolution feature map H(X), thereby yielding:

Y(h/2)×(w/2)×2c = Concat{P(X); H(X)} (3)

The RFFB module prevents the loss of feature information during down sampling by
concatenating different forms of feature maps, which retains rich disease feature informa-
tion, and increases the feature dimension so that the model can more accurately identify
grape disease leaves.

2.5. CBAM Module

CNNs can obtain a large amount of useless information when extracting features,
including background information and noise. This useless information greatly affects
the effect of disease identification. The attention mechanism can ensure that the network
focuses on useful feature information, suppresses the background and noise, and improves
the recognition accuracy. In this study, the CBAM module was introduced into the network
model so that the network can highlight the disease information of grape leaves. The
structure of the CBAM module in the GrapeNet model is shown in Figure 6. After the RFFB
module extracts a large amount of feature information, the CBAM module assigns different
weights to different feature information; for example, it assigns more weight to disease
information and assigns less weight to the background and noise. Finally, the residual
block integrates the obtained information.
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Figure 6. The structure of the CBAM module in the GrapeNet model.

Figure 7 shows the network structure of the CBAM module. This module first extracts
the channel information of the feature map through spatial channel attention and then ex-
tracts the spatial information through spatial attention. Therefore, the CBAM module can be
divided into two sub-modules: the channel attention module and spatial attention module.
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The network structure of the channel attention module is shown in Figure 8. It mainly
weights the channel information of the input feature map and highlights the channels with
disease information.
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The input feature map is F, and the output feature map can be expressed as:

Mc(F) = σ(W1(W0(Fc
avg) + W1(W0(Fc

max)) (4)

where σ denotes the sigmoid function. The MPL weights (W1 and W0) are shared for both
inputs and the ReLU activation function.

The network structure of the spatial attention module is shown in Figure 9. It highlights
the diseased area of interest in the feature map by weighting the spatial information of the
input feature map. The input feature map is F, and the formula can be written as:

Mc(F) = σ( f 7×7(Concat
[
Fs

avg;Fs
max

]
)) (5)

where f 7×7 represents a convolution operation with the kernel size of 7 × 7, and σ denotes
the sigmoid function.
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2.6. Evaluation Indexes

In this study, we used accuracy, precision, recall, and F1-score as evaluation indicators.
The formulas are as follows:

accuracy =
TP + TN

TP + FP + TN + FN
(6)

precision =
TP

TP + FP
(7)

recall =
TP

TP + FN
(8)

F1− score =
2TP

2TP + FP + FN
(9)

where TP is the number of true-positive samples, FP is the number of false-positive samples,
FN is the number of false-negative samples, and TN is the number of true-negative samples.

2.7. Experimental Environment and Hyperparameter Setting

The experimental environment is shown in Table 2. The hyperparameters were set as
follows. The cross-entropy loss function (CE) was used as the loss function, and the Adam
optimizer [24] was used to optimize the model. The initial learning rate and batch size
during training were set to 0.0001 and 64, respectively. The number of iterations was 120.

Table 2. Experimental environment.

Name Parameter

CPU Intel(R) Xeon(R) W-2235
GPU NVIDIA GeForce RTX 2080Ti

System Windows 10
Programming language Python 3.8.8

Deep learning framework Pytorch 1.6.0

3. Results
3.1. The Impact of Data Augmentation on the Model

Figure 10 shows each epoch of the GrapeNet model with data augmentation and
without it. We found that the training loss of the GrapeNet model with data augmentation
dropped faster than that of the GrapeNet model without data augmentation, and the
average accuracy of the model with data augmentation on the validation set was higher
than that of the GrapeNet model without data augmentation on the validation set. This
indicates that data augmentation can increase the diversity of data, reduce model overfitting,
and enable the model to have better recognition ability. Moreover, the accuracy of the
GrapeNet model with data augmentation was 86.25% in the test set, which is 4% higher
than that of the GrapeNet model without data augmentation. This also indicates that the
data augmentation method enables the model to have a higher generalization ability.
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3.2. Ablation Experiment

To verify the effectiveness of the RFFB module and CBAM module in the GrapeNet
model, we performed ablation experiments on the test set. The obtained results are shown
in Table 3. We found that the network model with the RFFB module achieved an accuracy
of 82.49%. The accuracy was improved by 3.05% compared to the accuracy of the network
model with no module introduced. We also found that the accuracy of the network model
with the CBAM module was improved by 2.79% compared to that of the network model
that does not introduce any module; the accuracy was 82.23%. The introduction of the
RFFB module and the CBAM module did not add too many parameters to the network
model. Finally, the network model GrapeNet, in which both modules were introduced
simultaneously, achieved the best performance in terms of accuracy, precision, recall, and
F1-score values (86.29%, 77.76%, 88.43%, and 79.05%, respectively). This indicates that
the RFFB module and CBAM module can effectively enhance the identification of grape
leaf disease.

Table 3. Results of ablation experiments.

RFFB CBAM Accuracy Recall Precision F1-Score Param (M)

- - 0.7944 0.7569 0.7372 0.7413 2.05√
- 0.8249 0.7738 0.7878 0.7756 2.14

-
√

0.8223 0.7658 0.7884 0.7689 2.05√ √
0.8629 0.7776 0.8843 0.7905 2.15

3.3. Visual Comparison of Output Feature Maps

To demonstrate the effect of the RFFB module on the network model, we visualized
the output feature maps of GrapeNet without the RFFB module, and GrapeNet with the
RFFB module. As shown in Figure 11, the network model extracted the texture, color, and
edge of grape leaf diseases in the first several convolutional layers. With the deepening of
the network structure, the extracted feature information gradually became abstract feature
information. We found that the abstract information of GrapeNet with RFFB module
was richer than that of GrapeNet without the RFFB module; this is because the output of
the average pooling operation and residual down sampling is concatenated in the RFFB
module, and avoids the loss of a large number of detailed features, thus improving the
model’s capability to identify grape leaf diseases.
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3.4. Comparison of Results of Different Attention Mechanisms

Table 4 shows the comparison of results of different attention mechanisms (the Squeeze-
and-Excitation (SE) module, the Coordinate Attention (CA) module, and the CBAM mod-
ule) on the network. None of the three attention models were found to produce an excessive
number of parameters. However, the GrapeNet model with the introduction of the CBAM
module had the highest accuracy of 86.29%, making it 0.76% more accurate than the
GrapeNet model with the introduction of the SE module and 0.76% more accurate than
the GrapeNet model with the introduction of the CA module. This result indicates that
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introducing the CBAM module can make the GrapeNet model better focus on the disease
region and reduce the influence of useless features, thereby improving the accuracy of
grape leaf disease identification.

Table 4. Comparison of results of different attention mechanisms.

Attention
Mechanism Accuracy Recall Precision F1-Score Param (M)

SE [25] 0.8553 0.8012 0.8111 0.8053 2.15
CA [26] 0.8553 0.8206 0.8267 0.8217 2.15
CBAM 0.8629 0.7776 0.8843 0.7905 2.15

To show the regions of interest of the network model, Grad-cam [27] was used to
visualize the class activation maps of the model using different attention mechanisms. As
shown in Figure 12, the first row included the image of grape black rot fungus with serious
symptoms (BRF_S). We found that the region of disease captured using the SE module
and using the CA module was incomplete; however, the region of disease was captured
intact using the CBAM module. For the image of grape black measles fungus with general
symptoms (BMF_G) in the second row, the disease area was accurately located using the
CBAM module, the disease area was not accurately captured using the SE module, and
only a part of the disease area was captured using the CA module. This is because the
CBAM module highlights the region of interest along the spatial and channel directions,
thereby capturing more complete information about the grape leaf disease. In summary,
the obtained results show that the introduction of the CBAM module can focus on the
disease information and filter the background information.
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3.5. Comparison of Identification Results with Classical CNN Models

Next, we aimed to verify that our proposed GrapeNet model has some advantages
compared with classical CNN models such as heavyweight network models, VGG16,
EfficientNet, ResNet, DenseNet, GoogLeNet and lightweight networks, MobileNetV2,
MobileNetV3, and ShuffleNet. The results of the grape leaf disease test set are shown in
Table 5. Furthermore, Table 5 also shows the training time of the nine models. The GrapeNet
model achieved good performance on the test set for all evaluation metrics. It achieved a
maximum accuracy of 86.29%, the number of parameters was 2.15 million, and the training
time was 101 min. Compared to the DenseNet121 model, which was the most accurate of
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the classical networks, the GrapeNet model yielded a 1.52% improvement in accuracy, a
decrease of 4.81 million parameters, and a two times shorter training time. Compared to
the ShuffleNetV2_x1.0 model, which had the fewest parameters and minimum training
time among the classical networks, the GrapeNet model had a 5.33% improvement in
accuracy, although the number of parameters increased by 0.89 million and the training
time increased. Therefore, the GrapeNet model is a lightweight CNN model. It can achieve
a balance between accuracy, the number of parameters, and training time, demonstrating
the potential for grape leaf disease recognition.

Table 5. Identification results of the nine CNN models.

Model Accuracy Recall Precision F1-Score Param (M) Training
Time (mins)

GoogLeNet [28] 0.8299 0.7521 0.8069 0.7601 5.98 107
Vgg16 [29] 0.8401 0.7761 0.7817 0.7777 134.29 254

ResNet34 [23] 0.8274 0.7617 0.77 0.762 21.29 108
DenseNet121 [30] 0.8477 0.7845 0.8357 0.7972 6.96 206
MobileNetV2 [31] 0.8096 0.7327 0.7572 0.74 2.23 98

MobileNetV3_large [32] 0.8274 0.7479 0.7818 0.7569 4.21 84
ShuffleNetV2_×1.0 [33] 0.8096 0.7455 0.7472 0.7424 1.26 64

EfficientNetV2_s [34] 0.8376 0.7738 0.8241 0.7865 20.19 290
GrapeNet 0.8629 0.7776 0.8843 0.7905 2.15 101

The confusion matrix for the nine models is shown in Figure 13. It was evident that the
different periods of manifestation of the same grape leaf disease were the biggest factors
affecting the recognition effectiveness of the network models. For grape black rot fungus
(BRF), the DensNet121 model accurately classified the highest number of samples, 92, and
the GrapeNet model accurately classified the next highest number of samples, 90. For
both grape black measles fungus (BMF) and grape leaf blight fungus (LBF), the GrapeNet
model achieved the highest number of true positive samples, 116 and 92, respectively.
This indicates that our proposed GrapeNet model has better identification performance in
different periods of the same grape leaf disease.
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4. Discussion

Crop disease is a major threat affecting the safety of global agricultural production.
Therefore, it is necessary to utilize new technologies for crop disease identification. Among
deep learning methods, the CNN model has the advantages of high speed and high
accuracy. It has been widely applied to identify crop diseases [14,16].

In this study, we compared our experimental results with some of the existing litera-
ture on crop disease identification. Zhao et al. proposed a deep CNN that combines the SE
modules for the identification of tomato diseases [35]. The results suggested that the intro-
duction of the SE module improved the accuracy of ResNet50 by 4.26%. Bao et al. proposed
a CNN model called SimpleNet for the identification of wheat diseases [36]. The experi-
ment results showed that the introduction of the CBAM modules improved the accuracy of
the benchmark model by 3%. These results demonstrated that the attention mechanism
is an effective module for improving the accuracy of crop disease identification. In our
approaches, the accuracy of the network model with the CBAM module was improved by
2.79% compared to the accuracy of the network model with no module introduced. Perhaps,
it is due to our dataset having a small intra-class variance, which requires fine-grained
features for classification for the model. Subsequently, with the increasing difficulty of
the classification task, the improved accuracy of the attention mechanism was reduced.
Furthermore, the existing models ignored the loss of feature information during feature
extraction [18,19]. Thus, we designed a module to reduce the loss of feature information,
namely the RFFB module. With the introduction of the RFFB module on the benchmark,
the accuracy of the model was improved by 6.85%. The model can retain more feature
information while emphasizing them by the combination between the RFFB module and
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the attention mechanism. The obtained result suggested that a single attention module is
not enough to obtain the best performance of the network model. Hence, we should pay
more attention to the loss of feature information to design new models.

Here, GrapeNet was designed for the specific task of grape leaf disease identification
based on the above findings. It has a simplified architecture that deepens the network
and extracts features with only a few residual blocks. It can reduce the number of pa-
rameters and provide an architecture of suitable depth and width for grape leaf disease
identification. Afterwards, GrapeNet was compared with the classical models. As shown
in Table 5, the disease identification accuracy of GrapeNet achieved 86.29%. The accuracy
was 3.3%, 2.28%, 3.55%, 1.52%, 5.33%, 3.55%, 5.33%, and 2.53% higher than GoogLeNet,
Vgg16, ResNet34, DenseNet121, MobileNetV2, MobileNetV3_large, ShuffleNetV2_×1.0,
and Efficient-NetV2_s. Furthermore, the parameters of GrapeNet amounted to only
2.15 million. Although ShuffleNetV2_×1.0 has a lower number of parameters, its ac-
curacy is 5.33% lower compared to GrapeNet. The results have clearly demonstrated the
advantages of the proposed GrapeNet for grape leaf disease identification. Our approach
can be deployed in smart mechanical devices or mobile devices to facilitate the rapid
identification of grape leaf diseases, thus saving time and labor costs. Moreover, GrapeNet
can be used not only for grape leaf diseases, but may have potential research value for
other crop diseases with different symptom stages.

5. Conclusions

In this study, a lightweight CNN named GrapeNet was developed for the identification
of grape leaf disease. To reduce the loss of disease features, an RFFB module was designed
by concatenating the average pooled feature map before the input of the residual block and
the output feature map of the residual block. In addition, the CBAM module was included
between the RFFB module and the residual block to emphasize the disease features of
interest and reduce the influence of redundant information. On the seven-class grape leaf
disease test set, the GrapeNet model achieved 86.29%, 77.76%, 88.63%, and 79.05% in the
accuracy, recall, precision, and F1-score, respectively. Furthermore, the GrapeNet model
only included 2.15 million parameters. The GrapeNet model achieved an excellent balance
between high accuracy and low parameter size. The results demonstrated that GrapeNet
has high potential for identification of grape leaf diseases on mobile and embedded devices.
However, the study has a specific shortcoming. The overly simple background in the grape
disease images may lead to a decrease in the recognition accuracy of the model in relevant
environments. In the future, we will continue to optimize our model for grape leaf disease
recognition under field conditions.
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