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Abstract: The optimization of soil sampling is very important in precision agriculture. The main
aim of this study was to evaluate the relationships between selected spectral indices (NDWI—
normalized difference water index and NDVI—normalized difference vegetation index) and apparent
soil electrical conductivity (EC) with soil nutrient content (phosphorus, potassium, and magnesium)
and pH. Moreover, the usefulness of these variables for the delineation of within-field management
zones was assessed. The study was conducted in 2021 in central Poland at three maize fields with
a total area approximately 100 ha. The analyses were performed based on 47 management zones,
which were used for soil sampling. Significant positive correlations were observed between the
NDVI for the bare soil and all the studied nutrient contents in the soil and pH. A very strong positive
correlation was observed between the soil EC and the potassium content and a moderate correlation
was found with the magnesium content. A multiple-regression analysis proved that the soil nutrient
content, especially potassium and phosphorus, was strongly related to the EC and NDVI. The novelty
of this study is that it proves the relationships between soil and the crop attributes, EC and NDVI,
which can be measured at field scale relatively simply, and the crucial soil nutrients, phosphorus and
potassium. This allows the results to be used for optimized variable-rate fertilization.

Keywords: precision agriculture; variable rate fertilization; management zones; remote sensing; soil
electrical conductivity

1. Introduction

Precision agriculture is a crop management technology whose main aim is to opti-
mize crop fertilization based on site-specific crop management, using information on the
spatial variability of soils’ physical-chemical properties and crop growth [1]. Variable-rate
fertilization can be applied based on within-field management zones, i.e., homogenous
areas, according to the main agronomic properties of soil, such as the soil texture, nutrient
contents, and organic matter [2]. The delineation of management zones can be performed
not only with the use of information on soil variability, but also information on the spatial
variability of crops, in which such variables as the vegetation indices characterizing crop
growth or crop yield are related to soil conditions [3,4]. The most advanced methods for
the delineation of management zones use a combination of different types of multivariate
data [5–7]. When a large number of variables is used for the delineation of management
zones, principal component analysis or weighted multivariate spatial clustering can be
applied to obtain the optimal selection of homogenous areas within crop fields [8–10]. The
multivariate algorithms used for the delineation of management zones demand many
variables and advanced analysis, which, in practice can be difficult to conduct. Therefore,
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simplified approaches based on univariate analyses are more common in agricultural
practice. In this approach to the delineation of management zones, one variable is used,
and it is strongly correlated with major agronomic soil properties and yielding potential.
A common variable used for such purposes is the apparent electrical conductivity (EC)
of soil [11,12]. EC can be measured at field scale using various types of equipment that
allow for the quick and reliable mapping of EC variability [13,14]. The soil EC is usually
correlated with soil texture (i.e., the percentage of sand, silt, and clay) which is a very
important physical soil property that strongly affects yield potential [15,16]. EC can be used
as an indirect indicator of soil nutrient content and other important soil physicochemical
properties, such as soil pH and soil organic matter content [17]. The disadvantage of the soil
EC is the necessity of using special agricultural machinery for soil scanning, the selection
of appropriate conditions, i.e., moderate moisture in periods without vegetation cover. The
other variables that have been commonly used for the delineation of management zones in
recent years are spectral indices, which are based on remote sensing satellite-derived or
UAV (unmanned aerial vehicle) data [18,19]. Some common spectral indices used to select
management zones are the NDVI (normalized difference vegetation index) [18] and the
NDWI (normalized difference water index) [20] or other spectral indices based on visible
and infrared light.

In a more complex approach, two or more soil or crop attributes can be used for
the delineation of management zones for site-specific crop management. These variables
include the spectral index (e.g., NDVI) and the soil EC, since both are relatively easy to
acquire [21,22]. This method allows the selection of zones that are differentiated according
to different soil properties, such as the nutrient content, the soil texture (content of sand and
clay), and other physico-chemical soil properties that are important for crop management.
The vegetation indices used for these purposes can be satellite-derived or acquired using
unmanned aerial vehicles (UAV) [21,23]. Combining EC maps and NDVI maps or other
variables for the delineation of management zones can be performed using simple criteria
(e.g., values below/above the mean or median) or based on more advanced multivariate
methods (e.g., principal component analysis–PCA) [23,24]. In this approach, one or two
principal components (PC1 and PC2) representing multivariate data are used for the
selection of management zones. The soil EC (measured by electromagnetic induction—
EMI) can be used, together with NDVI, for the delineation of management zones processed
by the fuzzy c-means (FCM) clustering method [25]. This approach makes it possible to
delineate the within-field management zones that differ in terms of the most important soil
properties for crop management (i.e., soil texture, soil moisture deficit, yield, and nitrate
residue). The delineation of management zones can be performed using the NDVI either
alone or in combination with the NDWI, as well as with the EC. This approach was applied
in the study by Serrano et al. [26], in which pasture management zones with different yield
potential were delineated for optimized variable-rate fertilization.

In this study, the relationships between satellite-derived spectral indices (NDVI and
NDWI) and the soil electrical conductivity and the content of soil nutrients, such as potas-
sium, phosphorus, magnesium, and soil pH were evaluated. The main aim was to de-
termine which of these variables (spectral indices or EC) was more appropriate for the
delineation of management zones that can be used for soil sampling in precision agricul-
ture. Moreover, the simultaneous effect of two variables (EC and spectral indices) on soil
nutrients was evaluated for the better prediction of soil conditions, which can be used for
the optimization of variable-rate fertilization.

2. Materials and Methods
2.1. Study Area

This study was conducted in 2021, in central Poland (51◦10′51′′ N 21◦09′04′′ E), at
three crop fields with maize. The areas of the fields were 23.4 ha, 25.4 ha, and 52.4 ha.
Within the fields, 47 management zones for soil sampling were delineated. The delineation
was based on the soil EC to obtain a homogenous soil according to the soil texture within
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each zone. The mean area of an individual management zone was 1.94 ha, with a standard
deviation of 0.79 ha and a range from 0.53 to 3.69 ha. Such individual zones are usually
used in agronomic practice for fertilization with a variable rate using precision-agriculture
technology. The zones were used for soil sampling to evaluate nutrient content (potassium,
phosphorus, magnesium) and pH. Standard crop rotation with main crops, such as cereals
and rapeseed, and crop fertilization (NPK–nitrogen, phosphorus and potassium) was
applied in the studied fields during the years prior to the year of the research. Fertilization
was adjusted to crop requirements at expected yields. For the year of the study, the rates
of mineral fertilizers were as follows: 115 kg N, 63 kg P2O5, and 63 kg K2O per hectare.
The dates of maize sowing were from 28th of April 2021 to 1st of May 2021. The harvest of
maize at full maturity was conducted at the end of October.

2.2. Soil Sampling and Mapping of Soil Properties

The proximal sensing methods were used to map the within-field soil variability. The
soil of the studied fields was examined on 31st of March 2021 with a VerisTechnologies U3
Soil Scanner (Salina, KS 67401, USA).

U3 was direct-contact soil scanner with EC (Electro Conductance), SOM (soil organic
matter) and pH (soil acidity) for top soil (0–60 cm, 0–8 cm, and 0–8 cm, respectively). EC
measurement was performed by direct electric-induced current conductivity measurement
between two pairs of disc blades immersed in the ground. Immersion depth does not
influence measurement but needed to be deep enough to secure reliable electric contact
of the blades with measured soil. SOM measurement was provided by an optical sensor
working in red and near-infrared wavelengths. The head of sensor moved in a shallow
(5–8 cm) trench prepared securely with a preparation module installed in front of the
scanner. The same trench was used by a pH module equipped with two electrodes and a
dedicated hydraulic lift system. All U3 sensors were installed on the main frame providing
the appropriate level and depth of work. Pulled by CanAm Traxter HD 10 Pro UTV (utility
terrain vehicle, Bombardier Recreational Products Inc., Saint-Joseph Valcourt, Quebec,
Canada), the U3 scanner maps fields with 15-m passages at a constant speed of 8–10 km.
A dedicated application controls measurements quality and collects soil data. To ensure
the highest spatial accuracy of the data, RTK GNSS (Real-time kinematic positioning using
global navigation satellite system) receiver was used for positioning. All raw data, after
automatic checking and cleaning, were calibrated in the Veris Technologies FieldFusion
(Salina, KS 67401, USA) web application.

Soil cores for the composite soil sample were collected at zigzagging transects, which
represented the areas of each zone. For each zone, about 15 soil cores were collected
from the topsoil layer (0–30 cm in depth) and then mixed before the laboratory analyses.
Standard laboratory analyses were performed for the evaluation of availability of plant (ex-
changeable) forms of phosphorus, potassium, magnesium, and soil pH. The measurement
of pH was conducted by potentiometric method in KCl solution [27], the Egner–Riehm
method was used for evaluation of potassium and phosphorus [28], and magnesium was
determined using Schachtschabel method [29].

2.3. Satellite Data

In 2021, cloudless Sentinel-2 (Level-2A: bottom-of-atmosphere reflectances) multi-
spectral satellite imagery from the beginning of May to mid-October were used for the
analyses. The following dates were selected: 9th of May 2021, 4th of September 2021, 9th of
September 2021, 4th of October 2021, and 11th of October 2021. The first date (9th of May
2021) was with bare soil, before the emergence of maize plants and the other dates were at
intensive growth of maize (September) or at the end of vegetation period (October).

Three spectral indices were used for the analyses:

• Normalized difference vegetation index: NDVI = (NIR − RED)/(NIR + RED).
• Normalized difference water index 1: NDWI1 = (NIR − SWIR1)/(NIR + SWIR1).
• Normalized difference water index 2: NDWI2 = (NIR − SWIR1)/(NIR + SWIR1).
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where NIR is near-infrared reflectance at central wavelength 833 nm; RED is re-
flectance at central wavelength 665 nm; SWIR1 is shortwave infrared reflectance at central
wavelength 1610 nm; and SWIR2 is shortwave infrared reflectance at central wavelength
2190 nm. The NIR and RED bands had a spatial resolution of 10 m, and both SWIR bands
had a spatial resolution of 20 m [30]. A 10-m buffer for each management zone was ex-
cluded from the analyses to remove the pixels of satellite images that overlapped with the
borders of the fields. The mean values of the spectral indices were calculated using the
zonal statistics tool in the QGIS software.

2.4. Statistical Analysis

Basic statistical parameters (means, ranges and standard deviations) were calculated
for the variables that were analyzed in the study. Pearson’s correlation coefficients were
calculated between spectral indices (NDVI, NDWI1, and NDWI2) and variables acquired by
soil proximal sensing (RED/IR ratio, EC, OM). The relationships between NDVI, nutrient
content, and pH, as well between soil EC, nutrient content, and pH were evaluated using
linear regression. The results were presented graphically together with the regression
equations and the coefficients of determination (R2). Multiple linear regression was applied
for evaluation of the simultaneous effect of NDVI and soil EC on nutrient content and
pH. The results were presented graphically with regression equations, R2 and p-values.
Statistical analyses were preformed using Statistica 13.3 program [31]. Significance level
for all the analyses was set at 0.05 probability level.

3. Results

The soil reaction (pH) and the nutrient contents in soil were, in most parts of the fields,
at high or very high levels (Table 1 and Figure 1), as recommended by crop-management
advisory services [32]. The only exception was the content of magnesium, which was
low or very low. The spatial pattern of the soil pH and the phosphorus, potassium, and
magnesium contents were quite similar. These soil properties were moderately positively
correlated (Table 2), and the high-pH zones tended to be high in all three nutrients (Figure 2).
However, the correlation was not very strong (in the range from 0.12 between pH and K to
0.56 between K and Mg).

Table 1. Basic statistical parameters for variables used in the study.

Mean Min. Max. SD

pH 6.211 5.100 7.600 0.584
Phosphorus (mg P2O5/100 g) 16.294 8.200 35.000 5.985
Potassium (K2O mg/100 g) 24.021 15.700 35.000 5.585
Magnesium (Mg mg/100 g) 2.530 1.000 4.600 0.785

NDVI 09/05/2021 0.143 0.116 0.204 0.022
NDVI 04/09/2021 0.865 0.758 0.889 0.026
NDVI 09/09/2021 0.845 0.742 0.869 0.031
NDVI 04/10/2021 0.715 0.582 0.823 0.066
NDVI 11/10/2021 0.536 0.432 0.674 0.070

NDWI1 09/05/2021 −0.155 −0.193 −0.060 0.027
NDWI1 04/09/2021 0.447 0.329 0.488 0.030
NDWI1 09/09/2021 0.410 0.290 0.452 0.035
NDWI1 04/10/2021 0.244 0.121 0.389 0.068
NDWI1 11/10/2021 0.012 −0.047 0.112 0.044
NDWI2 09/05/2021 −0.158 −0.206 −0.045 0.036
NDWI2 04/09/2021 0.699 0.570 0.743 0.034
NDWI2 09/09/2021 0.667 0.491 0.720 0.047
NDWI2 04/10/2021 0.498 0.328 0.649 0.076
NDWI2 11/10/2021 0.246 0.159 0.373 0.057

Red/IR ratio 0.340 0.331 0.362 0.006
EC (mS/m) 8.091 1.813 16.332 3.458

OM 1.388 1.259 1.617 0.069
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Table 2. Correlation coefficients between nutrient content, pH and spectral indices, EC, and organic-
matter content (significant correlations at 0.05 probability level are marked in red).

pH Phosphorus
(mg/100 g)

Potassium
(mg/100 g)

Magnesium
(mg/100 g)

NDVI 09/05/2021 0.379 0.610 0.581 0.453
NDVI 04/09/2021 −0.175 −0.359 −0.192 −0.117
NDVI 09/09/2021 −0.170 −0.340 −0.195 −0.120
NDVI 04/10/2021 −0.170 −0.282 0.270 −0.136
NDVI 11/10/2021 −0.141 −0.233 0.366 −0.150

NDWI1 09/05/2021 0.228 0.363 0.339 0.000
NDWI1 04/09/2021 −0.103 −0.283 −0.248 0.145
NDWI1 09/09/2021 −0.123 −0.283 −0.259 0.089
NDWI1 04/10/2021 −0.204 −0.355 0.227 −0.234
NDWI1 11/10/2021 −0.232 −0.348 0.259 −0.303
NDWI2 09/05/2021 0.202 0.355 0.443 0.070
NDWI2 04/09/2021 −0.140 −0.280 −0.326 0.103
NDWI2 09/09/2021 −0.126 −0.231 −0.304 0.088
NDWI2 04/10/2021 −0.258 −0.370 0.192 −0.200
NDWI2 11/10/2021 −0.305 −0.393 0.232 −0.291

Red/IR ratio −0.080 0.178 0.565 0.195
EC (mS/m) 0.000 0.167 0.801 0.479

SOM −0.152 0.214 0.656 0.352
pH 0.460 0.123 0.379

Phosphorus (mg/100 g) 0.460 0.319 0.432
Potassium (mg/100 g) 0.123 0.319 0.562

Magnesium (mg/100 g) 0.379 0.432 0.562

The means, ranges, and standard deviations (SD) for the three spectral indices (NDVI,
NDWI1, and NDWI2) were evaluated for five terms in the study area. In the first term
(09/05/2021), the means of all the spectral indices were the lowest, because it took place
when the soil was bare after sowing but before the emergence of plants. During the period
from June to August, cloudy conditions occurred, and there was no cloudless satellite
imagery available for analysis. Two satellite images from the beginning of September were
used; this was the period of the early ripening of maize (81–83 stage according to the BBCH
growth scale). The values of the spectral indices for this stage were very high (with a mean
NDVI of about 0.85–0.86), which indicates very intensive crop growth and a high green
biomass per unit area. The two subsequent terms for the evaluation of the spectral indices
were in the beginning of October, i.e., the senescence stage of the maize plants (91–95 stage
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according to the BBCH growth scale), when the plants were only partially green and the
spectral indices had lower values.
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Three variables obtained by soil proximal sensing were studied, i.e., the apparent
electrical conductivity of the soil, the soil organic-matter content, and the ratio of the soil
reflectance in red and near-infrared wavelengths (Red/IR ratio) (Figure 3). The variable
with the highest spatial variability was the EC, characterized by a high standard deviation
in relation to the mean. The spatial variability of the soil organic matter and the red/IR
ratio were much lower.

The results of the correlation analysis presented in Table 2 prove statistically significant,
strong, or moderate positive relationships between the soil pH, nutrient content, and NDVI
of the bare soil (NDVI in 9th of May 2021). The relationships between the NDVI and
pH, along with the NDVI and nutrient content, are presented graphically together with
regression functions in Figure 4. The strongest relationships were observed between the
NDVI and phosphorus (r = 0.61), as well as the NDVI and potassium (r = 0.58).

The relationships between the NDVI, evaluated in terms of later plant development,
and the pH and nutrient content were much weaker, usually insignificant. The correlations
between the pH, as well as the nutrient content, and the other two spectral indices, i.e.,
NDWI1 and NDWI2, were relatively weak and inconclusive; sometimes, they were positive,
and other times, they were negative.

The relationships between the variables obtained by soil proximal sensing (EC, red/IR
ratio and SOM) and the potassium and magnesium content were positive, and almost all
were statistically significant (Table 2, Figure 5). The strongest correlation was observed
between the EC and the potassium content (r = 0.80). Slightly weaker, but still strong,
were the correlations between the red/IR ratio and potassium (r = 0.56), along with the
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correlations between SOM and potassium (r = 0.66). The correlation between the EC and
magnesium was moderate (r = 0.48), and the correlation between SOM and magnesium
was slightly weaker, but significant (r = 0.35). The correlations between the red/IR ratio,
EC, SOM, pH, and phosphorus were weak and insignificant.
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Figure 3. NDVI of bare soil and maps based on soil scanning using Veris ((Salina, KS 67401, USA)
machinery (EC, red/IR ratio and estimated organic-matter content).

In addition to the univariate analyzes, a multiple regression analysis was performed
to assess the simultaneous effect of the EC and NDVI (on 09/05/2021) on the soil pH and
nutrient content. The relationships are presented graphically in Figure 6. The strongest
relationship was observed for potassium, for which the simultaneous effect of the EC and
NDVI explained 66% of the total variability (R2 = 0.663 for multiple regression). A weaker,
but quite strong, relationship was observed between the EC and NDVI for the content of
phosphorus (R2 = 0.425). The relationships between the EC and NDVI with contents of
potassium and soil pH were weaker, but still significant (R2 0.280 and 0.216, respectively).
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4. Discussion

The results obtained in this study proved the existence of significant positive relation-
ships between the NDVI and pH, as well as between the NDVI and the nutrient content in
the soil, a very strong positive correlation between the EC and potassium, and a moderately
positive correlation between the EC and magnesium. The NDVI, for which significant
relationships were proven, was evaluated for bare soil (after the sowing of maize, but before
its emergence). The correlations ranged from 0.38 (NDVI with pH) to 0.61 (NDVI with
phosphorus). Most of the correlations evaluated between the NDVI during the vegetation
period of the maize and the nutrient content and pH were weak and insignificant. The
correlations between the NDWI (both NDWI1 and NDWI2) and the nutrient content, as
well as between the NDWI and pH, were inconsistent, i.e., most were not significant and
some were significant, while some were positive and others were negative.

Significant, positive relationships between the Sentinel-2 derived NDVI and the potas-
sium content in the soil, as well as between the EC and potassium, were obtained in our
previous study [33], where the NDVI during vegetation cover (winter cereals or winter
rapeseed) was used for the analyses. In a study conducted with spring wheat [34], a
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significantly strong positive correlation (r = 0.61) was obtained between soil-exchangeable
potassium and the Landsat-8-derived NDVI. Moreover, in this study, a very strong corre-
lation (r = 0.92) between the NDVI and grain yield was observed, which means that the
potassium content was strongly correlated with both the NDVI and the grain yield of the
spring wheat. Furthermore, in the same study, the correlation between the NDVI and easily
available phosphorus was much weaker and not significant (r = 0.35). Positive significant
relationships between the NDVI measured by the Crop Circle sensor for wheat during the
booting and heading growth stages and the potassium content in the soil were observed by
Whetton et al. [35]. In the same study, positive significant relationships between the NDVI
and the content of potassium in soil were observed for barley at the booting and heading
stages. The correlation between the available potassium in soil and the NDVI is not always
positive. In a study conducted on a large spatial scale [36] (in which the distance between
the most faraway sampling points was about 30 km), the correlation between the satellite
(MODIS)-derived NDVI and the potassium available in the soil was negative and very
weak (r = −0.08), but still significant, because of the large sample size.

A significant positive correlation between the soil EC and both phosphorus and
potassium was found in the study by Omonode and Vyn [17]. The correlation coefficients
were in a range from 0.16 to 0.60, depending on the depth of the soil layer and year. A
significant positive correlation (r = 0.42) between the EC and the potassium content in
soil was obtained by Li et al. [37]. In the same study, a weak but negative correlation
between EC and phosphorus content was found. The correlations were similar to these
obtained in our previous study, where a stronger positive correlation was found between
the EC and potassium and a weaker negative correlation was observed between the EC
and phosphorus.

The correlation coefficients between the EC and the content of potassium and phos-
phorus are not always unequivocal. In the study by Heiniger et al. [38], the correlation
coefficients between the EC and potassium were in a very wide range, from −0.75 to 0.70,
and those between the EC and phosphorus were from −0.61 to 0.70. In the study by Tarr
et al. [39], the correlation coefficients between the EC and potassium, as well as between
the EC and phosphorus, were negative: r = −0.56 and r = −0.06, respectively. In the same
study, a positive correlation was found between the EC and pH (r = 0.70).

In this study, the analysis of multiple linear regression proved that the regression
model, in which the EC and NDVI for the bare soil were predictors of pH and nutrient
content, made it possible to obtain stronger relationships, especially for the content of
potassium in soil (R2 = 0.663) and phosphorus (R2 = 0.425), used as dependent variables.
This means that the prediction of the within-field variability of potassium and phospho-
rus can be better if EC and NDVI are used as predictors of phosphorus and potassium
or as variables for the delineation of homogenous within-field management zones for
soil sampling.

The usefulness of both the NDVI and soil EC was proven in the studies by Esteves
et al. [21,22], in which the management zones delineated based on the NDVI and soil
EC differed significantly, depending on the most important agronomic soil properties,
including the soil texture, soil pH, extractable phosphorus, and potassium. This confirms
that the delineation of management zones based on the NDVI and soil EC can be used for
the variable-rate application of fertilizers, as well as for optimized soil sampling. Another
study that proves the usefulness of NDVI and soil EC for the delineation of within-field
homogenous zones for variable application rates and optimized soil sampling is the study
conducted in pastures by Serrano et al. [26]. In this study, a very strong positive correlation
was observed between the NDVI and NDWI, which was not detected in our study. Many
other studies proved the usefulness of the NDVI and soil EC in the multivariate delineation
of management zones [23–25]. The NDVI and EC in these studies were derived using
various methods, i.e., NDVI measured by satellite or UAV sensors, soil EC measured with
soil sensors in direct contact with the soil or by electromagnetic induction. All these types
of data have similar usefulness.



Agriculture 2022, 12, 883 11 of 13

The delineation of within-field management zones can be based on various soil prop-
erties or yield-related traits such as the EC, pH, nutrient content (especially N, P, and K),
soil organic matter, vegetation indices, and crop yield [26,40,41]. Limiting the number
of variables used for the delineation of management zones is important in agronomical
practice. Simplified approaches can be used when only one variable, such as the NDVI or
crop yield, is available for the classification of similar areas within a field [42,43]. A common
approach in management-zone delineation is the use of two variables characterizing soil
properties (EC) and crop condition (yield) [2]. Because crop yield is usually very strongly
correlated with vegetation indices, such as the NDVI [44], crop yield can be replaced by the
spectral index in the process of management-zone delineation.

5. Conclusions

Significant positive correlations were observed between the NDVI for bare soil and
nutrient content (phosphorus, potassium, and magnesium) in soil and pH. A very strong
positive correlation was observed between the soil EC and the potassium content and a
moderate correlation was noted between the soil EC and the magnesium content. The
multiple-regression analysis proved that the soil nutrient content, especially of potassium
and phosphorus, was strongly related to the EC and NDVI. We suggest the use of these
two variables for the delineation of management zones in agronomic practice for opti-
mized soil sampling and variable-rate fertilization, especially in the case of potassium and
phosphorus fertilization.

Author Contributions: Conceptualization, D.G. and P.M.; methodology, P.M.; validation, P.M., D.G.
and E.W.-G.; formal analysis, P.M.; investigation, P.M.; resources, P.M.; data curation, P.M.; writing—
original draft preparation, P.M. and D.G.; writing—review and editing, E.W.-G.; visualization, P.M.;
supervision, D.G.; All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hedley, C. The role of precision agriculture for improved nutrient management on farms: Precision agriculture managing farm

nutrients. J. Sci. Food Agric. 2015, 95, 12–19. [CrossRef] [PubMed]
2. Nawar, S.; Corstanje, R.; Halcro, G.; Mulla, D.; Mouazen, A.M. Delineation of Soil Management Zones for Variable-Rate

Fertilization. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 2017; Volume 143, pp. 175–245, ISBN 978-0-12-
812421-5.

3. Georgi, C.; Spengler, D.; Itzerott, S.; Kleinschmit, B. Automatic delineation algorithm for site-specific management zones based
on satellite remote sensing data. Precis. Agric. 2018, 19, 684–707. [CrossRef]

4. Guastaferro, F.; Castrignanò, A.; De Benedetto, D.; Sollitto, D.; Troccoli, A.; Cafarelli, B. A comparison of different algorithms for
the delineation of management zones. Precis. Agric. 2010, 11, 600–620. [CrossRef]

5. Shaddad, S.M.; Madrau, S.; Castrignanò, A.; Mouazen, A.M. Data fusion techniques for delineation of site-specific management
zones in a field in UK. Precis. Agric. 2016, 17, 200–217. [CrossRef]

6. Castrignanò, A.; Buttafuoco, G.; Quarto, R.; Parisi, D.; Rossel, R.A.V.; Terribile, F.; Langella, G.; Venezia, A. A geostatistical sensor
data fusion approach for delineating homogeneous management zones in precision agriculture. CATENA 2018, 167, 293–304.
[CrossRef]

7. Castrignanò, A.; Buttafuoco, G.; Quarto, R.; Vitti, C.; Langella, G.; Terribile, F.; Venezia, A. A combined approach of sensor
data fusion and multivariate geostatistics for delineation of homogeneous zones in an agricultural field. Sensors 2017, 17, 2794.
[CrossRef]

8. Ohana-Levi, N.; Bahat, I.; Peeters, A.; Shtein, A.; Netzer, Y.; Cohen, Y.; Ben-Gal, A. A weighted multivariate spatial clustering
model to determine irrigation management zones. Comput. Electron. Agric. 2019, 162, 719–731. [CrossRef]

9. Zeraatpisheh, M.; Bakhshandeh, E.; Emadi, M.; Li, T.; Xu, M. Integration of PCA and fuzzy clustering for delineation of soil
management zones and cost-efficiency analysis in a citrus plantation. Sustainability 2020, 12, 5809. [CrossRef]

http://doi.org/10.1002/jsfa.6734
http://www.ncbi.nlm.nih.gov/pubmed/24816925
http://doi.org/10.1007/s11119-017-9549-y
http://doi.org/10.1007/s11119-010-9183-4
http://doi.org/10.1007/s11119-015-9417-6
http://doi.org/10.1016/j.catena.2018.05.011
http://doi.org/10.3390/s17122794
http://doi.org/10.1016/j.compag.2019.05.012
http://doi.org/10.3390/su12145809


Agriculture 2022, 12, 883 12 of 13

10. Gavioli, A.; de Souza, E.G.; Bazzi, C.L.; Guedes, L.P.C.; Schenatto, K. Optimization of management zone delineation by using
spatial principal components. Comput. Electron. Agric. 2016, 127, 302–310. [CrossRef]

11. Lajili, A.; Cambouris, A.N.; Chokmani, K.; Duchemin, M.; Perron, I.; Zebarth, B.J.; Biswas, A.; Adamchuk, V.I. Analysis of four
delineation methods to identify potential management zones in a commercial potato field in Eastern Canada. Agronomy 2021, 11,
432. [CrossRef]

12. Peralta, N.R.; Costa, J.L.; Balzarini, M.; Angelini, H. Delineation of management zones with measurements of soil apparent
electrical conductivity in the Southeastern Pampas. Can. J. Soil Sci. 2013, 93, 205–218. [CrossRef]

13. Doolittle, J.A.; Brevik, E.C. The use of electromagnetic induction techniques in soils studies. Geoderma 2014, 223–225, 33–45.
[CrossRef]

14. Serrano, J.; Shahidian, S.; Silva, J. Spatial and temporal patterns of apparent electrical conductivity: DUALEM vs. veris sensors
for monitoring soil properties. Sensors 2014, 14, 10024–10041. [CrossRef] [PubMed]

15. Guo, W.; Maas, S.J.; Bronson, K.F. Relationship between cotton yield and soil electrical conductivity, topography, and landsat
imagery. Precis. Agric. 2012, 13, 678–692. [CrossRef]

16. Stadler, A.; Rudolph, S.; Kupisch, M.; Langensiepen, M.; van der Kruk, J.; Ewert, F. Quantifying the effects of soil variability on
crop growth using apparent soil electrical conductivity measurements. Eur. J. Agron. 2015, 64, 8–20. [CrossRef]

17. Omonode, R.A.; Vyn, T.J. Spatial dependence and relationships of electrical conductivity to soil organic matter, phosphorus, and
potassium. Soil Sci. 2006, 171, 223–238. [CrossRef]

18. Damian, J.M.; de Castro Pias, O.H.; Cherubin, M.R.; da Fonseca, A.Z.; Fornari, E.Z.; Santi, A.L. Applying the NDVI from satellite
images in delimiting management zones for annual crops. Sci. Agric. 2020, 77, e20180055. [CrossRef]

19. Rasmussen, J.; Azim, S.; Boldsen, S.K.; Nitschke, T.; Jensen, S.M.; Nielsen, J.; Christensen, S. The challenge of reproducing remote
sensing data from satellites and unmanned aerial vehicles (UAVs) in the context of management zones and precision agriculture.
Precis. Agric. 2021, 22, 834–851. [CrossRef]

20. Moral, F.J.; Rebollo, F.J.; Serrano, J.M.; Carvajal, F. Mapping management zones in a sandy pasture soil using an objective model
and multivariate techniques. Precis. Agric. 2021, 22, 800–817. [CrossRef]

21. Esteves, C.; Fangueiro, D.; Braga, R.P.; Martins, M.; Botelho, M.; Ribeiro, H. Assessing the contribution of ECa and NDVI in the
delineation of management zones in a vineyard. Agronomy 2022, 12, 1331. [CrossRef]

22. Esteves, C.; Ribeiro, H.; Braga, R.P.; Fangueiro, D. Remote Sensing (NDVI) and Apparent Soil Electrical Conductivity (ECap) to
Delineate Different Zones in a Vineyard. In Proceedings of the IECAG 2021 (online conference), online, 3–17 May 2021; p. 42.

23. Ortuani, B.; Sona, G.; Ronchetti, G.; Mayer, A.; Facchi, A. Integrating geophysical and multispectral data to delineate homogeneous
management zones within a vineyard in Northern Italy. Sensors 2019, 19, 3974. [CrossRef] [PubMed]

24. Martins, R.N.; Valente, D.S.M.; Rosas, J.T.F.; Santos, F.S.; Dos Santos, F.F.L.; Nascimento, M.; Nascimento, A.C.C. Site-Specific
nutrient management zones in soybean field using multivariate analysis: An approach based on variable rate fertilization.
Commun. Soil Sci. Plant Anal. 2020, 51, 687–700. [CrossRef]

25. Hebel, C.; Reynaert, S.; Pauly, K.; Janssens, P.; Piccard, I.; Vanderborght, J.; Kruk, J.; Vereecken, H.; Garré, S. Toward high-
resolution agronomic soil information and management zones delineated by ground-based electromagnetic induction and aerial
drone data. Vadose Zone J. 2021, 20, e20099. [CrossRef]

26. Serrano, J.; Shahidian, S.; da Silva, J.M.; Paixão, L.; Calado, J.; de Carvalho, M. Integration of soil electrical conductivity and
indices obtained through satellite imagery for differential management of pasture fertilization. AgriEngineering 2019, 1, 567–585.
[CrossRef]

27. Mclean, E.O. Soil PH and Lime Requirement. In Agronomy Monographs; Page, A.L., Ed.; American Society of Agronomy, Soil
Science Society of America: Madison, WI, USA, 2015; pp. 199–224, ISBN 978-0-89118-977-0.

28. Zawartka, L.; Huszcza-Ciolkowska, G.; Szumska, E. Effects of poly- and orthophosphates on the dynamics of some macro-
and micro-nutrient elements in soil material of varied Ph. I. Comparison of nutrient element content in soil determined by the
methods of egner-riehm-domingo and rinkis. Commun. Soil Sci. Plant Anal. 1999, 30, 635–643. [CrossRef]

29. Vona, V.; Centeri, C.; Giczi, Z.; Kalocsai, R.; Biro, Z.; Jakab, G.; Milics, G.; Kovacs, A.J. Comparison of magnesium determination
methods on Hungarian soils. Soil Water Res. 2020, 15, 173–180. [CrossRef]

30. Wang, Q.; Li, J.; Jin, T.; Chang, X.; Zhu, Y.; Li, Y.; Sun, J.; Li, D. Comparative analysis of landsat-8, sentinel-2, and gf-1 data for
retrieving soil moisture over wheat farmlands. Remote Sens. 2020, 12, 2708. [CrossRef]

31. TIBCO Software Inc. Statistica (Data Analysis Software System); Version 13; TIBCO Software Inc.: Palo Alto, CA, USA, 2017.
32. Horneck, D.A.; Sullivan, D.M.; Owen, J.S.; Hart, J.M. Soil Test Interpretation Guide; Oregon State University: Corvallis, OR, USA,

2011.
33. Mazur, P.; Gozdowski, D.; Wnuk, A. Relationships between soil electrical conductivity and sentinel-2-derived NDVI with PH and

content of selected nutrients. Agronomy 2022, 12, 354. [CrossRef]
34. Gopp, N.V.; Savenkov, O.A. Relationships between the NDVI, yield of spring wheat, and properties of the plow horizon of

eluviated clay-illuvial chernozems and dark gray soils. Eurasian Soil Sci. 2019, 52, 339–347. [CrossRef]
35. Whetton, R.; Zhao, Y.; Shaddad, S.; Mouazen, A.M. Nonlinear parametric modelling to study how soil properties affect crop

yields and NDVI. Comput. Electron. Agric. 2017, 138, 127–136. [CrossRef]

http://doi.org/10.1016/j.compag.2016.06.029
http://doi.org/10.3390/agronomy11030432
http://doi.org/10.4141/cjss2012-022
http://doi.org/10.1016/j.geoderma.2014.01.027
http://doi.org/10.3390/s140610024
http://www.ncbi.nlm.nih.gov/pubmed/24915182
http://doi.org/10.1007/s11119-012-9277-2
http://doi.org/10.1016/j.eja.2014.12.004
http://doi.org/10.1097/01.ss.0000199698.94203.a4
http://doi.org/10.1590/1678-992x-2018-0055
http://doi.org/10.1007/s11119-020-09759-7
http://doi.org/10.1007/s11119-020-09756-w
http://doi.org/10.3390/agronomy12061331
http://doi.org/10.3390/s19183974
http://www.ncbi.nlm.nih.gov/pubmed/31540098
http://doi.org/10.1080/00103624.2020.1729793
http://doi.org/10.1002/vzj2.20099
http://doi.org/10.3390/agriengineering1040041
http://doi.org/10.1080/00103629909370233
http://doi.org/10.17221/92/2019-SWR
http://doi.org/10.3390/rs12172708
http://doi.org/10.3390/agronomy12020354
http://doi.org/10.1134/S1064229319030050
http://doi.org/10.1016/j.compag.2017.04.016


Agriculture 2022, 12, 883 13 of 13

36. Rahul, T.; Kumar, N.A.; Biswaranjan, D.; Mohammad, S.; Banwari, L.; Priyanka, G.; Sangita, M.; Bihari, P.B.; Narayan, S.R.; Kumar,
S.A. Assessing soil spatial variability and delineating site-specific management zones for a coastal saline land in Eastern India.
Arch. Agron. Soil Sci. 2019, 65, 1775–1787. [CrossRef]

37. Li, Y.; Shi, Z.; Li, F.; Li, H.-Y. Delineation of site-specific management zones using fuzzy clustering analysis in a coastal saline land.
Comput. Electron. Agric. 2007, 56, 174–186. [CrossRef]

38. Heiniger, R.W.; McBride, R.G.; Clay, D.E. Using soil electrical conductivity to improve nutrient management. Agron. J. 2003, 95,
508–519. [CrossRef]

39. Tarr, A.B.; Moore, K.J.; Bullock, D.G.; Dixon, P.M.; Burras, C.L. Improving map accuracy of soil variables using soil electrical
conductivity as a covariate. Precis. Agric. 2005, 6, 255–270. [CrossRef]

40. Li, Y.; Shi, Z.; Wu, C.; Li, H.; Li, F. Determination of potential management zones from soil electrical conductivity, yield and crop
data. J. Zhejiang Univ. Sci. B 2008, 9, 68–76. [CrossRef]

41. Serrano, J.; Shahidian, S.; Paixão, L.; da Silva, J.M.; Moral, F. Management zones in pastures based on soil apparent electrical
conductivity and altitude: NDVI, soil and biomass sampling validation. Agronomy 2022, 12, 778. [CrossRef]

42. Rokhafrouz, M.; Latifi, H.; Abkar, A.A.; Wojciechowski, T.; Czechlowski, M.; Naieni, A.S.; Maghsoudi, Y.; Niedbała, G. Simplified
and hybrid remote sensing-based delineation of management zones for nitrogen variable rate application in wheat. Agriculture
2021, 11, 1104. [CrossRef]

43. Nagchaudhuri, A.; Morris, A.; Mitra, M.; Henry, X. Simplified Management Zones from Analyses and Mapping of Multiple Years
of Spatially Distributed Harvest Data. In Proceedings of the 2009 Annual Conference & Exposition: ASEE Conferences, Austin,
TX, USA, 14–17 June 2009; pp. 14.1059.1–14.1059.10.

44. Hunt, M.L.; Blackburn, G.A.; Carrasco, L.; Redhead, J.W.; Rowland, C.S. High resolution wheat yield mapping using sentinel-2.
Remote Sens. Environ. 2019, 233, 111410. [CrossRef]

http://doi.org/10.1080/03650340.2019.1578345
http://doi.org/10.1016/j.compag.2007.01.013
http://doi.org/10.2134/agronj2003.5080
http://doi.org/10.1007/s11119-005-1385-9
http://doi.org/10.1631/jzus.B071379
http://doi.org/10.3390/agronomy12040778
http://doi.org/10.3390/agriculture11111104
http://doi.org/10.1016/j.rse.2019.111410

	Introduction 
	Materials and Methods 
	Study Area 
	Soil Sampling and Mapping of Soil Properties 
	Satellite Data 
	Statistical Analysis 

	Results 
	Discussion 
	Conclusions 
	References

