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Abstract: In this study, we aimed to establish a multi-residue analytical method for the simultaneous
detection of chemical contaminants in eggs. Using liquid chromatography-tandem mass spectrometry
(LC-MS/MS), we developed an analytical method that can separate 244 compounds (including β-
agonists (25), imidazole and benzimidazoles (31), sulfonamides (22), antihistamines (10), β-lactam (5),
insecticides (7), quinolones (24), non-steroidal anti-inflammatory drugs (13), and steroidal hormones
(38)) within 30 min. A new enhanced matrix removal-lipid (EMR-Lipid) material was used as a
purified sorbent in the QuEChERS clean-up method. Excellent linearity (r > 0.9905) was achieved.
Additionally, recoveries ranged between 51.33% and 118.28%, with repeatability (RSDr) and re-
producibility (RSDwR) in the range of 1.01–14.22% and 1.08–14.96%, respectively. In all of the
compounds, low limits of quantification (LOQs) ≤ 5 µg kg−1 were found. Meanwhile, the detection
limit (CCα) and detection capability (CCβ) were 1.88–40.60 µg kg−1 and 2.85–407.19 µg kg−1, respec-
tively. In conclusion, the evaluated method was shown to provide reliable screening, quantification,
and identification of 244 multi-class chemicals in eggs and was successfully applied in real samples.

Keywords: eggs; multi-residue; EMR-Lipid; LC-MS/MS

1. Introduction

Chemical contaminant residues in agricultural products are one of the most serious
problems that can affect food safety and quality [1,2]. Usually, veterinary drugs are used
at therapeutic levels or as food additives to maintain animals’ health and promote animal
growth [3]. For example, antibiotics such as quinolones are widely used by farmers against
the growth of various microorganisms [4]. Other families of veterinary drugs, such as an-
thelmintics [5] and coccidiostats [6], can be used to kill or inhibit the growth of microscopic
protozoan parasites. Furthermore, the fipronil egg scandal, which occurred in the Euro-
pean Union in 2017, showed that pesticides could be detected in animal-derived foods [7].
The use of these products has been shown to enhance the risk of residues in tissues or
eggs and create potential hazards for human health, such as drug resistance and allergies,
poisoning, carcinogenicity, or teratogenicity through the paths of the environment and the
food chain [8–10]. Many researchers have focused on the development of detection meth-
ods for poultry tissue such as muscle, liver, and eggs (Table S1). Bilandzic et al. developed
a method to detect 178 pesticides in eggs using C18 sorbent (C18) and primary secondary
amine (PSA) as clean-up sorbents and obtained good accuracy [11]. Dasenaki et al. de-
veloped a multi-residue method for the determination of 115 veterinary drugs in eggs.
For over 80% of the compounds, the recoveries were between 50% and 120%. However,
the time taken for sample preparation was too long because the lipids and remaining
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proteins needed to be precipitated at 23 ◦C for 12 h [3]. Ping et al. used a method for the
simultaneous determination of 169 veterinary drugs in chicken eggs, and their results did
not suggest that pesticides or other chemical contaminants may exist in eggs [12]. To sum-
marize, all of these methods require a pretreatment procedure that is relatively tedious, they
can be quite time-consuming, and they have low detection sensitivity for some analytes.
Additionally, using these methods, it is not possible to provide a technical guarantee of
the quick and efficient identification of a plurality of mixed pollutants such as pesticides,
veterinary drugs, and illegal additives that may exist in eggs at present. Additionally,
these methods cannot meet the requirements of quality and safety supervision under new
guidelines [13]. Hence, the development of an efficient and universal analytical method is
important to ensure the quality and safety of eggs and to protect consumers’ health.

At present, the methods used for multi-residue detection in animal-derived foods are
mainly liquid chromatography-tandem mass spectrometry (LC-MS/MS) [14,15], liquid
chromatography–time of flight mass spectrometry (LC-TOF/MS) [16,17], as well as gas
chromatography-mass spectrometry (GC-MS) [18,19]. Gasification must be performed
when analyzing samples using GC-MS; thus, the detection of thermal instability, polarity,
and macromolecular compounds is limited. Comparatively, LC-MS/MS combines the
advantages of chromatography and mass spectrometry and has dramatically increased
sensitivity and selectivity, making it a more general and powerful method for qualitative
and quantitative analysis. Additionally, it has been widely used for the detection of chemical
contaminants in animal-derived foods. For example, the method used by Jadhav et al. [20]
was shown to simultaneously detect 78 drugs and 238 pesticides, including penicillins,
quinolones, and tetracyclines, in bovine milk using ultra-fast liquid chromatography-
tandem mass spectrometry (UFLC-MS/MS). Meanwhile, Jamie et al. developed an accurate
quantitative analytical method to examine the mycotoxin, hormone, and fat-soluble vitamin
content in hen egg yolks using a Shimadzu LCMS-8040 (Shimadzu Scientific Instruments,
Inc., Columbia, MD, USA) triple quadrupole instrument [21]. LC-MS/MS can also be used
for the detection of β-agonists in pork meat [22,23], as well as fipronil in chicken egg and
muscle [24], multi-class antibiotic residues [25] and pesticides [26] in honey, and quinolones
and tetracyclines in aquatic products [27,28]. All of these methods have shown relatively
high accuracy and sensitivity. Additionally, these methods indicate that most analytes
ranging from non-polar organochlorine pesticides to polar drugs are suitable for LC-
MS/MS analysis. It is a relatively advanced and popular detection method worldwide.

In addition to advanced instruments, the sample pretreatment process is also a crucial
link in the analysis of chemical contaminant residues, which can directly decrease the
interference of impurities and improve the detection sensitivity and selectivity to obtain sat-
isfactory analysis results. The QuEChERS methodology, introduced by Anastassiades et al.
in 2003, is a green chemical extraction and clean-up method used for the detection of
veterinary residues [29]. d-SPE sorbents are always used in clean-up methods. For example,
C18 and PSA can be used to determine the levels of fipronil and its metabolites [30] and
other pesticides in chicken eggs [31]. Zirconium-dioxide-based sorbents have been widely
applied in the extract purification of fat-rich samples by different researchers [32–34].

In this work, different traditional d-SPE sorbents mixtures (C18, PSA, and ZrO2),
as well as enhanced matrix removal-lipid (EMR-Lipid), a novel selective sorbent for lipid
removal [35], were compared in order to obtain a sensitive, high throughput, and reliable
method for screening multiple drugs in eggs. The method covered a wide range of com-
pounds, including veterinary drugs, pesticides, additives, and other drugs. The recovery
and matrix effect was fully evaluated to select the optimal extract conditions. Linearity,
limits of detection (LODs), quantification (LOQs), the detection limit (CCα), and detection
capability (CCβ) analyses were also carried out for method validation according to the
SANTE/11813/2017 [36] and the EU Commission Decision 2002/675/EC [37]. This method
provides a powerful method for the Ministry of Agriculture and Rural Affairs to monitor a
wide range of potential hazards and guarantee the quality and safety of agro-products in
China.
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2. Materials and Methods
2.1. Chemicals and Reagents

All standard solutions for chemical contaminants were purchased from Alta Scientific
Co., Ltd. (Tianjin, China), which were configured, respectively, with concentrations of
100 mg L−1 according to the categories listed in Table S2. and stored at −20 ◦C. Working
standard solutions needed to be prepared before use at the concentration of 5 mg L−1,
and they were prepared for each group of analytes by dissolving an appropriate amount of
standard stock solutions in methanol.

High-performance liquid chromatography (HPLC)-grade acetonitrile (>99.5%) was
supplied by Fisher Scientific (Fair Lawn, NJ, USA), and MS-grade methanol was obtained
from Merck (Darmstadt, Germany). Formic acid (>96%) and ammonium acetate (>99%)
were purchased from Sigma-Aldrich (St. Louis, MO, USA). Ultra-pure water was provided
by a Milli-Q purification apparatus (Millipore Direct-Q UV, Bedford, MA, USA). Bond
Elut dSPE Enhanced Matrix Removal EMR–Lipid (p/n 5982-1010) and Bond Elut EMR-
Lipid Polish Pouch, anhydrous MgSO4 only (p/n 5982–0102) were purchased from Agilent
Technologies (Santa Clara, CA, USA).

2.2. Sample Preparation

Firstly, 5.00 g of homogenized egg sample were weighed (accurate to 0.01 g) into a
50 mL centrifuge tube, and 10 mL of acetonitrile solution containing 5% formic acid were
accurately added. Then, the tissue was dispersed by shaking it manually (for approximately
10 s), and then it was vortexed (2000 rpm) for 5 min and centrifuged for 5 min (4000 rpm).

Then, 3.0 mL of 5 mM ammonium acetate solution were added to the 15 mL EMR-
Lipid dSPE tube and were shaken for 2 min using a vortex to create an activated EMR-Lipid
dSPE tube. A total of 7.0 mL of acetonitrile extract from the first step were transferred to the
activated EMR-Lipid dSPE tube, and then they were mixed by shaking, vortexed for 2 min,
and centrifuged for 5 min (4000 rpm). All of the supernatant was poured into an empty
50.0 mL centrifuge tube. Then, the EMR polish powder bag was added to the supernatant,
which was shaken rapidly and vortexed for 2 min (2000 rpm), and then centrifuged for
5 min (4000 rpm). Finally, 1 mL of supernatant was drained using a disposable syringe and
filtered through a 0.2 µm organic filter membrane into the sample vial for analysis.

2.3. LC-MS/MS Analysis

An Agilent 1290 Infinity II LC system (Agilent Technologies, Santa Clara, CA, USA)
was used. A gradient elution program separated the analytes on a 150 × 3.0 mm, 1.8 µm
Zorbax Eclipse XDB-C18 column (Agilent Technologies, Santa Clara, CA, USA). The elution
solvents were 2 mM ammonium acetate in water containing 0.2% formic acid (A) and
0.2% formic acid in methanol (B) with the following gradient: initial, 5% B; 0–0.5 min, 5%
B; 0.5–3 min, 15% B; 3–10 min, 40% B; 10–18 min, 100% B; 18–22 min, 100% B; 22–22.1 min,
5% B. The post-run time was 3 min. The column temperature was maintained at 40 ◦C,
and the injection volume and the mobile phase flow rate were 2 µL and 0.4 mL min−1,
respectively. Typical chromatograms are shown in Figure 1.

MS spectrometry analysis was performed on an Agilent 6470 triple quadrupole mass
spectrometer (Agilent Technologies, Santa Clara, CA, USA). The dynamic multiple reaction
monitoring modes (DMRM) and fast real-time to switch electrospray ion source positive
(ESI+) and electrospray ion source negative (ESI−) were used in order to ensure the correct
number of compounds were detected in a single run while reducing its time. The instrument
conditions were as follows: gas temperature, 250 ◦C; gas flow, 7 L/min; nebulizer gas,
35 psi; capillary voltage, 3.5 kV; sheath gas heater, 325 ◦C; sheath gas flow, 11 L/min.
The fragmentor voltage and collision energy of each compound are presented in Table S2.
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tration of 50 µg kg−1.

2.4. Method Validation

An analyte was identified when the following parameters were achieved: (1) at least
2 product ions were detected, as defined by the SANTE/11813/2017; (2) the retention
time of 2 product ions in the extract corresponded with the calibration standard within a
tolerance of ±0.1 min; (3) the ion ratio between multiple reaction monitoring(MRM) 1 and
MRM2 from sample extracts was within ±30% (relative) in accordance with the calibration
standards. The selectivity was determined by analyzing blank samples from different
resources, and the result indicated that there was no endogenous interference showing
similar properties with analytes.

In addition, measured parameters including trueness, repeatability (RSDr) and repro-
ducibility (RSDwR), linearity, the limit of quantitation (LOQ), the limit of detection (LOD),
decision limit (CCα), detection capability (CCβ), and matrix effect (ME) were evaluated
by conducting the recovery experiment at three concentrations (10, 50, and 100 µg kg−1)
with six replicates for each level on three separate days. A six-point calibration curve
was constructed for all the compounds injected in duplicates for each batch. All of the
results were in accordance with the guideline of SANTE/11813/2017 as well as the EU
Commission Decision 2002/675/EC for validating methods, in which mean recoveries
should be in the range of 70−120% with RSDr of ≤20% and RSDwR of ≤20%. The linearity
of the calibration curves for each analyte was studied by injecting calibration solutions at
concentrations of 0.1, 0.5, 1, 2, 5, 10, 25, 50, and 100 µg L−1 in both acetonitrile and matrix
extracts. The matrix effect (ME) was calculated using the calibration curve of the solvent
standard and matrix-matched standards. The calculation formula is as follows:

ME% = (bmatrix/bsolvent − 1) × 100%

where bmatrix and bsolvent are the slopes of the compound in the calibration curves of the
matrix and solvent, respectively.

3. Results and Discussion
3.1. Optimization of Pretreatment Methods
3.1.1. Selection of Extract Solvent

To reduce the handing procedure and achieve compounds with high throughput,
a universal extract method based on QuEChERS needed to be selected. Various factors can
impact the efficiency of extraction. Based on previous reports, the acetonitrile extraction
system has generally been used with a mixture of different amounts of water or formic
acid (FA) [38–41]. The addition of water aids the extraction of hydrophilic compounds.
As shown in our previous study, by using a mixture of MeOH/water (3:2, v/v) with
1% acetic acid, a maximum rate of recovery between 70% and 120% [42] was achieved in
eggs. However, for multi-residue extraction, this method was also shown to cause the
incomplete extraction of hydrophobic compounds as well as cloudy and foaming sample
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extraction due to the low solubility of proteins and lipids in water. In addition, when
appropriate formic acid or acetic acid was added to acetonitrile, the ionization efficiency
was improved, and the recovery rate was also increased due to the weak alkalinity of most
compounds. In this study, we investigated four extraction solutions, including 1% acetic
acid in acetonitrile and 1%, 5%, and 10% formic acid in acetonitrile. Meanwhile, the number
of compounds was compared with recovery rates in the range of 50–130% and 70–120% in
the spiking level of 100 µg kg−1, respectively.

As shown in Figure 2, when 1% acetic acid in acetonitrile and 1% formic acid (FA) in
acetonitrile were used, there were 122 and 136 compounds with recovery rates between
70 and 120%, respectively. In particular, the recovery rates of quinolones that were ex-
tracted with formic acid in acetonitrile were higher than those extracted with acetic acid.
Interestingly, there were no significant differences in the three ratios of formic acid in
acetonitrile. The number of compounds with recovery rates between 50% and 130% was
approximately equivalent in these three extracts. Especially when extracted with 5% formic
acid in acetonitrile, the recovery rates of 158 compounds were between 51.74% and 105.66%,
nearly 90% of them were ranged from 70.42% to 105.66%, which means that the extraction
method that used 5% formic acid in acetonitrile was shown to enable the maximum number
of compounds to meet the recovery range. Therefore, in this study, 5% formic acid in
acetonitrile was chosen as an extract solvent.
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Figure 2. The number of compounds with recoveries between 50 and 130 (%) and 70 and 120 (%)
using different extraction solvents. Abbreviations: AA: acetic acid, FA: formic acid, ACN: acetonitrile.

3.1.2. Selection of Clean-Up Method

To obtain a better recovery result for more compounds, the clean-up method is fun-
damental. Traditional QuEChERS methods use C18 and PSA as dispersive solid-phase
extraction (d-SPE) clean-up sorbents and add different amounts of magnesium sulfate
(MgSO4) to remove water [15,43]. Research has shown that PSA can remove interferences
such as fatty acids, organic acids, and pigments effectively, while C18 can reasonably
remove non-polar components, such as lipids and waxes [44]. However, all of these d-SPE
sorbents are non-selective, as their mechanisms are hydrophobic interactions between
interferences and sorbents [35]. They not only trap and remove unwanted impurities but
also cause the loss of hydrophobic analytes. Zirconia (ZrO2) is another type of material
that utilizes Lewis acid/base interactions to selectively retain fatty non-polar interferers.
It was successfully used to analyze 30 pesticides in milk, which significantly reduced
matrix interference [45]. Meanwhile, it was shown to retain analytes of interest such as
tetracyclines, fluoroquinolones, and macrolides [46]. EMR-Lipid is an original chemistry
sorbent. By combining size exclusion and hydrophobic interactions mechanism, it se-
lectively removes straight, unbranched hydrocarbon chains and lipid-like molecules in
fatty foods such as animal tissue and edible oil [19]. As these sorbents have different
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characteristics, four clean-up combinations were compared to determine the most efficient
clean-up method. The combinations were as follows: (A) 50 mg of ZrO2 + 50 mg of C18,
(B) 50 mg of PSA + 50 mg of C18, (C) 150 mg of MgSO4 + 50 mg of PSA + 50 mg of C18,
and (D) EMR-Lipid. The recovery rates were calculated, and the number of compounds
per 10 percent interval was counted, starting from 50% to 130%, and the distribution of the
different recovery rates of the compounds is shown in Figure 3.
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Compared to the combination of 50 mg of PSA and 50 mg of C18, when MgSO4
was added, the number of compounds with recovery rates between 70% and 120% was
increased to 164. However, 90% of sulfonamides obtained a poor recovery rate that was
below 50%, which means adding MgSO4 can strongly affect the extraction of sulfonamides.
This result is in accordance with the results of the study performed by Chunna Guo et al.,
which indicated that when d-SPE was used with a combination of PSA and C18, an obvious
improvement in the recovery rates of sulfonamides was seen [47]. In addition, when ZrQ2
combined with C18 instead of PSA was used for purification, there was a slight increase in
recovery rates between 50% and 130%. Most importantly, recovery rates in the range of
70–120% (especially between 80% and 90%) were dramatically increased. When EMR-Lipid
was used, recovery rates between 50% and 130% and 70% and 120% increased to a total
number of 226 and 158, respectively. Additionally, all of the recovery rates of sulfonamides
after clean-up with EMR were in the range of 67.51% to 91.69%, which was better than
the combination of 50 mg of PSA and 50 mg of C18. Zhao’s results also showed that the
use EMR-Lipid cartridge clean-up for the analysis of 39 veterinary drugs in meat matrices
could effectively absorb lipids in the matrix, thus improving recovery rates [35]. Above all,
the results indicated that EMR-Lipid is an effective sorbent that can simultaneously enable
multi-residue screening and obtain satisfactory quantitative results. Hence, EMR-Lipid
was chosen as a clean-up sorbents for the following optimization.

After cleaning up with EMR-Lipid sorbent, it is essential to remove the redundant
water. Thus the effects of EMR polish and sodium chloride (NaCl) on chemical contami-
nants were compared. As shown in Figure S1, in the spiked concentration of 100 µg kg−1,
the number of compounds used by EMR Polish with recovery rates of 50–130% (198) and
70–120% (179) were both higher than the number of compounds used by NaCl. So, the EMR
Polish powder package was finally selected to achieve better results.
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3.2. Method Validation
3.2.1. Matrix Effects

In this study, matrix inhibition and matrix enhancement were observed in different
compounds in eggs (Figure 4). There were 203 compounds with matrix effects between
−18.9% (budesonide) and 19.9% (pefloxacin), which indicated no noticeable matrix enhance-
ment or inhibition; 8 compounds had strong matrix-enhancing effects, namely ampicillin,
ciprofloxacin, desloratadine, flubendazole, maduramycin, nigericin, norfloxacin, and pir-
buterol acetate. Among them, the maximum enhancement effect of desloratadine was
94.4%; 33 compounds had apparent matrix inhibition, mostly benzimidazoles, and the
value was between −68.1% (Nimorazole) and −20.4% (Miconazole). The effect of the
matrix could effectively be reduced by minimizing possible interference, improving the
chromatographic separation ability, changing the strength of the mobile phase, and chang-
ing gradient conditions. Meanwhile, the use of internal standards can effectively correct
the ion suppression (or enhancement) induced by co-eluting components present in the
sample extracts and improve the quantitative accuracy. However, the internal standard
is expensive, and this method involves too many different kinds of drugs; it is difficult
to find a suitable internal standard that meets a large number of drug screening condi-
tions. Therefore, matrix-matched calibration standards were used to equalize the response
enhancement or exhibition for calibration standards and sample extracts.
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Figure 4. Matrix effects of 244 chemical contaminants in egg.

3.2.2. Linearity

The regression equation and the correlation coefficient were calculated according to
the standard curve of the peak area value and the corresponding solution concentration
ratio (µg L−1). The matrix-matched standard curve showed excellent linearity in the entire
range (0.1, 0.5, 1, 2, 5, 10, 25, 50, and 100 µg L−1) and the Scorrelation coefficient (r) of all
drugs was higher than 0.9905. The specific linear equations and correlation coefficients are
shown in Table S3.

3.2.3. LOQs and LODs

The mixture of chemical contaminants was added to samples, and the fortified concen-
tration was 0.2, 0.5, 1, 2, 5, 10, 25, 50, and 100 µg kg−1. The pretreatment method described
above was used for the sample for the LC-MS/MS analysis. The LODs and LOQs of this
method were determined by the signal-to-noise (S/N) ratios of 3 and 10, with the recovery
of LOQs in the range of 50% to 130%, respectively. As is shown in Table 1, the LODs
and LOQs ranged from 0.2 to 2 µg kg−1 and 0.5 to 5 µg kg−1, respectively. The LODs of
193 compounds were 0.2 µg kg−1, and the LOQs of 162 compounds were 0.5 µg kg−1. This
method showed a high sensitivity for the determination of chemical contaminants.
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Table 1. The results of method validation for determination of 244 chemical contaminants in egg.

Compound Name

Fortified Concentration (n = 6)

LOQ LOD CCα CCβ10 µg kg−1 50 µg kg−1 100 µg kg−1

Recovery RSDr RSDwR Recovery RSDr RSDwR Recovery RSDr RSDwR

Unit % µg kg−1

2-Aminobenzimidazole 71.8 3.7 3.8 75.5 5.5 6.0 73.9 2.1 3.0 5.0 2.0 11.2 17.4
2-Mercaptobenzimidazole 54.7 9.8 11.7 58.2 9.4 11.5 56.4 7.0 10.4 5.0 2.0 16.1 27.2

2-Methyl-4 (5)-nitroimidazole 56.9 4.0 6.7 55.6 5.5 6.1 59.8 3.8 4.0 2.0 1.0 5.1 8.2
2-Methyl-5-nitroimidazole 58.8 1.6 1.7 61.0 2.2 2.4 64.4 1.5 1.6 0.5 0.2 12.7 24.9
3-Methoxytyramine (3-MT) 52.5 1.9 2.0 53.8 2.7 3.0 60.8 1.4 1.9 0.5 0.2 11.4 22.4

4-Acetamido antipyrine 72.3 2.5 3.2 75.0 4.0 6.4 71.5 2.3 2.4 0.5 0.2 15.5 30.5
4-Formylamino antipyrine 65.5 2.1 2.4 63.1 4.1 4.3 64.7 1.6 1.8 0.5 0.2 4.5 8.6

4-Nitroimidazole 97.0 2.0 2.5 97.6 4.7 5.9 93.1 6.0 8.6 0.5 0.2 22.9 45.3
4-Nitrophenol 69.8 9.1 9.2 65.9 6.7 6.7 64.9 3.3 4.0 5.0 2.0 11.6 18.1

5-Hydroxymebendazole 67.4 3.1 3.9 70.0 3.9 4.6 67.6 4.9 7.8 0.5 0.2 5.3 10.0
5-Hydroxy-thiabendazole 65.9 1.5 1.8 66.9 2.3 2.6 69.1 1.9 2.4 0.5 0.2 12.2 23.9

5-Nitrobenzimidazole 69.4 2.7 2.7 72.4 1.2 2.1 68.8 5.0 7.8 2.0 1.0 5.1 8.1
Albendazole 69.2 2.0 2.4 72.5 5.8 6.7 69.8 4.0 6.1 0.5 0.2 9.9 19.3

Albendazole sulfone 71.2 3.1 3.9 75.3 3.9 4.6 77.6 4.9 7.8 0.5 0.2 5.3 10.0
Alclomethasone dipropionate 73.0 3.7 4.1 73.5 3.6 4.8 73.0 3.8 4.3 0.5 0.2 18.7 36.9

Amantadine 76.2 2.0 2.5 75.6 3.9 5.3 75.7 3.8 4.0 0.5 0.2 14.7 28.9
Amcinonide 79.5 6.3 7.6 81.7 4.8 6.9 73.8 3.4 3.7 0.5 0.2 15.6 30.7
Ampicillin 58.4 8.5 11.1 53.8 10.2 11.2 53.3 7.6 9.3 5.0 2.0 12.9 20.9
Antipyrine 77.5 1.5 1.9 78.6 1.3 1.3 83.1 1.6 2.0 0.5 0.2 13.5 26.5
Azaperol 76.4 2.3 3.5 77.8 1.2 1.9 78.6 1.7 2.3 0.5 0.2 4.1 7.7

Azaperone 76.1 3.1 3.2 76.8 2.1 3.0 79.5 2.3 3.0 0.5 0.2 14.0 27.5
Bambuterol 86.8 1.9 2.2 84.4 1.9 2.7 87.2 1.4 1.8 0.5 0.2 8.1 15.6

Beclomethasone 73.4 4.5 6.1 73.9 3.5 4.0 69.2 3.3 6.2 1.0 0.5 14.7 28.3
Beclomethasone dipropionate 82.7 7.4 9.0 83.8 2.4 4.3 84.3 3.5 3.5 0.5 0.2 25.6 50.7

Benzimidazole 76.7 3.5 4.3 80.3 3.5 4.6 80.5 1.2 1.7 2.0 1.0 7.4 12.7
Betamethasone 76.8 3.4 3.8 75.7 3.7 3.9 77.1 2.6 2.7 0.5 0.2 18.7 36.8

Betamethasone valerate 86.2 5.7 7.4 71.8 6.6 9.7 76.1 4.4 4.9 0.5 0.2 4.4 8.3
Betamethasone dipropionate 85.3 2.8 3.1 81.5 4.0 4.4 80.7 3.1 4.0 0.5 0.2 16.2 31.9

Bromchlorbuterol 77.1 1.8 2.1 80.6 1.5 2.1 84.4 1.8 2.5 0.5 0.2 19.4 38.2
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Table 1. Cont.

Compound Name

Fortified Concentration (n = 6)

LOQ LOD CCα CCβ10 µg kg−1 50 µg kg−1 100 µg kg−1

Recovery RSDr RSDwR Recovery RSDr RSDwR Recovery RSDr RSDwR

Unit % µg kg−1

Brompheniramine 55.3 3.6 4.2 58.0 4.2 4.4 57.4 3.1 3.6 0.5 0.2 8.1 15.6
Budesonide 84.2 5.2 6.0 73.4 5.7 8.2 71.3 1.4 3.8 0.5 0.2 10.1 19.7

Cambendazole 65.7 2.6 3.1 68.1 2.7 2.8 67.3 5.0 7.5 0.5 0.2 5.9 11.3
Carazolol 86.3 1.7 1.8 87.8 2.7 3.3 86.0 1.1 1.6 0.5 0.2 3.3 6.1
Carbadox 104.2 4.0 5.9 107.8 4.2 6.0 108.1 2.5 3.1 1.0 0.5 12.5 24.1

Carbamazepine 76.1 1.1 1.3 74.6 2.6 2.8 81.1 1.3 1.8 0.5 0.2 4.9 9.3
Carbofuran 74.0 1.8 2.4 71.3 3.0 4.7 77.6 1.3 1.9 0.5 0.2 14.7 28.8
Cefapirin 104.4 7.0 7.4 91.3 11.9 12.4 110.7 3.3 4.7 2.0 1.0 14.6 27.2

Cefotaxime 101.6 6.7 8.1 101.4 7.1 9.0 105.4 1.9 3.1 5.0 2.0 15.9 26.8
Ceftiofur 72.8 5.2 5.7 76.6 6.7 7.2 83.4 10.0 12.4 2.0 1.0 8.7 15.3

Chlordimeform 70.9 4.5 4.9 75.3 3.4 4.4 80.5 3.7 5.5 2.0 1.0 7.7 13.4
Chlormadinone acetate 77.3 6.8 7.4 74.2 4.7 5.9 76.9 1.6 3.9 0.5 0.2 18.0 35.5

Chloroprocaine 72.1 2.0 2.0 71.6 2.3 2.8 72.4 1.3 1.4 0.5 0.2 13.9 27.4
Chlorpheniramine 58.3 2.6 3.2 53.9 4.5 5.8 55.0 1.5 2.8 0.5 0.2 7.9 15.2
Chlorpromazine 75.8 2.0 3.6 74.8 2.7 3.4 74.1 2.4 3.4 0.5 0.2 3.1 5.7

Cinchocaine 80.5 2.3 2.4 81.8 2.5 3.8 88.3 2.0 2.2 0.5 0.2 10.1 19.7
Cinoxacin 61.3 3.1 3.5 59.7 2.6 2.9 60.1 2.7 3.0 0.5 0.2 11.0 21.5

Ciprofloxacin 74.5 1.8 2.1 75.6 1.6 2.3 78.4 1.6 4.3 2.0 1.0 4.5 7.0
Clenbuterol 84.1 2.0 2.5 83.0 1.7 2.4 84.7 1.3 1.6 0.5 0.2 6.4 12.3

Clenbuterol hydroxymethyl 76.9 2.0 2.2 82.0 1.5 2.8 81.4 1.1 1.2 0.5 0.2 6.7 12.9
Clencyclohexerol 73.7 1.7 2.1 80.7 1.8 2.3 83.5 1.6 1.9 0.5 0.2 10.4 20.3

Clenhexerol 80.8 1.7 2.2 81.3 2.0 2.3 80.2 1.6 2.2 0.5 0.2 6.7 12.8
Clenisopenterol 76.8 2.6 3.2 77.9 2.5 3.3 76.7 1.8 2.0 0.5 0.2 5.2 9.8

Clenpenterol 78.9 3.9 4.6 83.1 1.1 2.6 83.3 1.2 1.9 0.5 0.2 8.6 16.6
Clenproperol 75.5 1.9 2.1 77.8 2.0 2.5 81.1 1.7 1.9 0.5 0.2 7.3 14.1
Clindamycin 72.1 4.1 4.9 71.2 3.5 4.3 73.2 1.1 1.2 0.5 0.2 7.8 15.1

Clobetasol 17-propionate 79.1 4.8 5.5 83.6 3.3 3.9 77.2 3.9 5.2 0.5 0.2 19.1 37.6
Clobetasone 17-butyrate 83.4 5.0 5.6 80.6 2.7 3.2 76.0 4.6 5.5 0.5 0.2 23.1 45.7

Clopidol 72.5 1.1 2.7 73.5 1.2 2.7 78.8 1.8 1.9 0.5 0.2 9.6 18.8
Clorprenaline 71.7 2.7 2.7 71.6 2.1 3.0 72.1 2.4 2.4 0.5 0.2 7.5 14.5

Cortisone 66.3 8.6 9.0 64.5 3.2 4.4 64.4 2.1 2.3 0.5 0.2 6.1 11.8
Coumaphos 96.1 1.6 1.7 91.2 4.5 6.9 83.9 4.3 5.8 0.5 0.2 7.0 13.5
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Table 1. Cont.

Compound Name

Fortified Concentration (n = 6)

LOQ LOD CCα CCβ10 µg kg−1 50 µg kg−1 100 µg kg−1

Recovery RSDr RSDwR Recovery RSDr RSDwR Recovery RSDr RSDwR

Unit % µg kg−1

Cyproheptadine 77.6 1.7 2.4 77.6 2.9 3.0 78.4 2.9 3.9 0.5 0.2 10.7 21.0
Danofloxacin 76.2 2.8 2.9 77.9 2.5 2.7 76.3 1.6 1.7 0.5 0.2 4.1 7.7

Dapsone 61.9 1.6 1.7 66.6 2.0 2.1 63.1 1.8 2.2 0.5 0.2 8.5 16.5
Deflazacort 82.9 3.9 4.8 79.0 2.8 3.6 80.7 4.7 5.3 0.5 0.2 25.1 49.7

Demeclocycline 58.2 5.8 6.1 56.9 9.7 10.3 67.3 7.3 9.1 5.0 2.0 18.6 32.2
Desloratadine 74.7 4.3 6.9 70.7 7.2 9.4 74.3 4.0 5.7 2.0 1.0 7.1 12.3

Desoxycarbadox 51.3 3.3 4.1 52.3 3.0 4.6 55.0 3.7 4.9 0.5 0.2 5.4 10.2
Dexamethasone 77.8 5.4 5.7 72.3 4.6 6.7 74.3 3.3 3.9 0.5 0.2 18.0 35.4

Dichlorvos 59.9 4.1 4.7 60.9 5.9 7.6 64.6 1.6 1.6 5.0 2.0 10.4 15.7
Diflorasone diacetate 71.5 5.3 6.3 77.0 6.0 8.5 80.2 4.4 5.5 0.5 0.2 6.7 13.0

Difloxacin 62.4 3.9 4.0 66.6 3.6 3.7 69.9 4.9 7.1 0.5 0.2 16.5 32.5
Dimetridazole 71.4 2.8 3.2 71.4 3.0 4.4 74.1 2.2 2.5 0.5 0.2 27.3 54.1

Diphenhydramine 83.6 1.0 1.7 83.1 2.6 2.9 82.2 1.3 1.6 0.5 0.2 4.4 8.3
Doxepin 76.8 5.3 6.5 80.2 3.8 4.4 79.9 7.5 11.1 2.0 0.2 10.2 18.4

Econazole 67.8 4.9 6.0 69.9 3.9 4.2 69.2 5.2 8.1 0.5 0.2 12.1 23.6
Enoxacin 73.5 1.6 1.6 73.2 3.7 5.6 72.7 1.4 1.9 5.0 2.0 9.0 13.1

Enrofloxacin 64.8 1.5 1.7 66.1 2.2 2.8 69.2 4.6 7.0 0.5 0.2 16.3 32.1
Epitestosterone 65.1 3.1 3.6 64.5 2.6 2.6 66.2 3.9 4.3 0.5 0.2 12.6 24.7
Eprinomectin 71.6 6.1 7.5 86.6 11.8 12.5 74.2 6.2 8.1 2.0 1.0 10.7 19.5

Febantel 85.7 1.3 1.7 83.5 3.7 5.1 76.3 4.2 5.7 0.5 0.2 4.5 8.5
Fenbendazole 56.4 2.9 4.2 58.4 4.3 6.3 59.2 3.6 4.0 0.5 0.2 8.3 16.0

Fenoterol 59.6 1.6 1.8 58.7 2.6 2.9 64.1 2.9 3.2 0.5 0.2 4.0 7.5
Fenthion sulfoxide 74.0 2.0 3.5 78.6 5.4 8.2 72.6 2.2 2.5 0.5 0.2 10.4 20.2

Fleroxacin 71.1 2.0 2.2 73.1 2.0 2.3 71.3 1.3 1.6 0.5 0.2 5.1 9.7
Florfenicol 82.9 7.8 10.4 81.3 14.2 15.0 87.5 10.0 10.1 5.0 2.0 20.2 35.4

Flubendazole 85.7 2.0 2.6 89.3 4.7 5.7 84.6 5.5 6.8 2.0 0.2 403.6 407.2
Fluconazole 64.9 3.9 4.7 69.3 6.1 6.7 68.7 6.2 7.1 2.0 0.2 3.0 4.0

Fludrocortisone 21-acetate 75.6 9.0 9.3 72.7 10.3 10.6 72.0 7.3 8.6 5.0 2.0 16.2 27.3
Fludroxycortide 70.4 8.7 10.1 71.0 4.9 6.1 70.2 2.5 3.0 2.0 1.0 16.9 31.8

Flumequine 62.6 2.8 3.3 63.2 2.3 2.4 63.0 2.5 3.3 0.5 0.2 4.9 9.2
Flumethasone 68.7 10.5 12.7 75.1 6.2 9.6 73.4 4.9 5.9 0.5 0.2 14.2 27.9

Flumethasone pivalate 76.7 4.9 5.7 86.2 4.3 5.2 81.6 4.0 4.5 0.5 0.2 9.4 18.3
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Table 1. Cont.

Compound Name

Fortified Concentration (n = 6)

LOQ LOD CCα CCβ10 µg kg−1 50 µg kg−1 100 µg kg−1

Recovery RSDr RSDwR Recovery RSDr RSDwR Recovery RSDr RSDwR

Unit % µg kg−1

Flunixin 71.0 1.3 1.4 74.5 3.2 4.0 75.8 4.4 5.4 2.0 1.0 3.6 5.2
Fluocinolone acetonide 66.6 5.4 6.8 73.1 4.2 5.7 68.0 6.7 8.5 1.0 0.5 8.8 16.6

Fluoromethalone 73.3 2.6 4.8 71.7 8.4 12.2 73.9 4.6 7.8 2.0 1.0 5.1 8.1
Fluoxetine 86.9 2.5 3.0 86.6 2.1 2.9 89.6 1.5 2.0 0.5 0.2 9.5 18.5

Fluphenazine 78.6 4.4 4.9 80.9 2.4 3.0 80.5 3.1 4.0 0.5 0.2 11.2 21.8
Fluticasone propionate 87.0 3.7 4.9 79.4 2.4 3.5 78.1 5.2 5.7 0.5 0.2 19.4 38.3

Formoterol 75.7 1.1 1.1 79.2 3.0 3.2 78.4 1.1 1.1 0.5 0.2 9.3 18.2
Gatifloxacin 56.0 3.5 4.3 53.6 3.2 3.6 56.6 2.4 3.2 0.5 0.2 4.5 8.6

Gemifioxacin 53.4 4.7 7.8 56.1 3.8 4.0 60.4 2.9 4.7 2.0 1.0 6.0 10.0
Griseofulvin 81.6 2.8 3.0 76.3 2.2 2.4 79.1 2.2 2.5 0.5 0.2 13.9 27.3
Halcinonide 73.3 9.8 10.5 70.8 4.7 6.2 70.1 3.7 4.7 0.5 0.2 9.4 18.2

Halofuginone 64.9 3.9 4.6 64.6 3.7 4.0 69.0 1.2 1.4 0.5 0.2 10.8 21.2
Haloperidol 77.7 1.2 1.2 79.5 2.6 2.7 76.8 1.5 2.2 0.5 0.2 6.9 13.4

2-Hydroxymethyl-1-methyl-5-nitroimidazole
(HMMNI) 70.0 1.9 2.3 72.8 4.0 5.1 79.6 2.0 3.7 2.0 0.2 3.0 4.1

Hydrocortisone 72.2 4.5 5.3 71.3 3.3 3.7 71.1 3.3 3.7 2.0 1.0 7.3 12.6
Hydroxy-ipronidazole 72.6 2.5 3.5 71.5 2.2 3.4 72.2 4.8 7.4 2.0 0.2 4.9 7.7

Hydroxyzine 75.3 3.2 4.5 75.0 2.5 2.9 75.6 1.7 2.4 0.5 0.2 9.2 18.0
Imipramine 77.4 2.7 3.0 80.0 2.1 3.8 80.9 2.1 2.6 0.5 0.2 5.9 11.2
Indoprofen 54.5 2.0 2.5 58.3 8.7 10.7 57.0 2.9 3.2 0.5 0.2 10.8 21.2

Ipronidazole 73.9 2.7 2.8 77.9 2.7 3.8 78.4 1.2 1.6 0.5 0.2 10.4 20.4
Isoxsuprine 84.4 1.2 1.3 86.5 1.8 2.8 87.3 1.5 1.5 0.5 0.2 7.6 14.8
Ivermectin 80.2 9.4 10.3 88.3 5.3 6.7 85.9 2.1 2.4 0.5 0.2 22.9 45.3

Ketoconazole 56.4 2.4 3.1 55.0 5.6 6.7 58.0 4.4 6.5 2.0 0.2 4.2 6.4
Ketoprofen 65.0 6.6 7.4 65.1 2.5 3.1 65.0 3.8 4.1 0.5 0.2 9.3 18.1
Ketotifen 83.3 2.2 2.4 81.2 2.7 3.0 81.6 1.1 1.8 0.5 0.2 8.4 16.3
Labetalol 72.6 2.0 4.0 72.2 3.2 3.3 79.1 2.1 3.1 0.5 0.2 7.8 15.1

Levamisole 78.4 2.8 2.9 82.9 1.7 2.6 84.4 1.9 2.3 0.5 0.2 5.7 11.0
Lidocaine/Diocaine 77.0 1.7 1.8 78.6 1.8 2.6 81.0 1.7 2.1 0.5 0.2 5.4 10.3

Lincomycin 71.3 1.8 2.4 72.5 6.4 8.4 81.3 10.6 13.1 0.5 0.2 55.1 60.2
Invisible malachite green (LMG) 69.8 1.8 2.1 67.5 4.5 5.9 69.1 5.6 7.8 2.0 0.2 4.3 6.7

Lomefloxacin 72.0 2.9 3.1 74.8 3.2 4.1 72.4 1.6 1.6 0.5 0.2 5.3 10.0
Loratadine 68.7 1.5 2.2 66.2 1.4 3.0 64.5 4.5 4.9 0.5 0.2 10.4 20.3
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Table 1. Cont.

Compound Name

Fortified Concentration (n = 6)

LOQ LOD CCα CCβ10 µg kg−1 50 µg kg−1 100 µg kg−1

Recovery RSDr RSDwR Recovery RSDr RSDwR Recovery RSDr RSDwR

Unit % µg kg−1

Lornoxicam 55.4 4.3 4.5 58.9 7.0 7.3 57.0 4.0 5.3 2.0 0.2 5.9 9.8
Maduramycin 82.9 11.9 11.9 92.0 4.7 7.1 86.9 3.3 3.5 0.5 0.2 21.9 43.4
Marbofloxacin 63.3 2.5 3.8 64.6 4.0 5.7 70.6 3.6 5.1 0.5 0.2 11.1 21.8
Mebendazole 64.7 2.8 3.1 68.1 5.1 6.3 67.1 5.1 7.7 2.0 0.2 5.0 7.9

Mebendazole-amine (HMEB) 61.3 1.7 2.4 64.8 5.2 7.1 62.1 4.0 6.0 2.0 0.2 4.4 6.8
Mefenamic acid 54.5 1.5 1.7 57.6 5.5 8.2 54.8 3.9 4.7 1.0 0.5 9.9 18.8

Megestrol acetate 74.4 3.2 3.6 77.6 2.0 2.9 77.3 5.8 6.8 0.5 0.2 20.6 40.6
Melengestrol acetate 81.2 3.2 3.7 75.4 2.3 2.8 73.3 4.9 5.2 0.5 0.2 15.0 29.6

Melitracene 82.6 1.5 2.9 77.5 3.4 3.6 77.2 2.8 3.7 0.5 0.2 11.2 22.0
Meloxicam 68.5 2.8 3.1 68.2 4.6 7.0 69.4 3.0 5.5 2.0 0.2 5.7 9.3

Metaproterenol 71.4 7.2 8.9 74.3 2.1 3.7 81.0 2.3 2.7 0.5 0.2 17.8 35.2
Methylprednisolone 74.6 3.8 4.6 76.6 4.3 5.1 75.9 3.1 4.0 0.5 0.2 25.6 50.7

Methylprednisolone 21-acetate 94.7 5.1 5.3 93.7 6.0 6.6 84.5 5.4 7.1 0.5 0.2 6.2 11.8
Methyltestosterone 71.3 4.0 4.2 74.8 4.9 7.7 78.9 6.2 7.1 0.5 0.2 13.4 26.2

Metronidazole 64.9 2.2 2.8 66.2 2.1 2.7 65.1 6.0 9.3 0.5 0.2 16.4 32.4
Miconazole 62.9 1.1 1.2 64.8 2.8 4.2 64.4 4.1 6.3 0.5 0.2 7.5 14.5

Hydroxy metronidazole (MNZOH) 55.2 4.2 4.7 58.1 2.5 2.7 61.2 5.7 8.8 2.0 1.0 6.1 10.3
Mometasone furoate 116.1 6.9 8.2 114.7 1.8 1.9 107.7 6.7 7.1 0.5 0.2 20.3 40.1

Monensin 69.3 1.7 1.8 69.7 5.1 7.7 70.3 1.8 1.8 0.5 0.2 2.7 5.0
Moxifloxacin 61.9 1.9 4.3 54.9 2.9 3.4 53.6 1.2 1.8 2.0 0.5 13.5 25.1
Nabumetone 93.3 2.9 3.8 88.5 3.4 3.7 83.4 5.4 6.3 0.5 0.2 9.0 17.6

N-Acetyl dapson 63.8 8.9 10.7 63.0 3.5 4.8 69.7 4.9 5.4 0.5 0.2 12.4 24.2
Nadifloxacin 58.2 3.4 3.9 53.2 6.2 7.2 52.9 4.0 5.4 0.5 0.2 17.0 33.4

Nafcillin 77.3 7.2 9.4 82.5 13.1 13.5 86.3 9.9 11.2 5.0 2.0 11.3 17.5
Naftifine 59.7 6.7 9.1 61.8 11.4 13.1 66.0 5.6 7.1 2.0 1.0 13.5 25.1

Nalidixic acid 65.7 1.3 2.4 64.1 3.0 3.0 66.1 1.6 3.2 0.5 0.2 14.7 28.9
Nandrolone 78.8 3.6 3.8 75.6 4.0 4.5 76.6 4.8 5.8 0.5 0.2 11.8 23.2
Naproxen 58.1 5.7 6.5 54.0 4.1 5.2 60.8 4.7 5.2 5.0 2.0 9.2 13.4
Nequinate 55.9 2.8 3.1 56.4 4.3 6.3 56.6 3.8 4.1 0.5 0.2 21.3 42.1
Nigericin 75.8 1.8 2.1 72.6 2.2 3.0 74.5 1.8 2.3 0.5 0.2 7.2 13.9

Nimorazole 78.7 9.2 10.2 80.6 10.1 11.7 78.4 7.2 8.2 2.0 0.2 13.4 24.9
Norfloxacin 74.0 1.6 2.2 72.2 1.6 1.7 71.8 5.2 7.4 0.5 0.2 10.8 21.2
Ofloxacin 72.7 1.4 1.7 76.2 2.4 2.6 73.1 5.1 7.7 0.5 0.2 15.4 30.3
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Table 1. Cont.

Compound Name

Fortified Concentration (n = 6)

LOQ LOD CCα CCβ10 µg kg−1 50 µg kg−1 100 µg kg−1

Recovery RSDr RSDwR Recovery RSDr RSDwR Recovery RSDr RSDwR

Unit % µg kg−1

Oleandomycin 83.6 1.2 1.8 86.5 4.1 5.4 81.9 1.1 1.2 0.5 0.2 13.7 26.9
Orbifloxacin 76.9 3.0 3.1 71.1 3.8 4.4 75.1 3.1 4.1 0.5 0.2 7.1 13.8
Oxaprozin 56.2 2.7 3.3 55.4 3.1 3.1 53.2 3.9 4.8 0.5 0.2 18.6 36.7

Oxfendazole 83.8 6.4 7.2 90.1 9.0 9.6 84.4 7.1 8.6 0.5 0.2 11.9 23.3
Oxibendazole 62.6 1.6 2.5 64.2 3.4 4.0 64.1 5.1 5.7 0.5 0.2 4.3 8.1
Oxolinic acid 71.0 2.0 3.7 75.5 6.8 8.8 74.3 11.5 14.2 2.0 1.0 2.4 2.8

Oxytetracycline (OTC) 77.3 4.7 5.1 75.6 1.8 2.4 71.0 2.9 4.6 5.0 2.0 202.7 205.5
Paracetamol 85.3 2.1 2.4 88.1 2.2 2.3 81.7 1.1 1.4 0.5 0.2 5.5 10.6
Pefloxacin 72.2 2.4 2.5 73.7 5.9 7.2 79.5 5.2 7.0 0.5 0.2 16.9 33.2
Penbutolol 87.6 1.4 2.8 79.8 4.2 6.2 77.3 2.1 2.4 0.5 0.2 10.4 20.2
Phenacetin 79.8 1.5 1.8 78.5 2.3 2.5 80.3 1.9 2.0 2.0 0.2 2.5 3.0

Phenylbutazone 79.0 6.1 9.0 74.1 8.2 9.7 86.6 5.8 6.2 0.5 0.2 8.7 16.8
Phenylethanolamine A 88.2 1.6 1.9 87.5 2.0 2.6 94.5 2.1 2.2 0.5 0.2 1.9 3.3

Pipemidic acid 75.3 4.1 4.8 76.3 2.4 3.6 72.1 2.7 3.4 2.0 1.0 6.3 10.5
Pirbuterol acetate 52.7 3.3 3.8 52.5 4.9 5.2 68.6 5.1 7.7 5.0 0.2 8.8 12.6

Piroxicam 64.5 5.6 8.3 65.7 4.6 5.3 66.9 4.6 7.5 2.0 0.2 10.7 19.4
Prednicarbate 77.9 4.0 4.4 74.4 4.8 5.1 73.5 3.9 4.3 0.5 0.2 9.8 19.1
Prednisolone 62.0 1.8 2.0 57.1 3.4 4.0 59.1 4.8 5.2 0.5 0.2 15.2 30.0
Prednisone 74.2 5.8 5.9 76.6 4.8 5.5 78.9 1.8 3.8 2.0 0.5 7.0 12.0

Procainamide 58.1 1.6 2.5 53.1 6.9 10.3 63.2 1.7 1.8 0.5 0.2 7.2 13.9
Procaine/Novocaine 60.2 2.4 4.6 58.4 9.5 11.6 55.1 2.2 4.7 2.0 1.0 4.4 6.7

Procaterol 61.5 3.2 3.8 64.6 4.5 5.4 71.8 1.7 3.7 2.0 0.2 5.7 9.5
Progesterone 92.4 1.1 1.7 87.8 3.7 5.3 81.6 6.2 7.5 2.0 0.5 22.6 43.3
Promethazine 60.9 4.9 6.2 61.7 4.3 5.3 63.0 1.0 2.8 2.0 0.2 8.1 14.2
Propetamphos 58.9 10.5 11.0 63.2 9.0 10.9 52.7 9.2 9.6 5.0 0.2 14.7 24.5

Propionylpromazine 78.1 1.2 1.2 79.3 3.7 4.0 79.7 2.0 3.4 0.5 0.2 8.5 16.4
Propranolol 80.2 2.1 2.5 73.8 5.0 6.9 88.6 3.8 5.5 2.0 1.0 12.6 23.2

Propyl thiouracil 64.3 6.5 7.1 64.6 7.4 8.3 67.6 5.0 5.3 5.0 1.0 12.0 19.0
Ractopamine 76.1 2.8 3.3 79.9 2.9 3.5 82.2 1.1 1.4 0.5 0.2 22.0 43.5

Ritodrine 83.7 3.5 3.6 81.5 3.8 5.1 71.8 3.7 4.5 0.5 0.2 19.0 37.5
Robenidine 54.8 2.9 4.5 57.8 4.7 5.9 54.0 2.0 5.6 5.0 0.2 9.1 13.1
Ronidazole 75.9 1.5 2.4 73.0 3.8 4.3 72.8 1.9 3.4 2.0 0.2 3.9 5.7
Salbutamol 78.1 4.4 5.3 72.2 3.2 4.1 76.7 1.1 2.6 0.5 0.2 3.6 6.6
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Table 1. Cont.

Compound Name

Fortified Concentration (n = 6)

LOQ LOD CCα CCβ10 µg kg−1 50 µg kg−1 100 µg kg−1

Recovery RSDr RSDwR Recovery RSDr RSDwR Recovery RSDr RSDwR

Unit % µg kg−1

Salmeterol 70.9 4.4 5.2 71.2 4.2 5.6 73.2 3.0 3.0 0.5 0.2 9.8 19.1
Sarafloxacin 76.2 1.0 1.1 72.8 4.0 5.8 74.4 3.9 4.0 2.0 0.5 3.8 5.6
Secnidazole 66.3 3.6 3.7 69.3 2.2 2.9 67.0 1.8 5.1 0.5 0.2 3.6 6.7

Sineptina 73.3 3.2 3.9 79.2 6.7 7.7 85.3 4.8 5.5 2.0 1.0 6.6 11.3
Sotalol 73.4 1.6 2.8 73.4 3.3 3.3 77.3 2.2 2.6 0.5 0.2 21.8 43.1

Sparfloxacin 85.4 2.4 2.5 74.1 4.4 5.0 81.6 2.2 2.2 0.5 0.2 3.7 6.9
Sulfabenzamide 73.4 2.9 3.2 77.2 3.2 4.5 73.9 3.5 4.9 0.5 0.2 3.7 6.9

Sulfachloropyridazine 57.4 4.7 6.0 62.1 6.8 7.4 61.0 3.1 5.5 2.0 0.2 6.4 10.8
Sulfadiazine 61.7 2.8 2.9 65.4 3.8 4.5 63.4 1.1 5.5 0.5 0.2 8.5 16.4

Sulfadimethoxine 66.6 1.7 2.0 67.9 4.6 5.9 66.3 1.4 4.3 0.5 0.2 5.2 9.9
Sulfadimidine 64.3 2.7 3.6 67.1 3.8 4.0 66.3 3.4 3.4 0.5 0.2 11.2 21.9

Sulfadoxine 67.5 2.8 3.4 69.2 3.9 4.3 69.1 5.6 6.4 0.5 0.2 6.8 13.1
Sulfamerazine 60.4 3.0 3.0 63.5 3.0 3.0 64.9 5.4 5.8 0.5 0.2 6.8 13.1

Sulfameter 60.9 2.8 3.9 62.7 3.0 3.0 62.4 5.7 7.5 0.5 0.2 11.5 22.6
Sulfamethizole 57.2 4.9 6.0 61.9 4.7 5.5 62.8 3.3 5.1 2.0 0.2 7.6 13.2

Sulfamethoxazole 57.2 5.3 7.4 61.3 2.3 3.0 59.9 5.7 7.1 2.0 0.2 8.9 15.8
Sulfamethoxypyridazine 64.8 3.8 4.1 69.6 2.7 3.7 69.3 4.2 5.7 0.5 0.2 10.8 21.2

Sulfamonomethoxine 63.0 2.8 3.3 64.4 4.8 5.2 64.1 6.0 7.8 2.0 0.2 4.9 7.7
Sulfamoxol 62.3 5.3 7.1 65.1 2.1 3.2 62.5 6.8 7.4 0.5 0.2 14.1 27.7

Sulfanilamide 73.1 2.4 2.9 83.2 5.4 6.8 84.1 1.3 1.9 0.5 0.2 8.1 15.6
Sulfanitran 70.3 4.6 5.0 75.1 8.6 11.4 77.2 6.6 9.7 5.0 1.0 14.6 24.2

Sulfaphenazole 68.8 2.6 3.8 70.4 2.3 2.8 70.2 2.2 5.0 0.5 0.2 10.1 19.7
Sulfapyrazole 71.2 1.7 2.2 71.3 3.7 4.4 71.6 5.3 5.3 0.5 0.2 10.7 20.9
Sulfapyridine 61.4 2.8 3.6 63.5 3.5 4.0 63.8 5.5 7.4 0.5 0.2 9.1 17.6

Sulfaquinoxaline 56.7 6.3 6.8 63.2 6.1 7.6 60.9 5.6 5.9 0.5 0.2 13.0 25.5
Sulfathiazole 53.0 3.7 4.6 56.1 3.5 3.9 56.9 5.6 7.4 5.0 0.2 8.0 10.9
Sulfisomidine 60.9 2.8 3.3 63.5 2.5 2.6 67.5 5.0 5.6 2.0 0.5 4.8 7.7

Sulindac 70.5 4.0 4.7 72.9 4.1 5.6 73.8 1.9 2.7 2.0 0.5 16.9 31.7
Sulphacetamide 117.8 3.9 4.0 118.3 2.8 3.1 106.5 1.3 1.3 0.5 0.2 3.1 5.8

Sulpiride 72.5 1.6 3.2 77.8 4.4 6.6 83.4 5.3 6.0 0.5 0.2 9.0 17.4
Tenoxicam 62.4 2.9 3.4 61.6 3.7 4.9 65.1 4.2 5.1 2.0 0.2 5.5 8.9
Terbutaline 85.2 3.2 3.3 82.4 9.0 12.1 72.7 3.8 4.2 0.5 0.2 18.0 35.5
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Table 1. Cont.

Compound Name

Fortified Concentration (n = 6)

LOQ LOD CCα CCβ10 µg kg−1 50 µg kg−1 100 µg kg−1

Recovery RSDr RSDwR Recovery RSDr RSDwR Recovery RSDr RSDwR

Unit % µg kg−1

Terfenadine 84.8 1.0 3.5 84.6 3.8 5.3 83.6 2.4 3.4 0.5 0.2 6.7 13.0
Testosterone 62.9 1.1 2.3 63.3 3.4 3.7 58.0 4.5 5.3 0.5 0.2 8.1 15.7
Tetracaine 55.4 4.7 5.8 53.4 7.0 10.9 53.8 2.8 3.4 0.5 0.2 4.3 8.1

Thiabendazole 59.9 1.1 1.3 62.2 2.9 2.9 65.0 5.5 5.7 2.0 0.2 3.1 4.2
Tilmicosin 95.6 6.9 7.1 81.1 7.5 8.4 81.7 2.5 2.5 2.0 0.2 12.8 23.7
Tinidazole 63.2 2.3 2.5 65.5 3.6 3.6 66.6 4.7 5.0 0.5 0.2 5.6 10.7

Tolfenamic acid 75.7 3.8 4.2 76.9 5.1 6.5 72.2 3.1 4.0 2.0 1.0 7.3 12.5
Tolmetin 75.4 6.9 7.1 76.0 7.6 9.6 76.5 3.5 4.8 2.0 0.2 10.4 18.7

Toltrazuril 74.9 3.4 4.2 71.5 1.9 2.0 71.7 9.9 12.8 5.0 2.0 7.2 9.3
Toltrazuril sulfone 88.6 4.3 5.1 80.0 1.9 2.5 91.2 6.5 8.7 5.0 2.0 12.8 20.7

Toltrazuril-sulfoxide 73.7 5.0 5.7 76.7 3.8 5.2 77.1 6.0 6.8 2.0 1.0 10.0 18.0
Tosufloxacin 55.2 5.0 5.4 62.2 11.7 14.0 66.8 8.3 11.0 5.0 0.2 15.9 26.8

Triamcinolone acetonide 81.5 3.2 6.7 81.0 3.3 3.5 81.8 2.5 4.3 0.5 0.2 7.8 15.1
Triclabendazole 54.6 3.0 3.9 57.2 2.6 2.7 57.4 4.6 5.9 5.0 0.2 7.3 9.6
Trimethoprim 74.1 1.1 1.2 80.7 2.9 2.9 81.7 1.1 1.4 0.5 0.2 11.2 21.8

Tulobuterol 80.7 1.8 1.8 81.2 2.5 2.7 82.1 1.6 2.0 0.5 0.2 4.7 9.0
Tylosin 74.2 3.3 4.6 78.7 2.6 3.2 81.3 1.2 1.9 0.5 0.2 206.4 212.8

Valnemulin 66.9 6.1 7.3 56.3 4.8 6.0 60.8 6.4 7.9 5.0 2.0 10.1 15.1
Virginiamycin M1 62.1 3.9 4.2 68.9 3.3 3.8 66.1 1.8 3.0 0.5 0.2 11.7 22.9

Xylazine 76.1 1.5 1.7 77.3 2.9 3.5 78.1 1.2 1.4 0.5 0.2 9.2 17.9
Zolpidem 77.2 1.0 1.1 79.3 2.4 2.5 78.2 1.9 1.9 0.5 0.2 3.9 7.4

Abbreviations: RSDr: repeatability, RSDwR: reproducibility, LOD: limit of detection, LOQ: limit of quantitation, CCα: decision limit, CCβ: detection capability.
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3.2.4. Accuracy and Precision

The accuracy of the experiments was reflected by the average recovery rate in three
fortified concentrations with six replicates. The results of the recovery study are provided
in Table 1. When the fortified concentration was 10, 50, and 100 µg kg−1, the recovery rates
were 51.33–117.83%, 52.29–118.28%, and 52.65–110.66%, respectively. This result is also
shown in Figure 5; about 150, 60, and 30 compounds had recovery rates in the range of
70–120%, 60–70%, and 50–60% at three fortified concentrations, respectively (Figure 5a),
and similar trends seemed to occur in all three spiked concentrations (Figure 5b). Above
all, for those compounds with recovery rates in the range of 70–120%, this method can be
directly used for quantitative calculation. Meanwhile, for those compounds with recovery
rates under 70% after qualitative detection with this method, other purification methods or
related internal standards should be used for more accurate quantification.
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Figure 5. Distribution of recovery at the fortified concentrations of 10, 25 and 100 µg kg−1. (a) Number
of compounds in recovery ranges at the fortified concentrations of 10, 25 and 100 µg kg−1; (b) Trends
of recoveries at the fortified concentrations of 10, 25 and 100 µg kg−1.

The precision of this method was determined by calculating the repeatability and
within-laboratory reproducibility, which were expressed as the RSDr and RSDwR for three
fortified levels (n = 6) in the egg matrix. The relevant results are presented in Table 1.
In eggs, the values of RSDr and RSDwR were 1.01–14.22% and 1.08–71014.96%. It could be
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observed that the RSDs were always lower than 20% for all of the chemical contaminants in
eggs. The results indicated that this advanced method has excellent precision and reliability.

3.2.5. CCα and CCβ

Due to the large number of compounds, the calculation of CCα and CCβ, according
to the method specified by the European Union, is time-consuming and costly. Based
on this, the formula for calculating CCα and CCβ was modified [17,43,48]. Among the
244 compounds for eggs, there are only four drugs with maximum residue limits (MRLs)
set by the EU, namely flubendazole, lincomycin, oxytetracycline, and tylosin; the set values
are 400 µg kg−1, 50 µg kg−1, 200 µg kg−1, and 200 µg kg−1, respectively. Thus, for these
four compounds, the CCα = MRL + 1.64 × SDMRL and CCβ = CCα + 1.64 × SDMRL.
Most compounds do not have an MRL. The formula is CCα = LOQ + 1.64 × SDLOQ and
CCβ = CCα + 1.64 × SDLOQ. The CCα and CCβ values are shown in Table 1, and the
values were 1.88–40.60 µg·kg−1 and 2.85–407.19 µg·kg−1, respectively.

3.3. Analysis of Real Egg Samples

To prove the effectiveness of the validated method, 40 eggs from different cities in
China were tested using the developed method after being shelled and homogenized.
The mass spectrometry conditions were checked, such as the peak of each compound
ion pair, the ion ratio, and retention time deviation, which did not exceed ±0.1 min,
to determine whether the samples were positive. The ion chromatograms of compounds
detected in actual samples are shown in Figure 6.

The results showed that a total of six compounds were detected in 10 egg samples.
In three different samples, clopidol at the concentration of 21.16 µg kg−1, oblixacin at the
concentration of 10.98 µg kg−1, and danofloxacin at the concentration of 2.36 µg kg−1, were
found. Enrofloxacin was detected in two egg samples at concentrations of 3.70 µg kg−1 and
4.64 µg kg−1, respectively. Tilmicosin was detected in two egg samples, and the residual
concentrations were 19.26 µg kg−1 and 20.26 µg kg−1, while trimethoprim had the highest
detection frequencies, which was detected in three samples with values of 25.06 µg kg−1,
33.80 µg kg−1, and 41.78 µg kg−1, respectively. The European Union has a zero-tolerance
principle for enrofloxacin, danofloxacin, trimethoprim, and tilmicosin residues in eggs [49].
These results are in agreement with other studies in which enrofloxacin [50] and trimetho-
prim [11] were frequently detected. However, both the EU and CAC, as well as China,
do not stipulate limitations for clopidol and oblixacin quantities in eggs. Its application to
actual samples proved that this method has excellent practicality.
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4. Conclusions

In this study, an extraction method with 5% FA in acetonitrile (ACN) and a clean-up
method with EMR-lipid material was used with LC-MS/MS to simultaneously detect a
total of 244 compounds, thus significantly expanding the range of chemical contaminants
monitored in eggs. The compounds included chemicals that are banned and restricted
in eggs and may have residual risks following human consumption. In addition, it was
shown that the method achieves good separation of the 244 compounds within 30 min.
This method was validated according to the guidelines of SANTE/11813/2017 and the
EU Commission Decision 2002/675/EC. The results showed that the method had good
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sensitivity and accuracy. The method was successfully applied to egg samples obtained
from different cities, and six compounds were detected, indicating that the method is
suitable for monitoring multi-class residues in eggs.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/agriculture12060869/s1, Figure S1: Effect of EMR and NaCl on
the number of chemical contaminants in the recovery of 50–130% and 70–120%; Table S1: Methods
for the determination of veterinary drugs and pesticides in eggs [11,31,40,51–57]; Table S2: The
mass spectrometry parameters of 244 chemical contaminants; Table S3: Regression Equation and
correlation coefficient of 244 compounds in matrix standard curve.
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