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Abstract: Rice is one of the important staple foods for human beings. Germ integrity is an important
indicator of rice processing accuracy. Traditional detection methods are time-consuming and highly
subjective. In this paper, an EfficientNet–B3–DAN model is proposed to identify the germ integrity.
Firstly, ten types of rice with different germ integrity are collected as the training set. Secondly, based
on EfficientNet–B3, a dual attention network (DAN) is introduced to sum the outputs of two channels
to change the representation of features and further focus on the extraction of features. Finally,
the network is trained using transfer learning and tested on a test set. Comparing with AlexNet,
VGG16, GoogleNet, ResNet50, MobileNet, and EfficientNet–B3, the experimental illustrate that the
detection overall accuracy of EfficientNet–B3–DAN is 94.17%. It is higher than other models. This
study can be used for the classification of rice germ integrity to provide guidance for rice and grain
processing industries.

Keywords: germ integrity; deep learning; EfficientNet; dual attention network

1. Introduction

Rice is a staple food for half of the world’s population. According to its size and shape,
it is mainly divided into japonica and indica rice (Glaszmann, 1987) [1]. Germ-retaining
rice has different definitions in different standards. In China’s “Retaining Germ Rice”
Consultation Draft (Plan No.: 20142140-T-449), it is pointed out that germ-retaining rice is
rice with a germ-retaining rate greater than 80%. Germ integrity refers to the proportion
of germ to complete germ. The germ is an important part of rice, which contains 66% of
the nutrients; therefore, accurate detection of germ integrity is of great practical value in
guiding the rice milling equipment for accurate milling.

Earlier, the germ integrity was tested by manual methods, which were time consuming,
unreliable, and subjective. For the grain processing industry, a fast, accurate, and objective
testing method is urgently needed. Computer vision is widely used in agriculture as well as
in rice quality inspection. It includes rice segmentation, rice counting, chalkiness detection,
rice adulteration detection, etc. In terms of germ integrity detection, Xu [2] conducted
research by analyzing the difference in appearance and area of rice with or without germ,
and proposed a quadratic differential model to estimate the rice germ integrity information.
Huang et al. [3] constructed a neural network model, including two neural networks and a
selector, by analyzing the differences in the distinctive features of germinated rice and non-
germinated rice. Through repeated training, the classification accuracy of germinated rice
and non-germinated rice reached 93%. Huang et al. [4] converted RGB color gamut to HIV
color gamut based on color features. In the HIV color gamut, the germ and endosperm have
obvious differences in saturation, which is used as the basis for discriminating whether
the germ is present or absent. The experiments showed that the method was close to the
results of manual detection, with a similarity of 88%. In terms of fine rice yield detection,
Yadav et al. [5] achieved the detection of polished rice yield by geometric features of rice
grains. Yao et al. [6] completed the detection of milled rice yield by using concave point
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matching algorithm. In terms of rice quality detection, Duan et al. [7]; Liu et al. [8];
Sakai et al. [9]; Wan et al. [10]; Zareiforoush et al. [11] used the color and geometric features
of images to detect rice quality. Lan et al. [12] used image enhancement technology to detect
cracks in rice. Broken, chalky, speckled grains of rice were detected by Chen et al. [13]
Sun et al. [14] used support vectors to classify plain and chalky rice. Sujarit et al. [15]
used volume estimation to calculate the chalkiness of rice. With the rise of deep learning,
researchers have used this method to study rice. Tan et al. [16] used convolutional neural
networks to segment sticky rice grains. He et al. [17] used the method based on the
background skeleton feature to complete the segmentation of sticky rice grains, and the
segmentation accuracy reached 93.5%, which is better than the traditional watershed
algorithm. Izquierdo et al. [18] built a convolutional neural network to classify different
varieties of rice. Pradana-López et al. [19] uses transfer learning to detect rice adulteration.

In addition to the field of rice detection, researchers have also used deep learning to
carry out a lot of research in other agricultural areas, which has promoted the development
of agriculture. In terms of plant disease detection, Zhang et al. [20] used AlexNet [21]
network to identify diseased leaves of cucumber. Gu et al. [22] used convolutional neural
networks to identify apple and pear diseases. Atila et al. [23] used EfficientNet [24] to
classify and detect plant leaf diseases. Tetile et al. [25] used ResNet [26] to detect and
classify soybean pests in UAV images. Bi et al. [27] used the MoblieNet [28] network to
identify apple leaf virus. In other agriculture, Yang et al. [29] used VGG [30] network to
retrieve vegetable images. Gao et al. [31] used long short-term memory to predict soil
moisture. Huang et al. [32] built their own convolutional neural network to achieve the
classification of pineapple quality. Liu et al. [33,34] used an optimized neural network to
identify spectral peaks and initially determine target locations. Yuan et al. [35] used the
Inception-v2 [36] network to detect cherries and tomatoes.

In summary, a lot of research has been conducted on rice quality testing; however,
there are few studies on the accurate detection of rice germ integrity. Germ integrity is
a key indicator of rice, and the processing accuracy and nutritional composition of rice
are closely related to it; therefore, it is of great significance to study the accurate detection
method of rice germ integrity. In this paper, an EfficientNet–B3–DAN model is proposed to
achieve rapid and accurate detection of germ integrity. The implementation steps are as
follows: (1) On the basis of EfficientNet–B3, parallel attention modules are added, which
are the position attention module (PAM) and the channel attention module (CAM). The
PAM is able to learn the spatial interdependence of features and CAM can simulate the
interdependence of channels to further improve the detection accuracy. (2) Several pictures
of rice were collected and divided into 10 categories according to the germ integrity. (3) The
model was trained by using the transfer learning method. Transfer learning can effectively
save training time and improve detection accuracy with the help of features learned on
other datasets.

2. Materials and Methods

This chapter introduces several rice samples used in the experiments and the deep
learning models used to classify them.

2.1. Rice Varieties

In this paper, six varieties of rice were selected as experimental subjects, including
four types of japonica rice and two types of indica rice. Their size and origin information
are shown in Table 1.
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Table 1. Types of rice.

Label Variety Designation of
Origin Size GPS

Coordinates

J1 Japonica Suihua Long N: 46°38′14.28′′

E: 126°59′8.38′′

J2 Japonica Wuping Long N: 25°05′43.26′′

E: 116°06′1.40′′

J3 Japonica Yancheng Short N: 33°12′3.85′′

E: 120°30′3.67′′

J4 Japonica Shuangyashan Mid N: 46°34′38.17′′

E: 131°24′6.41′′

I1 Indica Wuping Long N: 25°05′43.26′′

E: 116°06′1.40′′

I2 Indica Wuping Long N: 25°05′43.26′′

E: 116°06′1.40′′

2.2. Image Acquisition System

The image acpture system includes a Hikvision camera with 8 million pixels, a rice
conveyor, an arched light source, and a computer, as shown in Figure 1.

1

2

3 4 5

6

Figure 1. Image acquisition system. 1. Hopper. 2. Transfer device. 3. Arched light source. 4. Hikvision
camera. 5. Notebook. 6. Storage hopper. Working process: The rice is sprinkled on the conveyor belt
by the feeding hopper. The conveyor belt advances at a constant speed, and the camera is controlled
by the notebook to take pictures regularly. Finally the rice is collected by the storage hopper.

The Hikvision camera is installed inside the arched light source to capture the rice
on the transfer device vertically downward. A ring of LED lights is installed inside the
arched light source to ensure a uniform distribution of light. In order to obtain a clear
image, the brightness of the light source can be adjusted. The rice is randomly dropped on
the conveyor device, which rotates at a constant speed. The camera captured images every
10 s, and the captured images were shown in the Figure 2. The processor of the notebook
is 2.9 GHz, AMD Ryzen 7 4800 H. The operating system is Ubuntu18.04 64-bit operating
system. QT Creator software is used as an image processing tool.
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(a) (b)

Figure 2. Collected images. (a) Full image. (b) Single germ rice.

2.3. Image Preprocessing

In order to ensure the accuracy of the experiment, the rice was collected during
the processing of the equipment. The collected images are densely stuck and cannot be
trained directly. Preprocessing operations, such as region segmentation and sticky rice
segmentation, are required.

2.3.1. Region Segmentation

Region segmentation is to divide the image into several regions according to the
similarity between pixels and surrounding pixels. Next, the rice binary image is segmented
by the region growing method to complete the labeling and feature description of the
region. The steps of the region growing method are as follows, first randomly designate
a point in an area as the starting pixel, and continue to expand around this point. At the
same time, determine the similarity between the surrounding pixels and this point, and if
they are similar, add the surrounding pixels to the neighborhood. Secondly, continue to
expand with the newly added point as the starting pixel point until there are no similar
pixels around. Finally, an independent connected region is formed. The segmented graph
is shown in the Figure 3.

Figure 3. Labeling results of region segmentation.
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2.3.2. Sticky Rice Segmentation

As shown in Figure 3, some marked areas contain multiple grains of rice, which need
to be segmented. In this paper, an improved adaptive radius circular template method [16]
is used, by which the concave points of rice in various adhesion cases can be found precisely.
Then, the concave points are matched by the concave matching criterion, and finally the
segmentation is completed. The specific steps are as follows:

(1) According to the area size of the region, the adherent rice region was extracted as
shown in the Figure 4.

(2) The contours of the regions near the sticky rice are extracted. The corner response
values along the boundary are calculated using the adaptive circular template. The
calculation formula is as shown in Equation (1).

CRF(p) =
np

ap
(1)

In Equation (1), ap denotes the size of the circular template, np represents the area
where the rice falls within the circular template, and CRF(p) denotes the ratio of the
area. The corner point detection response curve is shown in Figure 5.

(3) The segmentation endpoint is the concave point, which is screened according to the
threshold value.

(4) A concave point is randomly selected as the base endpoint, and possible matching
points are found within the area formed by the specified angle. If there are multiple
points, the closest matching point is selected as the matching point. If not, the base
endpoint is changed to something else. Loop until all points are matched. At this
point, the segmentation is completed. The segmentation result is shown in Figure 6.

Figure 4. Image of rice seeds with various degree of germ integrity. The red oval indicates the
position of the germ.
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Figure 5. Corner response. Along the rice boundary, the CRF of each pixel is calculated. The response
curve of the corner point is obtained, and the corresponding corner point in the image is found
according to the local maximum point in the curve. (a) Corner response curve. (b) Corner points
correspond to points on the image.

Figure 6. Segmentation result.

2.4. EfficientNet–B3–DAN

EfficientNets is a network series published by Google in May 2019. They designed a
baseline network using neural architecture search, and scaled the model to obtain a series of
models. Its accuracy and efficiency are better than all previous convolutional networks. In
particular, EfficientNet–B7 achieved a state-of-the-art top-1 accuracy of 84.4% on ImageNet,
while being 8.4 times smaller and 6.1 times faster than the previous best convolutional
network. After weighing the speed and accuracy, we chose the EfficientNet–B3 structure
and improved on it.

2.4.1. The Structure of the EfficientNet–B3

This paper selects EfficientNet–B3. It contains nine stages. The structure diagram is
shown in Figure 7a. It contains the Mbconv structure, as shown in Figure 7b.
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Figure 7. The individual structures included in EfficientNet–B3–DAN. (a) The structure of the
EfficientNet–B3. ×n indicates that the layer is repeated n times, and kn× n indicates that the size
of the convolution kernel is n. MBConv means mobile inverted bottleneck convolution, proposed
by Sandler et al. [37]. The image input size is 300× 300, and the final classification result is output
through the convolutional layer, the MBconv1 layer, the MBConv6 layer, the pooling layer, and
the fully connected layer. (b) On the left the is structure of the MBConv. Conv represents the
convolutional layer, BN represents the batch normalization layer, Swish means the Swish activation
function, DWConv means the deep separable convolution, and SE represents the squeeze-and-
excitation [38]. The size of the input feature map is H×W× C, and the dimension is expanded
by n times through the 1× 1 convolutional layer. For example, Mbconv6 means to expand by six
times. On the right is the structure of SE. AvgPooling denotes average pooling and FC denotes
fully connected layer. Through this module, the dependencies between different channels can be
adaptively learned. (c) The structure of DAN. The upper figure represents the PAM. Input feature
map A, the size is C×H×W, and the feature map A is convolved to obtain X, Y, Z, and the size is
still C×H×W. Transform X and Y into X′, Y′, their size is C×M, where M = H×W. After that,
X′ · (Y′)T is calculated. Compute the O by softmax with size (H×W)× (H×W). Transform the size
of Z to C×M, multiply it with O, and finally sum with A to obtain the final output U. The lower
figure represents the CAM. The input feature map is still A, transform A into A′, the size is C×M.
A′ · (A′)T is calculated. Q is output through the softmax layer, the magnitude of Q is C×C. Multiply
Q and A′, and the result size is transformed into C×H×W. Finally, add A to obtain V. The PAM is
summed with the CAM as the output of the dual attention network.
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2.4.2. Dual Attention Network (DAN)

The attention mechanism can exclude the interference of irrelevant information and
pay more attention to useful information. DAN was proposed by Fu et al. [39]. The method
can adaptively adjust the relationship between local features and global features, and
achieve high accuracy in image segmentation. It includes a PAM and a CAM, which will
catch rich contextual relations. Its structure is shown in Figure 7c.

Figure 7 shows the structure of each component. The EfficientNet–B3–DAN structure
after combining the DAN is shown in the Figure 8.

Figure 8. The structure of the EfficientNet–B3–DAN.

2.5. Transfer Learning

Transfer learning is a technique in machine learning that applies data features and
model parameters obtained in one dataset to another task, since training deep networks
requires a lot of time and computational resources, and data collection also takes a lot of
time. By transfer learning, we can not only save time but also achieve better classification
accuracy. Our strategy is to use the weights trained on ImageNet. The ImageNet pre-trained
model output is 1000-dimensional, which is changed to 10-dimensional according to our
experimental needs. After experiments, it was found that the accuracy of training only the
parameters of the fully connected layer was lower than that of training all the parameters;
therefore, instead of freezing some parameters during training, all parameters were trained.

2.6. Experimental Setup

The experimental computer was configured as Inter(R) Core(TM) i7-6850K, the were
2 graphics cards, both 1080 ti. The Ubuntu18.04 operating system was installed, and the
PyTorch framework was used for programming. The GPU environment was used for all
experiments.

The input image size of the network is set to 300× 300, and the epoch is set to 50.
The base learning rate and batch size are set to 1× 10−4 and 32. Image operations such as
horizontal flipping during training are used as image augmentation methods.

2.7. Evaluation Metrics

In the experiment of this paper, the performance of the model is comprehensively
evaluated through five indicators. They are precision (Pre), sensitivity (Sen), accuracy (Acc),
overall accuracy (OA), and F1-Score. The corresponding metrics of multi-categorization
are calculated by using macro-averaging method. The formulas for these indicators are as
follows:

Pre =
TP

TP + FP
× 100% (2)

Sen =
TP

TP + FN
× 100% (3)

Acc =
TP + TN

TP + FN + FP + TN
× 100% (4)

F1-Score = 2 · Pre · Sen
Pre + Sen

(5)

AveragePre =
1
M

M

∑
m=1

Pre(m) (6)
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AverageSen =
1
M

M

∑
m=1

Sen(m) (7)

AverageAcc =
1
M

M

∑
m=1

Acc(m) (8)

AverageF1 =
1
M

M

∑
m=1

F1−Score(m) (9)

OA =

M
∑

m=1
xmm

N
× 100% (10)

The above indicators can be calculated by the confusion matrix. Among them, TP
(True Positive), denotes that both label and output are positive. FP (False Positive), means
that the label is positive, and the output is negative. TN (True Negative), means that both
label and output are negative. FN (False Negative), which means the label is negative and
the output is positive. M indicates how many categories. xmm means how many correct
predictions for each class, and N represents the sum of all samples.

3. Results and Discussion
3.1. Construction of Rice Dataset

Through image preprocessing in Section 2.3, 10,392 single-grain rice images were
obtained, which were divided into 10 categories according to different germ integrity, as
shown in Figure 9.

Figure 9. Ten kinds of rice with different germ integrity. The black area in the figure represents the
rice germ part.

Each type of rice is divided into training set, validation set, and test set according to the
ratio of 60%, 20%, and 20%, as shown in Table 2. The training set serves to fit the network.
The validation set tunes the model hyperparameters while saving the best weights. The
role of the test set is to test the network performance.

Table 2. Quantity of each type of rice.

Dataset 0–10% 10–20% 20–30% 30–40% 40–50% 50–60% 60–70% 70–80% 80–90% 90–100%

Training dataset 720 720 514 514 768 720 432 720 530 604
Validation dataset 240 240 170 170 256 240 143 240 176 200

Test dataset 240 240 170 170 256 240 143 240 176 200

3.2. Testing of the Model
3.2.1. Test Results of the EfficientNet–B3–DAN Model

During the training process, the validation accuracy and validation loss data of the
model at each epoch were obtained. As shown in Figure 10.
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Figure 10. Data for each epoch. Accuracy and loss for each epoch on the validation set. (a) Validation
accuracy. (b) Validation loss.

As shown in Figure 10, the accuracy and loss on the validation set reached stability in
5 epochs, with the highest average accuracy reaching 98.72% and the lowest loss reaching
0.1. The results show that the network can converge quickly and achieve high classification
accuracy on the validation set.

The test set was used to test the EfficientNet–B3–DAN. Figure 11 depicts the confusion
matrix.
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Figure 11. Confusion matrix of EfficientNet–B3–DAN. The horizontal axis represents the predicted
labels for each category, and the vertical axis represents the true labels for each category. Each grid
represents the number of classes predicted to be another class. The diagonal cells represent the
number of correct predictions.

As can be seen from the confusion matrix, the numbers in the diagonal direction
represent the number of correct classifications. The color blocks in the diagonal direction
are darker, and the rest are lighter, indicating that most of the samples are correctly classified.
The evaluation indexes are calculated according to the confusion matrix as shown in Table 3.
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Table 3. Evaluation metrics of EfficientNet–B3–DAN.

Class TP 1 TN 2 FP 3 FN 4 Pre (%) 5 Sen (%) 6 Acc (%) 7 F1-Score (%) OA (%) 8

0–10% 240 1834 1 0 100.00 100.00 99.95 100.00

94.17

10–20% 240 1835 0 0 100.00 100.00 100.00 100.00
20–30% 167 1905 0 3 100.00 98.24 99.86 99.11
30–40% 170 1902 3 0 98.27 100.00 99.86 99.13
40–50% 203 1762 57 53 78.08 79.30 94.70 78.63
50–60% 179 1782 53 61 77.16 74.58 94.51 75.85
60–70% 142 1932 0 1 100.00 99.30 99.95 99.65
70–80% 237 1835 0 3 100.00 98.75 99.86 99.37
80–90% 176 1895 4 0 97.78 100.00 99.81 98.88

90–100% 200 1872 3 0 98.52 100.00 99.86 99.25
1 True Positive. 2 True Negative. 3 False Positive. 4 False Negative. 5 Precision(%). 6 Sensitivity(%). 7 Accuracy (%).
8 Overall accuracy (%).

As can be seen from Table 3, the classification accuracy for each category is greater
than 77.16%, the sensitivity is greater than 74.58%, and the accuracy is greater than 94.51%.
Among them, the highest accuracy of the second category reaches 100%. In general, the
model classification overall accuracy is 94.17%. In conclusion, the model is able to accurately
classify the germ integrity dataset.

3.2.2. Compare Results with Other Methods

To further evaluate the detection performance of the proposed model, it is compared
with other state-of-the-art models on the test set. Their confusion matrix is shown in
Figure 12.

The data of several models on each indicators were obtained based on the confusion
matrix calculation. As shown in Table 4.

Table 4. Evaluation metrics of EfficientNet–B3–DAN.

Model AveragePre (%) AverageSen (%) AverageAcc (%) AverageF1 (%) OA (%)

AlexNet 86.96 85.67 97.09 85.62 85.45
VGG16 89.16 88.76 97.62 88.73 88.10

ResNet50 90.18 88.74 97.54 88.11 87.71
GoogleNet 90.64 89.57 97.80 89.50 89.01
MobileNet 88.57 88.57 97.57 88.51 87.86

EfficientNet–B3 91.75 91.64 98.10 91.35 90.51
EfficientNet–B3–DAN 94.94 95.02 98.84 94.97 94.17

Referring the Table 4, the EfficientNet–B3–DAN has a classification overall accuracy of
94.71% on the rice germ integrity test set, which is the best among several algorithms. It is
higher than AlexNet, VGG16, ResNet50, GoogleNet, MobileNet, and EfficientNet–B3 by
8.72%, 6.07%, 6.46%, 5.16%, 6.31%, and 3.66%, respectively. The average accuracy, average
sensitivity, and average precision are 3.19%, 3.38%, 0.74%, and 3.62% higher than the
second place, respectively. The second place is EfficientNet–B3, therefore, it is reasonable
to improve on it. After adding the DAN, the model has been improved in all indicators.
It indicates that the DAN can establish rich contextual relationships on local features and
effectively improve the classification accuracy.

In summary, our proposed EfficientNet–B3–DAN model can accurately classify germ
integrity. Compared with other models, it has significant advantages in most of the
indicators.
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Figure 12. Confusion matrix for different networks. (a) AlexNet. (b) VGG. (c) ResNet. (d) GoogleNet.
(e) MobileNet. (f) EfficientNet–B3.
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3.2.3. Visual Analysis

In order to better analyze the reasons why the EfficientNet–B3–DAN model out-
performs other models, this paper uses the Grad-CAM [40] method for visualizing the
classification results. Three kinds of rice were selected for the experiment. The attentional
heat map is shown in Figure 13.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 13. The visualization comparison of three types of rice (J1, J3, I1) between original image (a–c),
and attention heat map from EfficientNet–B3 (d–f), and EfficientNet–B3–DAN (g–i).

As shown in Figure 13, EfficientNet–B3 focuses on the germ region and part of the
epidermal region of rice, while EfficientNet–B3–DAN focuses more on the rice germ



Agriculture 2022, 12, 863 14 of 16

region. The residual epidermis of rice is more similar to the germ region, which is easy
to form interference. After adding the DAN, the model focuses more on the extraction of
features in the germ region and enhances the representation of features, thus improving
the classification accuracy of rice germ integrity. The feasibility of our proposed model is
further proved through visualization.

4. Conclusions

Rice germ contains 66% of the important nutrients in rice; however, it is usually not
retained during processing, resulting in serious food waste and affecting food security.
In this paper, the EfficientNet–B3–DAN model is proposed to detect and classify the rice
germ integrity to further guide the grain processing process. The overall accuracy of the
EfficientNet–B3–DAN model reached 94.17% on the rice test set. Compared with other mod-
els, it has obvious advantages in various indicators. Through attentional heat map analysis,
the EfficientNet–B3–DAN model can focus more on the extraction of germ part features,
improve the feature expression capability, and further improve the classification accuracy.

This study can be applied to the grain processing industry to form a feedback system
to improve grain production. In the follow-up work, we will continue to expand the data set
of retained germ rice to achieve finer classification results. At the same time, it is necessary
to further improve the detection accuracy and detection speed.

Moreover, our method can also be applied in the field of small object detection and
classification. For example: cells, widgets, and other cereal categories. This is also our
future research direction, combining with different disciplines, constantly exploring new
methods and solving problems in different fields.
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