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Abstract: With the accelerated digital transformation, food security data is exponentially growing,
making it difficult to process and analyze data as the primary challenge for food security risk
regulation. The promotion of “big data + food” safety supervision can effectively reduce supervision
costs and improve the efficiency of risk detection and response. In order to improve the utilization of
testing data and achieve rapid risk assessment, this paper proposes a rice security risk assessment
method based on the fusion of multiple machine learning models, and conducts experimental
validation based on rice hazard detection data from 31 provinces in China excluding Hong Kong,
Macao and Taiwan in 2018. The model comparison verifies that the risk assessment model shows
better performance than other mainstream machine learning algorithms, and its evaluation accuracy
is as high as 99.54%, which verifies that the model proposed in this paper is more stable and accurate,
and can provide accurate and efficient decision-making basis for regulatory authorities.

Keywords: food security; risk assessment; group decision; clustering algorithm; model fusion

1. Introduction

The frequent occurrence of food security incidents in recent years has placed higher
demands on food security regulation, and countries around the world have introduced a
series of stringent food security regulation policies. To further strengthen risk monitoring,
risk assessment and supply chain management, and to improve the efficiency of risk
detection and response, government departments at all levels are vigorously promoting
the digitalization of food safety, strengthening “big data + food” regulation, and bringing
into play the advantages of big data, artificial intelligence and other technologies in the
areas of food security risk assessment and regulation.

Currently, food security risk assessment methods include qualitative assessment meth-
ods, quantitative assessment methods, and comprehensive risk assessment methods [1].
Qualitative assessment methods are mainly based on the knowledge and experience of the
assessor to analyze risk indicators, among which, single expert-based assessment methods
are relatively mature, including the Index Scoring Method [2], the Analytic Hierarchy
Process (AHP) [3], Decision-Making Trial and Evaluation Laboratory (DEMATEL) [4]. The
methods based on multiple experts are mainly divided into two categories: subjective
weighting methods and objective weighting methods [5,6]. Subjective weighting methods
are mostly based on an expert priori information to classify expert weights, such as reputa-
tion and knowledge, and calculate the risk values based on the results of the expert weights.
There are many advanced subjective weighting methods in the existing literature, among
which the more pioneer or outstanding research are as follows. (1) Combining D-S evidence
theory and multi-objective planning theory, Du et al. investigated a weighting method
based on expert knowledge structure analysis, which effectively took into account the opin-
ions of various experts and improved the consensus of the cluster [7]. (2) Combined with
the probabilistic language dominance scoring method, Wan et al. proposed a weighting
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method based on the individual semantics and psychological behavior of decision makers,
and verified the effectiveness of the method through examples [8]. Objective weighting
methods are mostly based on the degree of consistency of the experts’ assessment results to
classify expert weights, and the risk values are also calculated based on the results of the
expert weights. A large amount of literature has been presented to solve the multi-attribute
group decision-making problems with objective weighting methods, among which the
more pioneer or outstanding research are as follows. (1) Based on the results of online
reviews of customers, Darko et al., presented a weighting method for probabilistic linguistic
dominance scores based on the Latent Dirichlet Allocation model, and constructed an index
evaluation system in an objective manner [9]. (2) Based on the possibility degree and the
divergence degree, Wang et al. proposed an interval-valued intuitionistic fuzzy MAGDM
method to derive decision makers’ weights [10]. (3) Based on the similarity degree-based
clustering method, Gou et al. established a consensus building process with double hierar-
chy hesitant fuzzy linguistic preference relations to advise the identified experts to adjust
their assessments [11]. In practical decision-making, qualitative assessment methods based
on multiple experts are more credible and more widely used [12].

Quantitative assessment methods are based on the data to establish a mathematical
model and use the mathematical model to calculate the risk value of the index [13]. Com-
monly used methods include Fuzzy Comprehensive Evaluation Method (FCE) [14], Grey
Relational Analysis (GRA) [15], Support Vector Machine (SVM) [16], Back-Propagation
Network (BP) [17], Long Short-Term Memory (LSTM) [18], Extreme Gradient Boosting
(XGBoost) [19] and the Light Gradient Boosting Machine (LightGBM) [20]. The machine
learning algorithms have strong adaptive learning capabilities and are widely used in
food security risk assessment. Among them, the more advanced research are as follows.
(1) Combined red cabbage anthocyanin labels and back propagation (BP) neural network,
Fang et al. proposed a smartphone application to form a simple system for quickly scanning
tags and identifying fish freshness in real-time [21]. (2) Based on artificial neural network,
Saeed et al. proposed a multisensor monitoring and water quality prediction method for
live ornamental fish transportation, and the effectiveness of the method is verified by an
example [22]. (3) Carlo et al. based on artificial intelligence model predicted optimal food
structures, which has been proposed and applied to pasta, in particular using descriptions
of the structural changes that occur when cooking [23].

The comprehensive risk assessment method is a combination of qualitative and quan-
titative assessment methods [24], which constructs an index system through qualitative
assessment methods, and builds a risk assessment model based on the index system and
quantitative assessment methods, thereby achieving accurate and efficient risk assessment.
Among them, the more advanced research are as follows. (1) Based on the agglomerative hi-
erarchical clustering-radial basis function (AHC-RBF) neural network, Geng et al. proposed
an improved early warning approach for assessing and controlling food safety risk [25].
(2) Lin et al. proposed an improved interpretative structural modeling (ISM) method based
on the grey relational analysis (GRA-ISM) to hierarchical analyze influencing factors of
food safety [26]. (3) Combined semi-quantitative scoring method, Li et al. proposed a fuzzy
comprehensive analysis models based on metrics system and ranking mode to evaluate
typical chemical hazards in specific foods and rank risks across multiple foods [27].

Table 1 shows a comparison of the advantages and disadvantages of mainstream risk
assessment methods.

Based on the comparison of the advantages and disadvantages of the risk assessment
methods in Table 1, qualitative assessment methods have higher labor costs and a longer
assessment process, while quantitative assessment methods have problems such as lower
accuracy of indicators or weaker overfitting performance, making the accuracy of the risk
assessment results low and time costs high, resulting in the lack of the ability to pinpoint
risk values. Therefore, this paper selects a comprehensive risk assessment method that
combines subjective and objective methods to build a rice security risk assessment method,
using the more mature AHP algorithm in qualitative assessment methods to statistically
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summarize the results of expert scoring for each indicator, and combining unsupervised
clustering algorithms for high-dimensional data to construct a set of weighting model
of group decision making based on indicator weight distribution, in order to build a
rice hazard risk assessment index system in a more objective way. In addition, in the
construction of the rice security risk assessment model, machine learning algorithms have
faster risk identification capability than traditional mathematical models. Thus, this paper
constructs an assessment model based on machine learning. In addition, considering the
low accuracy of single machine learning model assessment, in order to further improve
the accuracy of the assessment model, this paper integrates the advantages of integration,
classification and optimization algorithms, and constructs a rice security risk assessment
method based on the fusion of multiple machine learning models.

Table 1. Comparison of the advantages and disadvantages of mainstream risk assessment methods.

Risk Assessment
Methodology Experts Examples of Techniques Advantages Disadvantages

Qualitative
assessment

methods

Single expert
assessments

Index scoring method Quantitative indicators are
clear and easy to follow

Indicator weights are
difficult to define reasonably

AHP

A clear hierarchy of
indicators and a wide

range of
applications

Reliance on the accuracy of
expert assessment results

DEMATEL
Relatively simplified

relationships of
system elements

Not conducive to
multi-indicator system

analysis

Multiple expert
assessments

Subjective weighting methods
The calculation of

indicator weights is
relatively simple

Indicator weights are
heavily influenced by

an expert
priori information

Objective weighting methods
Indicator weights are less
influenced by an expert

priori information

The calculation of indicator
weights is relatively complex

Quantitative
assessment

methods

FCE
Easy to implement,

suitable for multiple
indicator classification

Indicator weights are
difficult to define reasonably

GRA Simple data calculation
Optimal values for some
indicators are difficult to

determine

Machine
learning

SVM High generalization ability
Not suitable for

classification of large
data samples

BP High non-linear mapping
capability

Prone to local
miniaturization problems

LSTM

Solve the problem of
gradient disappearance

and gradient
explosion during long

sequence training

Disadvantages in
parallel processing

XGBoost
Insensitive to missing

values, simple and easy
to understand

Easy over-fitting

LightGBM
High operational

efficiency and
less overfitting

Relatively low model
accuracy

Comprehensive risk
assessment methods

Qualitative assessment methods to construct index systems;
Quantitative assessment methods to construct risk

assessment models

A combination of
subjective and objective,

comprehensive and
accurate analysis

Computationally complex
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2. Materials and Methods
2.1. Data Cleaning

This article uses the data of rice hazards testing in 31 provinces of China excluding
Hong Kong, Macao and Taiwan in 2018 as the basis for example analysis, this data includes
provinces, test time, test element and results, etc. The test element includes chromium,
benzo[α]pyrene, lead, inorganic arsenic, aflatoxin B, etc.; the different types of hazards are
divided into heavy metal hazards, mcotoxin hazards, pollutant hazards, etc. [28,29]; the
results are divided into specific values, less than a specific data or not detected; the results
are judged as qualified or unqualified. A sample of rice hazards testing data is shown
in Table 2.

Table 2. Sample of rice hazards testing data.

Provinces
Tested Test Time Test Element Content Unit Result

Jiangsu 2018.06.07 Chromium 0.11 mg/kg Qualified
Henan 2018.06.27 Benzo[α]pyrene 1.00 µg/kg Qualified

Heilongjiang 2018.07.01 Lead 0.15 µg/kg Qualified
Anhui 2018.10.24 Inorganic arsenic 0.075 mg/kg Qualified

Liaoning 2018.06.07 Aflatoxin B <0.01 µg/kg Qualified

In order to extract valid information from the multivariate data, noise filtering, data
integration and data normalization are performed sequentially on the test data.

(1) Noise filtering. Noise in this paper refers to statistical errors caused by errors in the
recording of units, as the hazard test results, test units and result are separate from
each other, and noise filtering means removing data where the sample test results are
determined to be inconsistent with the test results.

(2) Data integration and data normalization. As the different formats of detection results
are not conducive to subsequent risk assessment model construction, the detection
data format is unified as floating point and the unified hazard detection results are
standardized using a trapezoidal membership function, as shown in Equation (1).

C(xi) =


0 xi ≤ xmin

xi−xmin
xmax−xmin

xmin < xi ≤ xmax

1 xi ≥ xmax

 (1)

2.2. Construction of a Risk Assessment Index System for Rice Hazards

Considering that experts have different levels of knowledge, experience and familiarity
with rice hazard indicators, this paper constructs a rice hazard risk assessment index system
based on the scoring results of experts in order to combine the scoring characteristics of
different experts. Firstly, an unsupervised classification of the expert scores is carried out,
and a weighting model of group decision making based on the weight assignment of the
indicators is constructed by combining the unsupervised clustering algorithm applicable to
high-dimensional data, so as to construct the rice hazard risk assessment index system in a
more objective way.The specific process is shown in Figure 1.

2.2.1. Calculation of Assessment Index Weights Based on AHP Algorithm

Analytic Hierarchy Process is a systematic analysis method that enables multi-objective
decision analysis to be carried out scientifically [30]. In the process of calculating the
index weights, AHP hierarchically identifies the rice hazards to be analyzed according
to the different types of hazards, and assigns the corresponding weights to each hazard
index based on the expert scoring results. In this paper, a total of 50 valid expert scoring
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questionnaires are collected, and a judgment matrix Ak×k as shown in Equation (2), is
constructed based on the expert scoring results, where k is the number of hazard indicators.

Ak×k =


a11 a12 . . . a1k
a21 a22 . . . a2k
. . . . . . . . . . . .
ak1 ak2 . . . akk

 (2)
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Figure 1. Flow of the construction of the index system.

The maximum characteristic roots λmax and the weight of each expert’s evaluation
index W = [w1, w2, . . . , wk]

T are calculated based on the judgment matrix Ak×k, as shown
in Equations (3)–(5).

AW = λmaxW (3)

wi =

k
√

∑k
j=1 aij

∑k
i=1

k
√

∑k
j=1 aij

(4)

λmax = ∑ k
i=1

(AW)i
nwi

(5)

2.2.2. Calculation of Assessment Index Weights Based on SC Algorithm

In order to improve the objectivity of index weights and reduce subjective errors,
this paper adopts the Spectral Clustering algorithm (SC) [31], which is suitable for high-
dimensional clustering, adaptable to data distribution and has excellent clustering effect,
is used to unsupervisedly classify the expert scoring results by combining the scoring
characteristics of different experts. In terms of SC algorithm parameter selection, in or-
der to achieve optimal clustering results, Calinski_Harabaz_score (CH_score) was cho-
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sen to evaluate the clustering effect, and the sample points were clustered into clusters
C(C = {c1, c2, . . . ch}) by comparing the size of CH_score as shown in Equation (6).

CH_score =
tr(B K)

tr(W K)
× nE− k

k− 1
(6)

In Equation (6), Bk is the intra-class distance and Wk is the inter-class distance, Cq indi-
cating the class q where the current point is located. According to the principle of Spectral
Clustering, the larger the CH_score, the better the clustering effect, and the parameters are
chosen according to Table 3.

Table 3. Basis for selection of SC algorithm parameters.

n_clusters random_state CH_score n_clusters random_state CH_score

2 1 10.1516 10 5 21.5342

3 1 11.1254 2 6 8.2844
. . . . . . . . . . . . . . . . . .
6 2 17.7012 10 12 21.9540
7 2 18.0365 5 13 13.4442

As can be seen from the size of CH_score in Table 3, the expert scoring results are
divided into 10 classes, with random numbers chosen as 12, and the Figure 2 shows the SC
algorithm clustering results.
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As the number of experts in categories 3 to 10 is relatively small, they are combined
into one category under the premise of ensuring minority rule. In summary, the 50 experts’
scores are divided into 3 categories, the first category contains 27 experts’ scores, the second
category contains 12 experts’ scores, and the third category contains 11 experts’ scores.

2.2.3. Calculation of Combined Risk Values Based on Indicator Weights

In order to maximize the useful information of all experts and ensure the effectiveness
of group decision making [32], this paper starts from the indicator layer and constructs a
weighting model of group decision making based on the calculation results of the indicator
weights of the experts, so as to solve the combination assignment problem in group decision
making in an objective way.
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2.2.3.1. Calculation of Weighting between Specialist Categories

For the calculation of indicator weights between expert categories, this paper is based
on the Section 2.2.2. expert classification results. m experts are assigned to score the results
into H categories, where H = {h1, h2, . . . hk}. In each cluster hi, the greater the number
of experts within the category and the smaller the consistency difference value. The hi
relatively high weight value is assigned. The specific principle is shown as follows.

Let the assessment result of the i-th expert be wi, which belongs to the category h
i
, and

h
i

contains the assessment results of φ experts. The consistency weight difference value
of wi and the assessment results of other experts is Di as shown in Equation (7), and the
consistency weight difference value between the category h experts and the category of
other experts is Dh as shown in Equation (8).

Di = ∑ m
i=1∑ m

j=1,i 6=j(wi − wj)
2, {i = 1, 2, . . . , m; j = 1, 2, . . . , m} (7)

Dh =
1
φ∑ m

i=1Di, (i ∈ Hh) (8)

Based on a comprehensive consideration of the number of experts and consistency
difference value, the model and constraints for calculating the weight among experts are
obtained, as shown in Equations (9) and (10).

min∑ H
h=1β2

h ·
Dh
φ2 (9)

s.t.
{

∑H
h=1 βh = 1

βh > 0, h = 1, 2, . . . H
(10)

The formula gives the inter-expert category weights βh, as shown in Equation (11).

βh =
φ2

Dh
· 1

∑H
h=1

φ2

Dh

(11)

2.2.3.2. Calculation of Weights within Expert Categories

In terms of calculating weights within expert categories, this paper also starts from
expert indicator weights, conducts consistency tests on expert assessment results, eliminates
indicator weights that do not pass the consistency tests, determines reasonable intervals
for indicators, and constructs an optimization model for weights within expert categories,
with the following principles.

(1) Determine the reasonable interval of indicators. Let a cluster contain the weight
information given by n experts, then each risk indicator has n weight values, using the
density distribution of n weights of the indicators, to determine the reasonable interval
of indicators. Where aij is the j-th expert for the i-th indicator to give the weight value,
for the indicator i, all experts can accept the indicator value range is [a−i∗, a+i∗], meet
a−i∗ = min(ai1, ai2, . . . , ain); a+i∗ = max(ai1, ai2, . . . , ain); indicator value of the interval
length is d, meet di = a+i∗ − a−i∗. Let δ = di/2, and δ is the consistency test criteria. If aij
does not contain other indicator values in δ field, then aij is a singularity. By traversing
all indicator values and removing all singularities, a reasonable interval [a−i , a+i ] for
each indicator is determined.

(2) The optimization model of weights within expert categories is constructed. In order to
maximize the integration of expert opinions within a reasonable interval, the objective
function Obj as shown in Equation (12), in the model satisfies the minimum deviation
of the combined weight value wi within the expert categories and the weight value of
each expert indicator aij; the constraint in the model is wi to be within a reasonable
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interval of indicators and the sum of the weight values of i indicators is 1, as shown in
Equation (13).

Obj = min∑ m
i=1∑ n

j=1(wi − aij)
2 (12)

s.t.


a−1 ≤ w1 ≤ a+1
a−2 ≤ w2 ≤ a+2

. . .
a−i ≤ wi ≤ a+i

; ∑ m
i=1wi = 1 (13)

(3) Based on the results of the optimization model for weighting within expert categories,
Section 2.2.2. the results of the section clustering and the results of the Section 2.2.3.1.
inter-expert category weighting, the weights within expert categories and the weights
of the combined elements are obtained as shown in Table 4.

Table 4. Weights within expert categories and combined elements weights.

Element
Weighting within the

First Category of
Experts

Weighting within the
Second

Category of Experts

Weighting within the
Third Category

of Experts

Combined Element
Weights

Lead 0.0960 0.1905 0.0526 0.1027
Cadmium 0.1323 0.1369 0.1289 0.1324
Chromium 0.0810 0.0809 0.0725 0.0799

Inorganic arsenic 0.0920 0.0979 0.0788 0.0910
Total mercury 0.0810 0.0500 0.0559 0.0738

Aflatoxin B 0.1839 0.1247 0.1824 0.1760
Ochratoxin A 0.0647 0.0664 0.0896 0.0681

Deoxynivalenol 0.0554 0.0470 0.0803 0.0575
Zearalenone 0.0479 0.0622 0.0795 0.0538

Benzo[α]pyrene 0.1010 0.0876 0.1191 0.1016
Aluminium phosphide 0.0649 0.0558 0.0604 0.0632

2.3. A Fusion Algorithm-Based Model for Rice Safety Risk Assessment

As an integrated fusion algorithm, the Stacking model first decomposes the original
input data set into several subsets, which are input to each base learner, and each base
learner outputs its own classification results and serves as the input of the second layer
of meta-learner, so as to achieve the purpose of correcting the error of the first layer of
classification prediction model, thus improving the accuracy of the model classification
prediction [33]. To ensure the accuracy of the fusion model evaluation, the choice of
learners should ensure that each learner has good independent prediction capability [34].
At the same time, considering that the machine learning algorithm has many tuning
hyperparameters, it is time-consuming and inaccurate to adjust the model parameters
manually or to iterate through the values of all parameters, so it is necessary to optimize
the model tuning parameters according to the principle of the algorithm combined with
the corresponding tuning hyperparameters to make the model performance reach the best.

2.3.1. Learners
XGBoost Algorithm

XGBoost [35] is a decision tree model that supports parallel computing based on the
Gradient Boosting Decision Tree (GBDT) algorithm, optimized by Dr. Tianqi Chen of the
University of Washington, USA. In the model training, XGBoost introduces a function
regularizer in order to prevent the number of leaf nodes in the decision tree from growing
infinitely and speed up the model. To reduce model complexity and the risk of model
overfitting, the iterative addition tree of the objective function in XGBoost is combined with
a regularization term; to speed up the gradient descent of the objective function and further
increase the speed of the model run, XGBoost performs a Taylor expansion of the objective
function. To speed up the splitting of leaf nodes and again improve the efficiency of the
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model run, XGBoost uses the greedy algorithm to seek the optimal partitioning solution,
which improves the model run speed while preventing overfitting.

LightGBM Algorithm

LightGBM is a decision tree integration algorithm based on the GBDT algorithm by the
Microsoft DMTK team, combined with the Leaf wise algorithm, Gradient-based One-Side
Sampling (GOSS), Exclusive Feature Bundling (EFB) and Histogram algorithms. (1) Leaf
wise algorithm. LightGBM differs from most decision trees in that it does not simply grow
the leaf nodes in a hierarchical order for the splitting of leaf nodes, but instead finds the
leaf node with the greatest splitting gain from all the nodes in the current decision tree and
splits it in a circular fashion to produce the tree. Leaf-wise algorithm greatly reduces the
calculation of splitting the leaf nodes with lower gain, and when the number of splits is the
same, Leaf-wise can effectively reduce the error and improve the accuracy; (2) Histogram
algorithm. In the division point selection, LightGBM uses the Histogram algorithm to
discretize continuous features into k features to construct a histogram. When traversing
the data, Histogram relies on the discretized value as the index, and finds the optimal
division point based on the cumulative statistics of the index. Due to k << data, the
Histogram algorithm reduces the time complexity from o(data× f eature) to o(k× f eature),
effectively reducing the running memory usage; (3) GOSS algorithm. LightGBM uses the
GOSS algorithm for sample sampling optimization on the basis of the Histogram algorithm
division, while retaining all large gradient samples, sampling small gradient samples, i.e.,
gradient sorting of the training data. a% data samples with the largest gradient are retained,
the data samples with lower a% gradient are randomly selected b%, and the information
gain of the small gradient data is multiplied by a correction factor when calculating the
information gain, thus amplifying the information gain of the small gradient samples;
(4) EFB algorithm. To further improve the efficiency of LightGBM, the EFB algorithm is
used to bind mutually exclusive features in the dataset together to form a low-dimensional
feature set. In the operation of the algorithm, a corresponding table recording non-zero-
value features is created for each feature indicator, and the calculation of 0 value features
is avoided by scanning the data in the table, thus effectively saving the time and space
overhead in the operation of the algorithm.

LSTM Algorithm

Recurrent Neural Networks (RNN) is a deep learning network with a chain structure,
which can make information flow between layers at each layer of the network. Therefore,
the characteristics make RNN have the function of information memory. In the model
training, LSTM [36] is based on RNNwith the addition of three kinds of gates: forgetting
gate, input gate and output gate, where the input gate is responsible for the stimulus
intensity of the new input to the memory unit, the forgetting gate is responsible for the
memory intensity of the information at the previous time, and the output gate is responsible
for the content intensity of the memory unit output to the outside. These three “gate” adopt
different activation functions and calculation methods, effectively overcome the problems
of network paralysis caused by RNN gradient explosion, and play an advantage in long-
time sequence modeling. Meanwhile, compared with other algorithms, LSTM is insensitive
to the interval length requirement and can maintain good memory for longer historical
data information.

2.3.2. Optimization Algorithms
BOA Algorithm

Bayesian optimization algorithm [37] (BOA) is an approximate approximation algo-
rithm based on probability distribution, which uses an agent function to fit the relationship
between tuning hyperparameters and model evaluation, establishes an initial set of can-
didate solutions, finds the next point that is likely to be the extreme value according to
the points in the set, and adds that point to the set, repeats the steps until the iteration



Agriculture 2022, 12, 815 10 of 15

terminates, and the combination of hyperparameters that works best is obtained by the
iteration results, and can therefore be seen mathematically as a globally optimal solution to
an unknown objective function, and is mostly suitable for optimization of algorithms with
a large number of tuning hyperparameters.

GWO Algorithm

Grey Wolf Optimization Algorithm [38] (GWO) is an algorithm inspired by the hunting
behavior of grey wolf packs. The process of GWO to find the optimal solution of the model
can be regarded as grey wolves under the leadership of α, β, δ wolves, through mutual
collaboration and feedback of each rank to ensure the correctness of the decision and
increase the probability of successful hunting. The GWO algorithm can therefore be
abstracted to solve combinatorial optimization problems on continuous spaces, and has the
advantages of simple algorithm structure and convergence speed, and is therefore widely
used in practical engineering optimization problems.

Fusion Model Architecture

This paper constructs a multi-machine learning model fusion method for rice security
risk assessment based on the Stacking model and selects XGBoost and LightGBM with
strong generalization ability as the base learners; in order to achieve effective complemen-
tation of information between algorithms, LSTM, which differs greatly from the principle
of the base learners, is selected as the meta-learner to build the fusion model. In order to
improve the accuracy of the model operation and save the time of manual tuning, for the
tree model with more tuning hyperparameters, the BOA algorithm is chosen to rate the
parameters of XGBoost and LightGBM models; for the neural network algorithm with slow
training speed, the GWO with fast convergence speed is chosen to automatically find the
initial weights, thresholds and the number of hidden layer neurons of the LSTM algorithm,
and the fusion model (BXGB -BLGB-GLSTM) architecture is shown in Figure 3.
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Figure 3. The fusion model (BXGB-BLGB-GLSTM) architecture.

3. Results

The experimental environment in this paper is Windows 11 operating system with
AMD Ryzen 5 5500U with Radeon Graphics produced by AMD and 8G RAM, relying on
the Jupyter Notebook platform implemented through Python 3.9.7. Based on this computer
configuration, using the risk assessment model mentioned above, under the condition that
the training times of each algorithm are 200 times, the comparison between the combined
risk values of the hazards and the predicted values of the different models is obtained in
Figure 4, where the axes represents the sample numbers; the axes indicates the level of
degree of pollution.
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Figure 4. Comparison curves for each model: (a) Combined hazard risk values and BXGB-BLGB-
GLSTM model predictions; (b) Combined hazard risk values and XGB-LGB model predictions;
(c) Combined hazard risk values and XGB-LSTM model predictions; (d) Combined hazard risk
values and XGB-LSTM model predictions; (e) Combined hazard risk values and XGBoost model
predictions; (f) Combined hazard risk values and LightGBM model predictions; (g) Combined hazard
risk values and LSTM model predictions; (h) Combined hazard risk values and BP model predictions;
(i) Combined hazard risk values and SVM model predictions.

As can be seen from the 9 individual model comparison curves in Figure 4, when
y ∈ (0.2, 0.35), the accuracy of each model prediction was relatively high; when
y ∈ (0, 0.2) ∪ (0.35,+∞), some of the models fit generally well, i.e., they are prone to overes-
timation (underestimation) of pollution levels at higher (lower) hazard contamination levels.

In order to compare the experimental results of each model more clearly, this paper
uses the indexes of R-Square R2, mean absolute error MAE and mean squared error MSE
to evaluate the models, and the calculation of each index is shown in Equations (14)–(16).

R2 =
(∑n

i=1 (yoi − yo)× (ymi − ym))2

∑n
i=1 (yoi − yo)2 ×∑n

i=1(ymi − ym)2 (14)

MAE =
∑n

i=1|yoi − ymi|
n

(15)
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MSE =
∑n

i=1(yoi − ymi)
2

n
(16)

In Equations (14)–(16), n is the sample data volume; yo and ym represent the true and
predicted values of the level of degree of pollution; yo and ym represent the mean and
average predicted values of the level of degree of pollution, respectively. The magnitude
of R2 is positively correlated with the degree of curve fit; MAE and MSE are important
indicators of the accuracy of the variables and are negatively correlated with the accuracy
of the model. A comparison of the parameters of each algorithm is shown in Table 5.

Table 5. Comparison of evaluation metrics by algorithm.

Models R2 MAE MSE

BXGB-BLGB-GLSTM 0.9317 0.0114 0.0002

XGB-LGB 0.8316 0.0188 0.0006

XGB-LSTM 0.8822 0.0144 0.0004

LGB-LSTM 0.8986 0.0129 0.0003

XGBoost 0.8271 0.0194 0.0006

LightGBM 0.7611 0.0225 0.0008

LSTM 0.7627 0.0213 0.0008

BP 0.7039 0.0248 0.0010

SVM 0.7446 0.0230 0.0008

From the comparison of the evaluation indicators of each algorithm in Table 5, it can be
seen that the model fusion has indeed improved the accuracy of evaluation and prediction
to a certain extent, and the greater the principle difference between algorithms, the higher
the evaluation accuracy. Among them, the BXGB-BLGB-GLSTM fusion model outperforms
the other evaluation models validated by the comparison in terms of R2, MAE, MSE three
evaluation indicators, with the mean absolute error is 0.0114, the mean squared error is
0.0002, and the R-Square is 93.17% This further confirms that the fusion model constructed
in this paper can intuitively and accurately assess the risk value of comprehensive food
safety hazards.

4. Discussion

Although the risk assessment method of rice hazards constructed in this paper has
improved the accuracy and efficiency of risk assessment to a certain extent, there are still
some shortcomings in the method, for example, in the process of constructing the hazards
index system, although the subjectivity of the hazards index weights has been reduced
based on the objective expert assignment of group decision making, the subjectivity of
the source of the hazards index scoring still cannot be avoided. Therefore, the focus of
my subsequent research will be on unsupervised scoring, based on big data processing
techniques to assist in extracting relevant potential information and further enhance the
objectivity of risk assessment.

5. Conclusions and Future Prospects
5.1. Conclusions

In the process of large-scale and digital transformation of agriculture, in order to
strengthen the advantages of big data and artificial intelligence technology in food safety
risk assessment and supervision, a rice security risk assessment method is designed based
on the fusion of multiple machine learning model. In the construction of the index system,
aiming at the problem that the qualitative assessment methods are greatly affected by
the prior information such as expert knowledge and experience, this paper reduces the
impact of a single expert on the index system by integrating the evaluation opinions of
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experts in different fields. The method starts from the hazard index level, implement
expert classification based on the AHP algorithm and SC algorithm, and construct an
optimization model to solve the intra-expert category weights and inter-expert weights
results, respectively, by combining the consistency weight differences of expert assessment
results, effectively considering the opinions of all experts while ensuring that the minority
follows the majority, and lay a foundation for the subsequent con-struction of the risk
assessment model. Then, in terms of risk assessment model construction, aiming at the
problem that the risk assessment model constructed by a single algorithm is difficult to
fully mine multiple and complex hazard detection data, this paper constructs a BXGB-
BLGB-GLSTM risk assessment model based on algorithm fusion, which strengthens the
advantages of each algorithm to a greater extent, so as to provide more accurate risk
assessment results. The results show that the BXGB-BLGB-GLSTM fusion model has higher
evaluation accuracy and stability, which can provide accurate and efficient decision-making
basis for food safety supervision departments.

5.2. Discussion and Future Work

In the process of the digital transformation of agriculture, in order to promote “big
data +food” safety supervision, and give full play to the advantages of big data and
artificial intelligence in the fields of food safety risk assessment and supervision. This paper
proposes a rice safety risk assessment method based on multi machine learning model
fusion, and the simulation experiments show that this method improves the accuracy of
risk assessment to a certain extent and can provide technical support for relevant regulatory
authorities. However, there are still some deficiencies that need to be further improved.
On the one hand, in the construction of hazard index system, this paper constructs a rice
hazard risk assessment index system based on the scoring results of experts in order to
combine the scoring characteristics of different experts. Although this method improves
the objectivity of the index system, but the subjectivity of the scoring source of experts is
still unavoidable. Therefore, the follow-up research can focus on the unsupervised score
method instead of traditional AHP algorithm to enhance the objectivity of risk assessment.

On the other hand, this paper uses cutting-edge machine learning algorithms and
optimization algorithms to build an accurate and stable risk assessment model through
model fusion. However, for the fusion assessment model with high accuracy, its model
depth and complexity are too high, so non-professionals cannot understand the reasons
and process of assessment decision-making. It is difficult to distinguish the logic behind
the “model black box”. In addition, it also makes the risk assessment model difficult to be
trusted and understood by decision makers. Therefore, the follow-up research can focus
on reducing the depth and complexity of the model, improving the interpretability of the
model and deepening the understanding and application of the risk assessment model
under the condition of ensuring the accuracy of the model.
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