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Abstract: Heat stress is one of the major environmental constraints for wheat production; thus, a
comprehensive understanding of the metabolomic responses of wheat is required for breeding heat-
tolerant varieties. In this study, the metabolome responses of heat-tolerant genotypes Imam and Norin
61, and susceptible genotype Chinese Spring were comparatively analyzed using Fourier transform
infrared (FTIR) spectroscopy in combination with chemometric data mining techniques. Principal
component analysis of the FTIR data suggested a spectral feature partially overlapping between the
three genotypes. FTIR spectral biomarker assay showed similar heat responses between the genotypes
for markers Fm482 and Fm1502, whereas genotype-dependent variations were observed for other
markers. The markers Fm1251 and Fm1729 showed contrasting behaviors between heat-tolerant and
susceptible genotypes, suggesting that these markers may potentially serve as a tool for distinguishing
heat-tolerant genotypes. Linear discriminant analysis (LDA) of the spectra demonstrated a clear
separation between the three genotypes in terms of the heat stress effect. Analysis of LDA coefficients
identified several spectral regions that were potentially responsible for the discrimination of FTIR
spectra between different genotypes and environments. These results suggest that a combination
of FTIR and chemometrics can be a useful technique for characterizing the metabolic behavior of
diverse wheat genotypes under heat stress.

Keywords: Triticum aestivum L.; FTIR spectroscopy; chemometrics; metabolomics markers; arid
region; linear discriminant analysis

1. Introduction

Wheat (Triticum aestivum L.) is one of the most important staple crops. It contributes
to the diets of humans as an important source of calories, protein, vitamins, and dietary
fiber [1]. Wheat, rice, maize, and soybean contribute more than 50 percent of the calories
required by the global population [2]. Among several abiotic stresses that constrain wheat
production, heat stress remains one of the major challenges. Reduction in wheat yield
at high temperatures is well documented [3–7]. This is expected to further escalate in
the light of ensuing climate change. Intense global warming with a fast rate of global
temperature increase of up to 5 ◦C is predicted by the end of this century [8]. Therefore,
understanding the heat response of wheat is indispensable for facilitating the development
of new heat-tolerant varieties.
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Wheat genetic resources and their diversity have been studied extensively [9–11], and
wide variation in heat stress sensitivity among genotypes has been reported [12,13]. For
example, Chinese Spring has been identified as a heat-sensitive genotype [14,15], whereas
Norin 61 showed heat tolerance in hot arid regions in Sudan in field studies [16,17]. The
genome structures of these two genotypes have previously been reported [18]. Imam is
a heat-tolerant cultivar widely grown in Sudan, regarded as the world’s hottest wheat
growing environment [19], and has been used as a reference genotype for detecting heat
tolerance in other varieties [16].

Metabolomics is one of the omics tools used to analyze the molecular responses
of plants, and has been utilized to study metabolic responses in plants under various
stresses [20–22]. Metabolomics has been applied to plant breeding programs because the
metabolome is arguably more closely related to the phenotype than other “omics” data [23].
Among the various technical platforms used in metabolomics, Fourier transform infrared
(FTIR) spectroscopy is unique in that it provides an opportunity to study biological sam-
ples in vivo in a non-destructive manner [24–26], is compatible with remote sensing in
the field [27,28], and allows the analysis of complex biomacromolecules such as cell wall
components [29,30]. FTIR spectroscopy has been used to study the metabolome responses
of plants to various environmental stresses [31–34]. In our previous study, the utilization
of FTIR combined with chemometrics successfully identified spectral changes that distin-
guished heat-stressed and unstressed leaves in the bread wheat genotype ”Norin 61” [35].
Therefore, the aim of the current study was to determine whether the FTIR spectroscopic
technique is useful for characterizing the metabolome diversity of wheat genotypes with
variable heat tolerance abilities. Toward this objective, three wheat genotypes, ‘Chinese
Spring’, ‘Imam’, and ‘Norin 61’, with different heat tolerance levels, were used.

2. Materials and Methods
2.1. Plant Growth Condition

Seeds of wheat genotypes Chinese Spring and Imam were kindly provided by Dr.
Hiroyuki Tanaka (Faculty of Agriculture, Tottori University, Tottori, Japan). Seeds of wheat
genotype Norin 61 were kindly provided by Dr Yasir Serag Alnor Gorafi (Arid Land
Research Center, Tottori University, Tottori, Japan). Twelve seeds each of the three wheat
genotypes were placed on top of an 85-mm diameter filter paper (Filter paper type-2,
Advantec, Tokyo, Japan) in a Petri dish of 90-mm diameter, and imbibed by adding 6 mL
of tap water. The Petri dish was capped with a transparent lid and incubated for three
days at room temperature (25 ◦C). Germinated seedlings were individually planted in
pots containing 120 g of commercial horticulture soil (a brand “Oishii Yasaiwo Sodateru
Baiyoudo,” Cainz, Honjo, Saitama, Japan). Pots were placed in a growth chamber with
light/dark regimes set at 14/10 h, light intensity of approximately 500 µmol m−2 s−1,
relative humidity setting at 50%, and temperatures of 22/18 ◦C for the light/dark regimes.
When the length of the third leaf exceeded that of the second leaf, half of the pots were
transferred to a heat chamber with a daily temperature setting of 42/18 ◦C under light/dark
regimes. In this heat chamber, the temperature was programmed to increase stepwise from
18 ◦C at the beginning of the light regime by 5 ◦C/h for 3 h, to the maximum temperature
of 42 ◦C and maintained for 6 h. The temperature was then lowered to 33 ◦C for 1 h and
then decreased stepwise by 5 ◦C/h to 18 ◦C in the next 3 h. Heat treatment was applied for
three days, and the plants were subjected to the analyses described below.

2.2. Measurement of Canopy Temperature and Plant Growth

For the measurement of canopy temperatures, the leaf surface temperature of wheat
plants at 5 h after the onset of the daily light regime was measured using a thermal camera
and averaged as described previously [35]. To measure leaf length, all attached leaves of a
given plant were measured using a ruler, and the values were combined. To measure shoot
biomass, the aerial parts of individual plants were harvested and completely dried in an
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oven (EI-450B, ETTAS, AS-ONE, Osaka, Japan) at 70 ◦C for three days, and the dry weight
was measured.

2.3. FTIR Spectroscopy

Fully expanded third leaves of the control and the heat-treated plants were harvested
and completely dried in an oven at 70 ◦C. The whole dried leaf (approximately 0.16 g per
leaf) was placed into a 15 mL plastic tube with three stainless beads, one with 10- and
the other two with 5-mm diameters, respectively, and placed into a pre-chilled aluminum
block in a shaker homogenizer (Shake Master Auto, Bio Medical Science, Tokyo, Japan).
The sample was ground to a fine powder at 1100 rpm for 30 min. The powdered samples
(approximately 10 mg) were mixed with 1 g of powdered KBr (IR grade, Nakalai, Kyoto,
Japan), and approximately 10 mg of the mixture was placed on a die of 7 mm diameter in a
hydraulic press (Pixie Hydraulic Pellet Press, PIKE Technologies, Madison, WI, USA). A
thin disk was formed by applying a pressure of 2.5 t cm−2. Three disks were generated
from each single plant. FTIR spectra were recorded in absorbance mode using PerkinElmer
Spectrum 65 (PerkinElmer, Waltham, MA, USA) linked with Spectrum software (version
10.4.2., PerkinElmer). The spectrum was measured at mid-infrared from 4000 to 400 cm−1,
with a resolution of 1 cm−1, and 16 scans were taken and averaged for each measurement.
Each disk was measured twice; therefore, six spectra were obtained from a single plant. Six
plants were used for each genotype and environmental condition; therefore, 36 spectral
data points were collected for each genotype-environment combination.

2.4. Chemometrics of FTIR Spectra and Statistical Analyses

Baseline correction of FTIR spectra using a linear gradient of absorbance values
between 4000 and 400 cm−1 and normalization of absorbance values was performed as
described previously [35]. Chemometric calculations of the FTIR spectra were performed
using R statistical software [36], with a set of custom-made R scripts that were deposited
in Supplementary Document S1–S7. Briefly, principal component analysis (PCA) was
performed in the wavenumber region between 3600 and 400 cm−1 using the prcomp
function in the R statistics package (version 3.6.2). Calculation of the Fm biomarkers
using the pair of anchor points for generating offset absorbance values was performed as
described previously [35]. For linear discriminant analysis (LDA), the wavenumber region
between 3600 and 400 cm−1 in the 216 spectral datasets, composed of 36 spectra each from
six genotype-environment combinations (3 genotypes × 2 environment), was used for the
construction of an equation model using the lda function in the MASS package (v7.3-54).
Visualizations of the resultant dataset, such as the score and loading plots in PCA, box
plots in Fm biomarkers, LD1-LD2 biplot, and their scaling plots in LDA, were performed
using the ggplot2 package (v3.3.5). The Student’s t-test was performed using the t.test
function in R. One-way ANOVA with post-hoc Tukey HSD testing was performed using
the Astatsa.com online statistical calculator (p < 0.05) [37].

3. Results and Discussion
3.1. Growth Response of Three Wheat Genotypes to Heat Stress

Wheat genotypes ‘Chinese Spring’ (CS), ‘Imam’, and ‘Norin 61’ (N61) were grown until
the three-leaf stage, at a daily temperature of 22 ◦C, and then subjected to heat stress at a
daily maximum temperature of 42 ◦C for three days. Canopy temperatures were significantly
elevated under heat stress in all three genotypes (Figure 1A; Supplementary Table S1); the
median temperatures on day 0 (hereafter referred to as C0) were in the range of 23.0–26.6 ◦C
for the three genotypes, and on day 3 under heat stress (H3) they increased to the range
of 36.6–37.1 ◦C. As a result, large differences in canopy temperatures between C3 and H3
were observed in these genotypes; the difference in the median temperature was 12.2, 16.3,
and 13.1◦C in CS, Imam, and N61, respectively. Total leaf length was strongly suppressed
under heat stress (Figure 1B; Supplementary Table S2), in which the mean values of total
leaf length were decreased by 26.9, 19.7, and 13.3% in H3 plants for CS, Imam, and N61,
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respectively, in comparison to their C3 counterparts. Shoot biomass also significantly
decreased under stress (Figure 1C; Supplementary Table S3). The median biomass values
declined by 29.8, 25.8, and 15.7% in H3 plants for CS, Imam, and N61, respectively, in
comparison to their C3 counterparts. Although the N61 genotype showed a lower degree
of biomass reduction, the Imam genotype still showed higher shoot biomass than the
N61 genotype on day 3 of heat stress. Similarly, high biomass production by the Imam
genotype in a high-temperature environment has been observed in four field environments
in Sudan [17]. These observations suggest that although the degree of heat impact differed
among genotypes, all genotypes showed similar growth trends in response to three days
of heat stress. These growth responses were consistent with those recorded in previous
studies. Gupta et al. [38] observed that heat stress resulted in the reduction of shoot length
in wheat seedlings. Another study [39] showed different degrees of reduction in shoot
length in different wheat seedlings under high day and night temperatures.

Agriculture 2022, 12, x FOR PEER REVIEW 4 of 14 
 

 

was 12.2, 16.3, and 13.1°C in CS, Imam, and N61, respectively. Total leaf length was 

strongly suppressed under heat stress (Figure 1B; Supplementary Table S2), in which the 

mean values of total leaf length were decreased by 26.9, 19.7, and 13.3% in H3 plants for 

CS, Imam, and N61, respectively, in comparison to their C3 counterparts. Shoot biomass 

also significantly decreased under stress (Figure 1C; Supplementary Table S3). The me-

dian biomass values declined by 29.8, 25.8, and 15.7% in H3 plants for CS, Imam, and N61, 

respectively, in comparison to their C3 counterparts. Although the N61 genotype showed 

a lower degree of biomass reduction, the Imam genotype still showed higher shoot bio-

mass than the N61 genotype on day 3 of heat stress. Similarly, high biomass production 

by the Imam genotype in a high-temperature environment has been observed in four field 

environments in Sudan [17]. These observations suggest that although the degree of heat 

impact differed among genotypes, all genotypes showed similar growth trends in re-

sponse to three days of heat stress. These growth responses were consistent with those 

recorded in previous studies. Gupta et al. [38] observed that heat stress resulted in the 

reduction of shoot length in wheat seedlings. Another study [39] showed different degrees 

of reduction in shoot length in different wheat seedlings under high day and night tem-

peratures. 

 

Figure 1. Effect of heat stress on the growth of wheat genotypes Chinese Spring (CS), Imam, and 

Norin 61 (N61). (A) Canopy temperature, (B) total leaf length, and (C) shoot biomass for (C0) before 

heat treatment, (C3) control plants after three days, and (H3) plants exposed to heat for three days. 

Six plants were used for each measurement. One-way ANOVA with post-hoc Tukey HSD test (p < 

0.05) was carried out for statistical analysis within a given genotype. 

3.2. FTIR Spectra 

The fully expanded third leaves were collected from C3 and H3 plants of each geno-

type, and their FTIR spectra were measured. The representative spectra are shown in  

Figure 2. The patterns of these spectra were largely similar; a broad major peak (3100–

3600 cm−1) was commonly observed in both the control and heat environments, which can 

Figure 1. Effect of heat stress on the growth of wheat genotypes Chinese Spring (CS), Imam, and
Norin 61 (N61). (A) Canopy temperature, (B) total leaf length, and (C) shoot biomass for (C0) before
heat treatment, (C3) control plants after three days, and (H3) plants exposed to heat for three days. Six
plants were used for each measurement. One-way ANOVA with post-hoc Tukey HSD test (p < 0.05)
was carried out for statistical analysis within a given genotype.

3.2. FTIR Spectra

The fully expanded third leaves were collected from C3 and H3 plants of each geno-
type, and their FTIR spectra were measured. The representative spectra are shown
in Figure 2. The patterns of these spectra were largely similar; a broad major peak
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(3100–3600 cm−1) was commonly observed in both the control and heat environments,
which can be interpreted as O–H and/or N–H stretching bands [35,40–42]. Sharper peaks
were observed at wavenumbers of approximately 2960 and 2925 cm−1, which can be as-
signed to –CH3 and –CH2– antisymmetric signals, respectively. No prominent peaks were
observed in the 2000–2500 cm−1 region. A major peak was detected at approximately
1658 cm−1, which can be attributed to C=C stretching, C=O stretching (amide), and N–H
bending (amide I) in proteins in all genotypes in both the control and heat stress environ-
ments. All genotypes exhibited another major peak at approximately 1056 cm−1, which
indicated signals for C–O stretching, C–N stretching (aliphatic), and in-plane C–H bending
(aromatic). All genotypes showed another broad peak at approximately 618 cm−1, which
can be interpreted as =C–H out-of-plane bending, =C–H bending, or C–S stretching signals.
However, as shown in Figure 2, definite differences between genotypes and environments
were not evident to the naked eye, raising the necessity of applying further chemometrics
analysis to the FTIR data, as in previous studies [35,43–45].
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Figure 2. Representative FTIR spectra in the leaves of wheat genotypes Chinese Spring (CS), Imam,
and Norin 61 (N61). Spectra drawn in blue and red color series represent those for control (C3) and
heat stress environments (H3), respectively.

3.3. Principal Component Analysis

To characterize the spectral patterns of the three wheat genotypes under the C3 and
H3 environments, principal component analysis (PCA) was performed. The PC1–PC2
score plot, which explained 76.2% of total variation (Supplementary Figure S1A), showed
partial separation between genotypes and environments (Figure 3). For instance, the C3–CS
spectra were mostly clustered in the PC2 negative range from −25 to −50, whereas the H3–
CS counterparts tended to be positioned at higher PC2 values. The C3–Imam spectra were
widely scattered in the PC1 positive range of +40 to +100, whereas their H3 counterparts
were mostly situated at lower PC1 values between −20 and +30. The C3–N61 spectra were
mostly situated in the PC1 range between −80 and +20, and PC2 ranged between −10
and +20, while their H3 counterparts were mostly spread around the −130 to +10 PC1
range and the −10 to +45 PC2 range. Their loading plots showed a complex pattern over
the entire range of 400–3600 cm−1 (Supplementary Figure S1B–D). However, overlapping
distributions of different genotypes and environmental conditions were also evident in the
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PC1–PC2 score plot, suggesting the necessity of applying other chemometrics techniques
to characterize their spectral features.
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two environments are shown at the right of the panel.

3.4. Behavior of FTIR Biomarkers

In our previous study [35], six FTIR-based biomarkers, Fm482, Fm576, Fm1251,
Fm1465, Fm1502, and Fm1729 (Supplementary Table S4), were developed to distinguish
between control and heat-stressed leaves in N61 genotype. These markers were based
on the offset absorbance values at specific wavenumbers and were calculated using the
absorbance of the two anchor wavenumbers in the vicinity of the target wavenumber.
Applying these markers to the FTIR spectra in this study showed similar responses for
some markers between different genotypes (Figure 4; Supplementary Table S4). Markers
Fm482 and Fm1502 were reduced in all genotypes (Figure 4A,E), suggesting a common
chemical change between these genotypes. Wavenumber 482 cm−1, a target wavenumber
for the marker Fm482, was located outside the ”fingerprinting region” and was related to a
methoxy group (472/475 cm−1) [41] and S–S stretching (450–550 cm−1) [40]. The latter may
be related to the heat-induced protein disulfide isomerase in wheat genotype Jing411 [46],
which catalyzes covalent cross-linking of sulfhydryl groups of cysteine residues, thereby
stabilizing the structure of cellular proteins under heat stress. The Fm1502 marker is related
to lignin [47,48], suggesting that physicochemical changes in cell wall components may
occur under heat stress in these wheat genotypes, as has been observed in coffee leaves [48].

Other markers, in contrast, showed differential behaviors between genotypes. The
Fm1465 marker, which may be associated with suberin/cutin, lipids, and/or cell wall
polysaccharides [35,40,49–52], increased under heat stress in CS and N61, but decreased
in the Imam genotype (Figure 4D). The Fm576 marker increased under heat stress in CS,
but decreased in N61, and was statistically unchanged in Imam (Figure 4B). Information
on the assignment of the wavenumber 576 cm−1 to chemical structures has remained
relatively scarce [41], except for carbon–halogen stretching (400–800 cm−1), P=S stretching
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(500–850 cm−1), and P–Cl stretching (300–600 cm−1) [40]. Nevertheless, these observations
suggested that biochemical responses to heat stress may be largely different between
these genotypes.
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tested. Boxplots for (A) Fm482, (B) Fm576, (C) Fm1251, (D) Fm1465, (E) Fm1502, and (F) Fm1729 are
shown for CS, Imam, and N61 genotypes under C3 and H3 environments. The 36 spectra included
each genotype–environment combination. Asterisks represent statistically significant differences at
p < 0.01.

Interestingly, behaviors of the markers Fm1251 and Fm1729 were different between
heat-tolerant and -susceptible genotypes (Figure 4C,F). The Fm1251 marker, which is related
to hemicellulose and/or pectin [35,40,53], decreased under heat stress in the heat-tolerant
Imam and N61 genotypes, while an increase was observed in the heat-sensitive CS genotype
(Figure 4C). This observation may suggest that chemical changes in the extracellular matrix,
which potentially functions as a regulator for cell wall porosity and heat conductance [48,54],
are contrastingly different between heat-tolerant and -susceptible genotypes. The Fm1729
marker, which is located in the carbonyl ester region (1720–1760 cm−1) and/or its oxidized
derivatives [32,35,40–42,55,56], was increased under heat stress in heat-tolerant Imam and
N61 genotypes, whereas the value was unchanged in the heat-susceptible CS genotype
(Figure 4F). This spectral region provides information on the polar interfacial regions of
pectin or membrane lipids [32,55]. The latter is consistent with a previous report that
heat-tolerant and -susceptible wheat genotypes showed differential lipidome responses
under stress [57]. Therefore, the markers Fm1251 and Fm1729 may potentially serve as
tools for distinguishing heat-tolerant and -susceptible wheat genotypes.

3.5. Linear Discriminant Analysis

Linear discriminant analysis (LDA) was performed to further characterize the FTIR
spectral differences between the different genotypes. The 216 FTIR spectra forming six
classes (three genotypes × two environments) were used to construct the LDA model. The
proportion of trace values for the resultant five discriminant functions (LDs) showed that
the first two LDs (LD1 and LD2) accounted for 48.2 and 24.5% of total variance, respectively
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(Supplementary Figure S2). The first two LDs were used to draw a graphical distribution of
each spectrum, which showed six distinct clusters for each ‘genotype × environment’ class
in the scatter plot (Figure 5). The plot shows a typical feature of LDA, which maximizes
between-class variance while minimizing within-class variance [58,59]. The following
features were recognized from the LD1–LD2 scatter plot: (i) Classes for the same genotypes
were located in closer positions. For example, two classes (C3 and H3) for the Imam
genotype were located in the region spanning from −28 to 6 for LD1, and from −42 to
−21 for LD2 coordinates (Figure 5), which may suggest the presence of genotype-specific
features in the FTIR spectra. The ability of FTIR to discriminate between different genotypes
is not unique to this study, and has been reported previously in many studies, including
grapevine genotypes [60] and geographical classification of coffee [61]. (ii) In all genotypes,
clusters for the heat stress environment were situated in higher LD1 ranges in comparison
to their control counterparts, indicating that LD1 may be associated with the presence or
absence of heat stress. (iii) In CS and N61 genotypes, the LD2 values for heat stress clusters
were shifted downward from their control counterparts, whereas an opposite upward shift
of the heat cluster was observed in the Imam genotype, suggesting that LD2 may partially
reflect genotype-specific heat responses.
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Figure 5. Scatter plot of LD1 and LD2 derived from the linear discriminant analysis (LDA). The LDs
are the discriminate functions of the LDA model. Each point represents the LD1–LD2 coordinate for
each FTIR spectrum. Symbols for the three genotypes and two environmental conditions are shown
at the right of the panel. Green ellipses denote the location of each wheat genotype.

To obtain information on the influential wavenumber regions in the FTIR spectra
for discriminating different genotypes and environmental conditions, the coefficients of
the LDs for each wavenumber were examined. The coefficient of LDs, or scaling value,
indicates the loading or contribution of each wavenumber to the LD function, in such a
way that higher absolute values of coefficients potentially show greater contribution to the
discrimination [62]. A two-dimensional scatter plot of the coefficients showed that most of
the wavenumbers were loosely clustered in the origin of the LD1–LD2 plain, whereas a
considerable quantity of ‘characteristic’ wavenumbers deviated from the center (Figure 6A).
One-dimensional plots of coefficients for either LD1 or LD2 versus wavenumbers revealed
that several spectral regions, i.e., 400–800 cm−1, 1200–1300 cm−1, 1450–1550 cm−1, and
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1700–1800 cm−1 regions, had strong absolute values for either LD1 or LD2 (Figure 6B,C),
suggesting that these regions may have major contributions to the spectral discrimina-
tion of different genotypes and environmental conditions. These regions include the
600–1500 cm−1 region that has been referred to as the “fingerprinting” region in which in-
frared absorption is cumulatively influenced by small steric or electronic effects depending
on the nature of the molecules [63]. The most ’characteristic’ wavenumbers that deviated
from the origin of the LD1–LD2 plain (Figure 6A) were predominantly located in the ranges
of 400–500 cm−1 and 1200–1300 cm−1. The 400–500 cm−1 range was situated in the ascend-
ing curve from the spectral margin of 400 cm−1 which was used for baseline correction,
thus showing lower absorbance values (hence, it should have a lower contribution to
discrimination). Moreover, this region suffered from a jagged shaped spectral curve, which
was probably derived from noise (Supplementary Figure S3). Therefore, in the subsequent
analysis, we focused on the 1200–1300 cm−1 region, which is within the fingerprinting
region and potentially contains signals from multiple functional groups, such as C–O
stretching, in-plane C–H bending (aromatic), and aliphatic C–O stretching [40,41].

To gain insight into the features of the 1200–1300 cm−1 region, averaged FTIR spectral
curves for this region were compared among genotypes and environments (Figure 7). This
region contained four characteristic wavenumbers: 1222 cm−1 (LD1 coefficient of +0.247),
1256 cm−1 (LD1 coefficient of −0.262), 1204 (LD2 coefficient of +0.184), and 1290 cm−1 (LD2
coefficient of −0.235) (Figure 6A). The averaged FTIR curves showed that the wavenumbers
1222 cm−1 and 1256 cm−1 were situated in the middle of the ascending and descending
curves, respectively, to a peak centered at 1241 cm−1, which has been tentatively identified
as C–O stretching, in-plane C–H bending (aromatic), and aliphatic C–O stretching sig-
nals [24]. The absorbance values at these wavenumbers for the six environment × genotype
combinations were in descending order of C3–CS, C3–Imam, H3–CS, H3–Imam, C3–N61,
and H3–N61 (Figure 7), which showed an association with the ascending order of LD1
scores in LDA (Figure 5). This was consistent with the negative LD1 coefficient value for
the wavenumber 1256 cm−1, but showed an opposite trend to the positive LD1 coefficient
for the wavenumber 1222 cm−1. Although the reason for this discrepancy is currently
unknown, one possibility is that the 1222 cm−1 variable may counteract the 1256 cm−1

variable to minimize the within-class variance in the LDA scores, which is a basic charac-
teristic of LDA [58,59]. Another possible factor is that each wavenumber may exert rather
small effects, and cumulative actions of multiple wavenumbers are required for the final
discrimination. Similar trends were observed for wavenumbers 1204 cm−1 (negative LD2
coefficient) and 1290 cm−1 (positive LD2 coefficient), in which the absorbance values were
only partially correlated with the LD2 score (Figures 5 and 7). Overall, these observations
suggest that further studies are needed to fully elucidate spectral behavior and underlying
biochemical changes during heat stress in a variety of wheat genotypes.

In this study, utility of FTIR-based chemical fingerprinting in combination with chemo-
metrics was demonstrated, for characterizing metabolome responses to heat stress in three
genotypes of bread wheat with different heat tolerances. Application of this technique in
future will benefit the study of responses to other types of abiotic stresses, such as drought
stress and drought–heat combination in various wheat genotypes with different water
demands [13,64,65].
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Figure 6. Relationships between the coefficients of the first two linear discriminants (LD1 and LD2)
and wavenumbers in linear discriminant analysis (LDA). (A) Two-dimensional scatter plot for the
coefficients of linear discriminant LD1 and LD2. Respective points represent the wavenumbers from
400 to 4000 cm−1. Assignment of color gradients to respective wavenumbers are the same as those
presented in (B,C). Numbers in black font at respective color points designate wavenumbers for
characteristic data points with higher absolute coefficient values (B,C). One-dimensional column
plots showing relationships between wavenumbers and coefficients of (B) LD1 and (C) LD2. The
coefficient values for each wavenumber are expressed using a rainbow color gradient along their
x-axes.
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Figure 7. Magnified view of averaged FTIR spectra in the wavenumber range from 1200 to 1300 cm−1

for strong discriminatory variable wavenumbers detected in LDA. Averaged spectra for six wheat
genotypes × environment combinations are shown, according to the legend depicted on the right. Col-
ored vertical straight lines and their numbers on top of the panel denote characteristic wavenumbers
detected in LDA as strong discriminatory variables.

4. Conclusions

The PCA, spectral biomarker assays, and LDA of FTIR spectra demonstrated the
existence of common and distinct metabolic responses between the three genotypes of bread
wheat with different heat tolerances. The spectral biomarker assay showed that Fm1251
and Fm1729 markers potentially discriminate heat-tolerant and -susceptible genotypes,
suggesting that these markers may serve as a selection tool for heat-tolerant genotypes.
LDA of the coefficient values indicated the presence of potential discriminatory spectral
regions that were associated with genotype-specific metabolic responses. The present
study demonstrates the versatility and potential of the FTIR fingerprinting technique for
elucidating the diversity of metabolic behaviors among diverse plant resources.
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