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Abstract: There is a need to minimize the usage of traditional laboratory reference methods in favor
of spectroscopy for routine soil carbon monitoring, with potential cost savings existing especially for
labile pools. Mid-infrared spectroscopy has been associated with accurate soil carbon predictions,
but the method has not been researched extensively in connection to C lability. More studies are also
needed on reducing the numbers of samples and on how to account for the compositional nature of C
pools. This study compares performance of two classes of partial least squares regression models to
predict soil carbon in a global (models trained to data from a spectral library), local (models trained
to data from a target area), and calibration-spiking (spectral library augmented with target-area
spectra) scheme. Topsoil samples were+ scanned with a Fourier-transform infrared spectrometer,
total and hot-water extractable carbon determined, and isometric log-ratio coordinates derived
from the latter measurements. The best RMSEP was estimated as 0.38 and 0.23 percentage points
TC for the district and field scale, respectively—values sufficiently low to make only qualitative
predictions according to the RPD and RPIQ criteria. Models estimating soil carbon lability performed
unsatisfactorily, presumably due to low labile pool concentration. Traditional weighing of spiking
samples by including multiple copies thereof in training data yielded better results than canonical
partial least squares regression modeling with embedded weighing. Although local modeling was
associated with the most accurate predictions, calibration spiking addressed better the trade-off
between data acquisition costs and model quality. Calibration spiking with compositional data
analysis is, therefore, recommended for routine monitoring.

Keywords: soil organic matter; MIR-DRIFTS; chemometrics; compositional data analysis; reproducibility

1. Introduction

SC is a primary indicator of soil quality [1,2], and in recent years, estimation of
atmospheric CO2 sequestration has boosted interest in SC monitoring [3–6]. In addition to
SC quantity, its fractional composition can be of interest in evaluating soil status. Research
has been devoted to the labile fraction, which can give insight into SC turnover processes [7].
Labile C determines the rate of nitrogen release from soil organic matter, a factor to be
accounted for while fertilizing the soil [8,9], and it can also inform about the long-term
stability of sequestered carbon [10].

Changes in SC content occur over long time frames [5,11]—in certain conditions
also on arable land despite higher risk of depletion by mineralization [1,12]. Although it
suffices to sample soil every ten years for monitoring [3,5], SC can exhibit high spatial
variability [3,4], which increases the necessary sampling effort [13]. Additional collection
campaigns are needed to capture the dynamics of SC labile pools, which, on arable land,
are readily influenced by fertilizer and soil amendment inputs, crop residue management,
and soil tillage [11,14,15]. Traditional analysis of samples collected for this purpose is
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costly and time consuming due to the laboriousness of laboratory SC fractionation [16–19].
Environmental concerns have also been raised [20,21].

Higher throughput and economical viability can be attained with soil spectroscopy [4,22].
Here, MIR-DRIFTS is one of the methods considered suitable for chemical soil analysis [13,20,23]
owing to fundamental vibrations of soil molecules arising in the MIR spectral region [6,13,24].
In particular, it can give accurate estimates of SC content [13,22,25,26], and according to
Reeves III [25], this high performance may extend to SC fraction assessments. However, the mod-
est number of publications devoted to SC lability [27] is in contrast with the extensive literature
on total C (TC) or the large organic C (OC) pool estimation with MIR-DRIFTS.

Quantitative assessment of soil properties from spectral measurements requires a
predictive model trained to a reference dataset, in which spectra are paired with reference
laboratory data [4,28]. Bellon-Maurel and McBratney [26] and Gholizadeh et al. [29] stress
an importance of a large calibration library for satisfactory accuracy. In particular, the num-
ber of samples corresponding to soil properties similar to those in the target area should
be sufficient to avoid a prediction bias with the trained model [13,30,31]. Applications
of libraries have been limited in MIR spectroscopy [32], and although large collections
are increasingly available [16,32–34], many regions remain not represented. An important
prerequisite is to follow the sample collection and analysis methodology that was employed
for building the library [25,28,35]. This is problematic given the fact that even different
units of one spectrometer model can yield MIR scans that do not match [29].

For scenarios with an insufficient library size or coverage, calibration spiking can be
employed [6,36]. The library is augmented with a limited number of samples collected at
the target site prior to the training of a predictive model [37,38]. Samples for calibration
spiking can be picked according to leverage selection to minimize their number or spiking
intensity [28]. This process preserves the representativeness of the resulting subset by
taking into account spectral similarities of the samples in the available pool [37]. According
to Guerrero et al. [39], a reference library does not need to be large to obtain satisfactory
predictions with calibration spiking. However, even with a modestly sized reference dataset,
there is going to be a disproportion between the number of spiking and library samples.
One way of addressing this problem is to use a subset of the latter [38]. As an alternative,
which does not incur information loss, local samples can be given bigger weight relative to
the samples in the library. Such weighing is typically performed by multiplying the local
sample occurrences in a model training dataset [36,39,40]. However, another approach
is also possible, where a model allowing for specification of case weights is employed
instead [41].

Partial least squares regression (PLSR) continues to be the most common approach
for analyzing soil spectra and predictive model calibration [3,13], including MIR-DRIFTS
SC studies [22,26]. When estimating multiple properties, accuracy can be improved by
accounting for their correlations [42], and utility of multiresponse PLSR (PLSR2) models
in pedology has been demonstrated before [43–46]. Indahl et al. [47] proposed combining
PLSR with canonical correlation analysis and developed the canonical PLSR (CPLSR)
class of models. Like PLSR2, this method permits a multivariate response variable, but in
addition to that, it offers a possibility to weigh the individual observations.

Baumann et al. [34] hypothesized that library samples “would stabilize and reduce the
errors” associated with spike samples. However, spiking a reference library that does not
match the target calibration domain can lead to less satisfactory results than the training of
a model to local samples only [37,41]. Guerrero et al. [38] and Wetterlind and Stenberg [48]
questioned the necessity of a reference library at all by pointing to superior model calibra-
tions obtained with samples from the vicinity of a target area, exclusively.

The aim of this study is to investigate the influence of calibration spiking and local
modeling on SC content and lability prediction performance of PLSR2 and CPLSR models
trained to MIR-DRIFTS spectra corresponding to crop farming localities with different soil
and climatic conditions. We hypothesized that the spiking of a library with observations
from several long-term experiments would reduce the number of samples subjected to
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traditional laboratory analysis compared to relying only on target-site spectra. Furthermore,
CPLSR models with embedded sample weighing were expected to perform better than
weighing by multiplication followed with PLSR2 modeling. The study also explores the
influence of spectra pre-processing schemes and leverage sampling algorithms on the
model predictions.

2. Materials and Methods
2.1. Site Description and Data Collection

Two groups of soil samples were collected at the territory of the Czech Republic:
(1) time series of archived samples obtained from long-term crop trials, which served as a
reference library, and (2) samples from two commercial sites, Ústí nad Orlicí and Janovice,
as prediction targets of interest (Figure 1). The long-term experiments were maintained by
the Crop Research Institute Praha-Ruzyně (CRI) and the Central Institute for Supervising
and Testing in Agriculture; their primary focus was fertilization. A brief description can
be found in Table 1. As seen in Table S1, the library was unbalanced with respect to the
sample, year, and experimental treatment counts. Topsoil samples from the upper 20 cm
were collected using a field shovel following a uniform protocol. The soil was collected
from three spots of each plot, and the partial samples were combined into approximately
2 kg lots and homogenized.

Ústí nad Orlicí comprises multiple localities scattered over one district (Figure 1),
making it a heterogeneous site. The fields were managed with conventional tillage and
sown with winter wheat, winter and spring barley, silage maize, and oilseed rape. The het-
erogeneity was additionally augmented by an extended timing of the soil sample collection,
which took place every spring and fall between 2012 and 2015. About 40 topsoil samples
from fields with winter wheat and winter barley were collected by the farmers or their
designated persons during each campaign, yielding a total of 335 samples. The commercial
site Janovice denotes a single conventionally tilled field, with a crop rotation of silage
maize, winter wheat, potatoes, and clover–grass mixture. It contributed 45 topsoil (0–20 cm)
samples collected by CRI employees in fall 2017, after the sowing of winter wheat. The sam-
pling points were delimited every 120 m in a way to obtain roughly uniform coverage of
the field. There were six partial samples per composite sample of approximately 0.5 kg,
which was then homogenized.
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loam
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265 m a.s.l.
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clayey loam
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Figure 1. Locations, altitudes, mean annual temperatures, and precipitation sums in the years of data
collection, and soil types and textures at the experimental sites. The target sites are marked with red
color. For Ústí nad Orlicí, individual soil sampling locations are displayed, and their mean altitude
is provided.
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Table 1. Characteristics of the long-term field experiments.

Experiment a Est. Layout b Crop Rotation c Reference

CRE 1956 1b × 3t various (25%)–(WW or TR)–(POT or SB or SM)–(SBA or WW) [49]
CRT 1984 5b × 1t WW and SBA (50–100%) complemented with CL, O, PEA, SB, SM unpublished
FE 1958 1b × 7t fallow [50]

FFFE 1979 1b × 6t (AL or CL)–WW–SM–WW–SBA–(SB or POT)–SBA [51]
IOSDV 1983 1b × 4t (SB or POT)–SBA–WBA [52]

OaMNFE(dc) 2011 1b × 5t POT–WW–SM–SBA–OSR–WW [53]
OaMNFE(sf) 1965 1b × 6t WW–POT–SBA–LCM–WW–POT–O–CL [54]

RFE 1955 2b × 8t SW–SB or AL–AL–WW–SB–SBA–POT–WW–SB–SBA [55]
a CRE—Crop Rotation Experiment, CRT—Crop Rotation Trial, FE—Fallow Experiment, FFFE—Fraction Fac-
torial Fertilization Experiment, IOSDV—International Long-Term Organic Nitrogen Nutrition Experiments,
OaMNFE(dc)—Organic (digestate, compost) and Mineral N Fertilization Experiment, OaMNFE(sf)—Organic
(straw, farmyard manure) and Mineral N Fertilization Experiment, RFE—Ruzyně Fertilizer Experiment; b The
number of blocks and treatments per block at each site; c AL—alfalfa (Medicago sativa L.), CL—red clover (Trifolium
pratense L.), LCM—legume–cereal mixture, O—oat (Avena sativa L.), OSR—winter oilseed rape (Brassica napus L.),
PEA—cultivated pea (Pisum sativum subsp. sativum L.), POT—potato (Solanum tuberosum L.), SB—sugar beet (Beta
vulgaris subsp. vulgaris L.), SBA—spring barley (Hordeum vulgare conv. distichon (L.) Alef.), SM—maize for silage
(Zea mays subsp. mays L.), SW—spring wheat (Triticum aestivum L.), TR—triticale (× Triticosecale Wittm. ex A.
Camus.), WBA—winter barley (Hordeum vulgare conv. vulgare L.), WW—winter wheat (Triticum aestivum L.).

The soil samples were dried, sieved through 2 mm mesh, and milled. MIR-DRIFTS
spectra were measured using a Thermo Nicolet Avatar 320 FTIR spectrometer with a Ge
beam splitter and a TGS detector, equipped with a Smart Diffuse Reflectance accessory
(Nicolet, Madison, WI, USA) in a homogeneous mixture of 300 mg bulk soil and 900 mg
FTIR grade KBr (Sigma-Aldrich, Darmstadt, Germany) prepared by hand in an agate
mortar. Each sample was transferred to a 12 mm diameter diffuse reflectance cup and
levelled with a microscope glass slide in a way to avoid compressing mechanically the
mixture. Three scans comprising 1869 equidistant bands in the 4002–399 cm−1 wavenumber
range were performed, each spectrum was corrected against pure KBr as a background
spectrum, and the obtained apparent absorbance (hereafter, absorbance) values averaged
to obtain a spectrum with reduced noise [35]. TC content was determined by dry com-
bustion using Vario/CNS analyzer (Elementar Analysensysteme GmbH, Langenselbold,
Germany), and hot-water extractable carbon (HWC) content was determined according to
Körschens et al. [8] as a measure of SC lability [27,56].

2.2. Data Partitioning and Pre-Processing of MIR-DRIFTS Spectra

The collected data were subjected to a number of pre-processing and subsetting
operations, the character of which was differentiated according to the study questions;
depending on the scenario, one or more operations could also be omitted. PLSR models
for predicting TC and HWC contents from MIR-DRIFTS spectra were then trained, tuned,
and validated using the derived datasets. Figure 2 depicts the data processing workflow.

The samples in the library part of the dataset served as the calibration samples in
the global (library only) modeling scenario (Figure 3a), equivalent to removal of the “raw
non-test target pool”–“sample weighing by multiplication” workflow branch in Figure 2.
For each commercial site, 10 independent sets of 12 samples were picked randomly for
testing of predictive model quality. The target-site spectra not included in a testing parti-
tion made a pool from which samples were picked for model training in other scenarios
(Figure 3b,c). The order of samples within these pools was randomized.
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raw library
samples

raw non-test
target pool

raw test
samples

trimming
or leverage
sampling

sample
weighing by

multiplication

raw target-
site samples

partitioning

10 partitionings

basic pre-processing basic pre-processing

further pre-processing further pre-processing

training samples test samples

training of PLSR2 model or CPLSR
model with embedded sample weighing

PLSR model validation

MSC
reference

centering reference

Figure 2. Data processing workflow.

Spectral pre-processing was performed before the selection of target-site training
samples from the training pools. Noisy bands up to 600 cm−1 [17] and CO2-affected
measurements in the 2268–2389 cm−1 wavenumber range [32] were discarded. For ad-
ditional signal recovery, the spectra were processed using a moving-average filter with an
11-band window.

In addition to analyzing the resulting spectra, hereafter “raw spectra”, we tested five
further pre-processing schemes [57], with each scheme comprising two phases. In the
first phase, the moving-average smoothing was either followed with multiplicative scatter
correction (MSC) or left unchanged. In the second phase, (1) standard normal variate (SNV),
(2) derivative transformation using the Savitzky–Golay filter with third-order polynomial
smoothing applied over a moving window of 11 bands, or (3) no transformations were
applied to the result. No change to the spectra in both phases was equivalent to removal of
the “further pre-processing” box in Figure 2. Initially, continuum removal by dividing the
spectrum by its convex hull was also attempted, but it had to be abandoned as extreme
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outliers were generated. Unlike the remaining transformations, MSC employs information
from multiple spectra to derive a common reference spectrum. We were careful to perform
this operation using the data in the training spectra pools, exclusively [6,58].

library samples target-site samples

(a) training samples
test

samples

(b) training samples
test

samples

(c)
test

samples
training
samples

non-test target pools

spiking intensity

sampling intensity

Figure 3. The possibilities of data subsetting compared in the study: (a) Library-only partitioning
without calibration spiking. (b) The library data are augmented with target samples from a training
pool, the number of which is given by the spiking intensity. (c) Local-only models trained exclusively
to target-site samples, the number of which is given by the sampling intensity.

2.3. Calibration Spiking

Calibration spiking was introduced, based on increasing spiking sample counts to
the level of 16 samples with a step of 4 samples (Figure 3b). The pre-randomized calibra-
tion sample pools were trimmed while preserving the sample orders. In addition to this
random scheme, two leverage sampling approaches were assessed: the Kennard–Stone
algorithm [59] and conditioned Latin hypercube [60]. The spectra were subjected to PCA
prior to the Kennard–Stone algorithm application to reduce the number of dimensions
below the sample pool size level.

In order to test for the possibility of a local modeling superiority with respect to
models trained both to global and spiked datasets, additional scenarios mirroring the
calibration-spiking scenarios but without samples from the long-term experiments were
included (Figure 3c). This was equivalent to omitting the “library samples” branch in
Figure 2. The training sample selection followed the same three schemes as for calibration
spiking, with the same sampling intensity levels.

2.4. Reference Laboratory Data Pre-Processing

TC content cannot exceed a certain level of SC saturation [61,62], whereas HWC cannot
be larger than TC. While applying statistical methods to measurements of sample con-
stituents’ concentrations, such as TC and HWC, it is recommended to follow the principles
of compositional data analysis. Otherwise, models can yield nonphysical predictions, such
as those of negative concentrations, a problem encountered by Baldock et al. [16] and
Janik et al. [63], or component sizes the sum of which exceeds 100 %.

Classical statistical tools can be employed to compositional data after subjecting them
to log-ratio transformations. Accordingly, three components summing up to the whole soil
sample were derived from the TC and HWC measurements: (1) HWC, (2) the part of TC
resistant to hot-water extraction (nHWC), and (3) the non-TC part of a sample (1 − TC).
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In the next step, the component values were transformed into two isometric log-ratio (ilr)
coordinates according to the formulas [64]:

ilrTC =

√
2
3

log
(HWC · nHWC)

1
2

1 − TC
, (1)

ilrHWC =

√
1
2

log
HWC

nHWC
. (2)

The ilrTC coordinate is closely related to TC but accounts for the finite size of a sample,
while ilrHWC can be interpreted as transformed C lability [65]. The latter formulation not
only respects the compositional character of the reference data but also avoids confounding
lability with TC, thus facilitating their independent analysis. This is unlike raw HWC,
the value of which can be affected by both factors [9].

2.5. PLSR Modeling with Unweighed and Weighed Training Samples

The relationship between ilr values and MIR-DRIFTS spectral patterns was modeled
using PLSR. Two multiresponse PLSR extensions were trained to both coordinates to
account for multivariate character of compositional data [66]. For data partitionings that
included both reference-library and target-area samples, the influence of spiking sample
weighing was examined by introducing models with 5-fold and 25-fold weighted local
observations, in addition to unweighted models. The weighing was performed either in
the standard way by data row multiplication—in which case a PLSR2 model [42] was
used—or by exploiting the internal weighing capability of the CPLSR model family [47] as
a proposed approach. The latter case detoured the “sample weighing by multiplication”
Figure 2 workflow step. Obviously, the weighing was restricted to the calibration-spiking
scenarios, as the remainder, that is library-only and local-only scenarios, involved only
single sources of samples.

Centered values of ilr coordinates were the dependent variables (responses) and
centered MIR-DRIFTS intensity values were the independent variables (features) in these
models. Like for MSC, the centering was based on information in the training data only.
The numbers of PLSR components were tuned using leave-one-out cross-validation with
values between 1 and 12 considered. The number of components to keep was determined
using one standard error heuristics [67] applied separately to ilrTC and ilrHWC RMSECV. In
this way, 12 240 bivariate models were calibrated and twice as many tuned models obtained.

The performance of each model was evaluated using test data partitions in terms of
R2, prediction bias, and RMSEP, followed with RPDP and RPIQP statistics:

R2 =
VRes(0)− RMSEP2

VRes(0)
, (3)

bias =
∑n

i=1(ŷi − yi)

n
, (4)

RMSEP =

√
∑n

i=1(ŷi − yi)2

n
, (5)

RPDP =
sP

SEP
, (6)

RPIQP =
IQRP

SEP
, (7)

where VRes(0)—mean square ground truth value, ŷi—predicted ith value, yi—ith ground
truth value, n—test sample count, sP—standard deviation of ground-truth values, IQRP—
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interquartile range of ground-truth values, and SEP—standard error of prediction, which
was defined as:

SEP =

√
∑n

i=1(ŷi − yi − bias)2

n − 1
. (8)

These were summarized, and the relative influence of the experimental factors on the
model performance measures was also examined visually after plotting the relationships.

2.6. Reproducing the Study

The analysis was coded using the R language and executed in the 3.6.2 version of
the interpreter [68]. The package vegan (version 2.5.6) [69] was used for PCA, prospectr
(0.1.3) [70] and pls (2.7.2) [71] for spectra pre-processing, prospectr and clhs (0.7.2) [72]
for leverage sampling, compositions (1.40.3) [73] for ilr transformations, and pls for
PLSR modeling. GNU Make [74] was employed for workflow control, and GNU Guix
functional package management and containerization capabilities [75] were exploited to
obtain reproducible results. The data and code are available from a Zenodo repository
(doi:10.5281/zenodo.6337394). Reproduction of the study is going to require the availability
of HPC infrastructure. It took approximately three weeks of operation of a 16-CPU virtual
machine to complete a full computation cycle and obtain the results.

3. Results
3.1. Patterns in the Raw and Pre-Processed Data

Ústí nad Orlicí spectral signatures were highly varied and, in certain regions, extended
beyond the envelope of the library samples regardless of pre-processing (Figures 4 and S1).
The scans were subjected to PCA to obtain more insight into the spectral dissimilarity [39].
According to the first two principal component scores, there is substantial overlap between
the reference library spectra and Ústí nad Orlicí soil samples, but a significant fraction of
the observations occupy the area of the PCA space devoid of library data points due to
high PC2 scores (Figure 5). As could be expected, the bulk of high-PC2 library observations
represent experimental stations located close to the discussed district, namely Hněvčeves,
Svitavy, Čáslav, and Kostelec nad Orlicí (Figure 1). Notable are the large ranges of Ústí nad
Orlicí PCA scores, comparable to those of the long-term experiments. In contrast to that
pattern, Janovice spectra were enveloped by the library spectra (Figure 4), and the data
points form a compact cluster in Figure 5, similar in extent to several individual library
sites, as shown using convex-hull polygons.

In addition, the C measurement variation was high in Ústí nad Orlicí and not much
smaller than that of the library samples despite the different geographical scales (Table 2
and left-hand plot in Figure 6). Both TC and HWC are somewhat shifted upwards relative
to the bulk of the reference library. Unlike the PCA scores, the mismatch between target-site
C measurements and reference library measurements is more apparent for Janovice. Both
TC and HWC are high here, and the only library samples with similar characteristics are
a group of Praha-Ruzyně Fallow Experiment experimental plots. A closer examination
revealed that those had been assigned to compost fertilization treatments.

Regardless of the data subset, the raw measurements were skewed towards lower
values (left-hand plot in Figure 6). The skew, and to a degree high kurtosis, were reduced
after the ilr transformations (right-hand plot in Figure 6 and Table S2). Figure 7 depicts
the relationships between the raw component values and ilr coordinates. While the TC–
ilrTC relationship is smooth and close to linear, a broken stick pattern was obtained for
HWC–ilrHWC. The outlying samples with HWC in excess of 1.2 mg g−1 all came from Praha-
Ruzyně Fallow Experiment plots where compost was applied. Although ilrTC and ilrHWC
are not simple transformations of, respectively, TC and HWC, as additional components
were accounted for in their derivation (Equations (1) and (2)), the relationships are strong
enough to permit comparing our results with those reported by authors who had not
considered the compositional nature of SC pools.
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Figure 4. Pre-processed library and target-site spectra. The reference spectrum for the multiplicative scatter correction (MSC) transformation is based on the first
training-pool–test partitioning.
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Figure 5. Projection of the principal component space derived from MIR-DRIFTS spectra after basic
pre-processing. Convex hulls of the library sites similar to Janovice are displayed. The smallest,
central polygon represents Jaroměřice. Ca—Čáslav, Hn—Hněvčeves, Hu—Humpolec, Iv—Ivanovice
na Hané, Ja—Jaroměřice, Ko—Kostelec nad Orlicí, Li—Lípa, Lu—Lukavec, Pe—Pernolec, Ru—Praha-
Ruzyně, Sv—Svitavy, Tr—Trutnov, Vy—Vysoké nad Jizerou.

Table 2. Location and scale statistics describing the distributions of soil carbon (SC) measurements
before and after isometric log-ratio (ilr) transformations.

Statistics Sample Partition
C Measurement

Raw ilr-Transformed

TC HWC ilrTC ilrHWC

range

(%) (mg g−1)
library 0.73–4.45 0.13–2.55 −5.63–−3.70 −3.25–−1.97

Ústí nad Orlicí 0.94–3.68 0.27–1.09 −5.22–−4.19 −2.83–−2.04
Janovice 1.35–3.04 0.46–1.16 −4.89–−4.21 −2.47–−2.15

median

(%) (mg g−1)
library 1.41 0.38 −4.98 −2.54

Ústí nad Orlicí 1.65 0.51 −4.77 −2.43
Janovice 2.10 0.77 −4.51 −2.31

IQR

(pp) (mg g−1)
library 0.45 0.16 0.27 0.29

Ústí nad Orlicí 0.46 0.17 0.23 0.17
Janovice 0.32 0.16 0.14 0.09

n
library 603

Ústí nad Orlicí 335
Janovice 45
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Figure 6. Joint and marginal distributions of SC raw and ilr-transformed measurements. The convex hull depicts the extent of Praha-Ruzyně observations. Ca—Čáslav,
Hn—Hněvčeves, Hu—Humpolec, Iv—Ivanovice na Hané, Ja—Jaroměřice, Ko—Kostelec nad Orlicí, Li—Lípa, Lu—Lukavec, Pe—Pernolec, Ru—Praha-Ruzyně,
Sv—Svitavy, Tr—Trutnov, Vy—Vysoké nad Jizerou.
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Figure 7. The relationships between raw SC reference measurements and ilr-transformed values,
with overlaid loess smoothers.

3.2. Accuracy and Precision of the PLSR Models

The predictive performance of the PLSR models varied substantially, as illustrated by
the R2 statistics (Table 3). Although negative values were obtained for the worst models,
models corresponding to R2 in excess of 0.80 could be found for each ilr coordinate and
target site combination, which is a high quality result according to Janik et al. [20]. How-
ever, after aggregating the values across all data partitionings, R2 exceeded 0.50, still an
unsatisfactory value, only for Janovice while predicting ilrTC, whereas both ilrHWC and
Ústí nad Orlicí scenarios gave poor results.

Table 3. Ranges of PLSR model performance measures according to the dependent variable and
the target site. The values outside and inside the brackets correspond to performances obtained for
individual data partitionings and performances that were median aggregated across the partition-
ings, respectively.

Performance Measure
ilrTC ilrHWC

Ústí nad Orlicí Janovice Ústí nad Orlicí Janovice

R2 −9.10 [−3.97, 0.33]
0.81

−18.79 [−8.76, 0.57]
0.88

−6.90 [−1.36, 0.18]
0.85

−37.43 [−18.98, 0.35]
0.82

bias −0.42 [−0.30, 0.16]
0.32

−0.49 [−0.47, 0.07]
0.21

−0.19 [−0.13, 0.07]
0.14 −0.28 [−0.24, 0.04] 0.09

RMSEP 0.07 [0.13, 0.35] 0.51 0.04 [0.08, 0.48] 0.51 0.05 [0.11, 0.19] 0.24 0.03 [0.04, 0.26] 0.29
RPD 0.33 [0.47, 1.27] 2.42 0.23 [0.33, 1.60] 3.01 0.37 [0.68, 1.15] 2.73 0.17 [0.23, 1.29] 2.45
RPIQ 0.30 [0.62, 1.70] 3.09 0.13 [0.26, 1.45] 2.52 0.38 [0.69, 1.26] 2.84 0.18 [0.30, 1.59] 3.79

The worst negative biases and RMSEP values were comparable, amounting to 0.4–0.5
for ilrTC and 0.2–0.3 for ilrHWC. In terms of raw component values, these correspond to
approximately 1.30 TC percentage points and 0.09–2.79 mg g−1 HWC, depending on the
baseline HWC value (Figure 7). The best models had RMSEP of only 0.04 for ilrTC (approxi-
mately 0.12 pp TC) and 0.03 for ilrHWC (0.34 mg g−1 HWC for high value range and less for
low value range). More conservative estimates, based on partitioning medians, suggested
a possibility of predicting ilrTC with an error of 0.13 (0.38 pp TC) and 0.08 (0.23 pp TC) in
Ústí nad Orlicí and Janovice, respectively, while for ilrHWC, the corresponding values were
0.11 and 0.04 (0.04–1.23 and 0.01–0.45 mg g−1 HWC).
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Models with RPDP or RPIQP above 2.5 or even 3.0 were obtained in some scenarios
and test data partitions, described in literature as good and excellent predictions [76].
However, typically one should not expect the performance to be higher than 1.7, that is,
barely sufficient to estimate the values even as high or low. Unlike for the other measures,
Janovice models did not yield consistently superior RPDP and RPIQP relative to Ústí
nad Orlicí.

There is an agreement between PLSR regression coefficients of the best Janovice
models for predicting ilrTC regardless of the performance measure in which a model
excelled (Figure 8). The pattern is similar to that presented for Baldock et al. [16] square-
root transformed TC model, including the presence of aliphatic C – H (at approximately
2890 cm−1), C –– O (1740 cm−1), and negative carbonate (1810 cm−1) peaks. In contrast, the
coefficients for Ústí nad Orlicí disagree and the pattern is malformed, which may suggest
model overfitting. Regression coefficient values are comparable among two of the best-
performing Janovice ilrHWC models. Their patterns do not resemble those published by
Zimmermann et al. [17] for labile OC, but these authors modeled raw component sizes,
rather than lability, and presented individual PLSR loadings, rather than regression coeffi-
cients. There is a major negative peak in the 3700–3600 cm−1 wavenumber range, which
corresponds to O – H stretching of clay minerals [77,78]. Other peaks occur at approxi-
mately 1000 cm−1 and below. Here, notable is the positive 1050 cm−1 peak, assigned to
quartz reflectance [19]. However, according to Nocita et al. [28], the interpretation for the
<1000 cm−1 region is challenging due to mineral species vibrations interfering with those
of organic molecules. These include iron compounds [13] and carbonates [79]. The peaks
do not include 2930 cm−1 and 1620 cm−1 wavenumbers proposed by Demyan et al. [80]
for lability assessment. The model minimizing bias behaved differently, and for Ústí nad
Orlicí, the smallest-bias model happened to be insensitive to input data variation, which
indicates that models should not be selected according to the bias criterion. As with ilrTC,
the pattern is unstable for this latter target site.

3.3. Factors Affecting PLSR Model Performance

The relationships between the modeling approaches and performance measure values
were visualized to identify factors contributing to prediction quality. We present a selection
that illustrates the most clear patterns, which, with the exception of the final comparison, is
restricted to the models trained to the raw spectra, as the effect of spectra pre-processing
was limited. The complete set of visualizations along with input data points can be found
in Figure S2.

PLSR models trained to the spectral library, that is, with zero target-site samples,
performed poorly, especially for Janovice, as can be seen at the left edge of all plots in
Figure 9. Note that this and subsequent figures for legibility depict confidence intervals,
whereas ranges are referred to in this section. The R2 statistic was negative with the ex-
ception of Ústí nad Orlicí ilrHWC models, in the case of which it ranged between −6.24
and 0.47. The generated predictions were negatively biased, while their imprecision mea-
sured by RMSEP exceeded 0.17 units for ilrTC (about 0.49 pp TC) and 0.08 units for ilrHWC
(0.03–0.89 mg g−1 HWC).

Training of PLSR models to a selection of target-site samples only, while excluding the
spectral library, had a clearly positive effect on all measures even with only four training
samples, as illustrated by the black lines in Figure 9. However, R2 was still negative at this
sampling intensity level. Here, predictions for Janovice appear superior to those obtained
for Ústí nad Orlicí, especially in terms of RMSEP. Further additions of samples led to more
accurate ilrTC predictions in Janovice, as depicted in more detail in Figure 10. In particular,
R2 exhibited an increasing trend, with positive values up to 0.88, obtained in a number of
scenarios with 16 samples. Prediction improvement of ilrTC with higher sampling intensity
is not so clear for Ústí nad Orlicí. Instead, a pattern of Kennard–Stone leverage sampling
inferiority could be discerned, especially in terms of high bias, up to 0.32 units (0.92 pp TC).
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Figure 8. SC predictions corresponding to the top-performing models. The performance measures ac-
cording to which individual formulations performed best are marked with asterisks. PLSR regression
coefficients are shown for each model on a relative scale due to the coefficient ranges differing by
orders of magnitude between the models.
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Figure 9. The influence of calibration spiking, weighing of the spiking samples, and removal of library spectra from the training dataset on partial least squares
2 regression (PLSR2) model performances. Only scenarios with basic and no further spectra pre-processing are included. Each line represents one combination of
levels of the remaining experimental variables: leverage sampling strategy and predictive model family. A mean across 10 test datasets is drawn along with its 95%
confidence interval.
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Figure 10. The influence of sampling intensity and leverage sampling on predictive local-only model
performances. Only scenarios with basic and no further spectra pre-processing are included. Each
line represents an ensemble of either partial least squares 2 regression (PLSR2) models or canonical
partial least squares regression (CPLSR) models with the same level of spike sample weights. A mean
across 10 test datasets is drawn along with its 95% confidence interval.

RMSEP of ilrHWC was hardly affected by increasing sampling intensity. On the other
hand, a trend towards increased bias can be discerned for Janovice under the random
sampling and Kennard–Stone leverage sampling scenarios, but these strategies still do not
appear consistently inferior to conditioned Latin hypercube. Positive R2 was attained by
few and apparently random Janovice models and almost no Ústí nad Orlicí models even at
maximum sampling intensity, suggesting a general unsuitability of the local approach to
estimating this ilr coordinate.

In Janovice scenarios with PLSR2 models, augmenting the library samples with spike
samples yielded results competitive with the local approach when the target-site training
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samples were given a weight of 25, as shown using red lines in Figure 9. R2 up to 0.71 could
be attained with only four spiking samples for ilrTC—in contrast to R2 of corresponding
local-only models, which was always negative. A notable exception was prediction bias,
in the case of which about 85 % of the models still underestimated the value of this coordi-
nate. Models with the weight of five (green lines) were competitive with local-only models
only in predicting ilrHWC and only in terms of R2 and RMSEP. More spiking samples were
required to obtain a desirable effect than with 25-fold spiking sample weighing. The superi-
ority of global Ústí nad Orlicí models relative to Janovice vanished or became inversed as
spike samples were added to training datasets. The performance remained better only in
scenarios without spike sample weighing (blue lines), but here the prediction quality was
poor for both target sites, making this class of scenarios not interesting.

Leverage sampling had little effect on the quality of models that involved spiked
library spectra, but the performance measures responded to the choice between PLSR2 and
CPLSR family (Figure S3). The application of the CPLSR method was clearly detrimental
for the prediction quality of both ilrTC and ilrHWC in Janovice samples compared to the
standard approach. In the case of Ústí nad Orlicí, the effect of replacing PLSR2 with
CPLSR was not so strong, but it still appears negative. The limited sensitivity of model
performance to spectra pre-processing can be illustrated by two favorable combinations of
spectra selection and weighing strategies. As depicted in Figure S3, systematic prediction
quality differences are hard to discern except for the uninteresting library-only scenario,
where all models failed.

4. Discussion
4.1. Distributional Data Properties and the Effect of Log-Ratio Transformation

The high scatter of observations in PCA (Figure 5) and SC (Figure 6) measurements,
comparable in extents to those of long-term experiments, indicates high spatial hetero-
geneity of Ústí nad Orlicí district soils. This pattern corroborates the need for dense soil
sampling to map and monitor SC in the conditions of the Czech Republic and, arguably,
beyond [3,4], from which the need to develop cost-effective assessment methods follows [4].
However, in addition to the variability of soil properties, non-uniform sampling techniques
might have also been a contributing factor, as unlike in the remaining campaigns, the task
was relegated to farmers. In contrast to that, the relative compactness of the Janovice PCA
cluster corresponds to the fact that the data collection was constrained to a single field.
The high TC and HWC contents encountered at this locality might have been related to
long-term organic fertilization of this field.

High performance of a PLSR model can be attained when the predicted variable has
a Gaussian distribution, and in chemometric studies, it is common to transform target
measurements [13]. Stenberg et al. [6] highlighted skewness of organic matter concentra-
tions in cropland soil samples towards low values, a common pattern that can contribute
to prediction bias [34]. Normalization of such data can be attained by applying a square-
root [16,20,39] or a logarithmic [81–83] transformation. However, while these bound the
predictions to be above zero [16], the maximum values remain unbounded.

A log-ratio affects the shape of data distribution like the above transformations, but in
addition to that, back-transformed predictions correspond to physical reality for composi-
tional components [64]. The present study demonstrates improved skewness and kurtosis
of ilr coordinates relative to raw component concentrations (Figure 6) and provides evi-
dence of compatibility of log-ratios with PLSR predictive modeling. The proposed data
analysis approach could be refined in the future by accounting for carbon saturation lim-
its [61,62] in the ilr transformation. Another potential extension would be to consider also
the spectral measurements as compositional [84].

4.2. Absolute Performance of the Predictive Models

The top R2 conservative estimate of only 0.57 when predicting ilrTC and low RPDP
and RPIQP evaluations (Table 3) do not corroborate the purported potential of MIR-DRIFTS
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to become a cost-effective yet reliable laboratory method for SC assessment [13,25,35]. The
agreement between the PLSR regression coefficient patterns obtained in the present study
(Figure 8) and reported in literature [16,33,81] rules out major errors during both reference
data collection and sample scanning and subsequent data analysis. Barra et al. [22] and
Bellon-Maurel and McBratney [26] summarized model quality estimates for predicting OC
and TC from MIR spectra. Although high-performing models prevail in reported research,
a number of SC studies suffer from methodological issues that arguably bias the results
towards higher accuracy. For example, Zimmermann et al. [17] employed a systematic
rather than random validation sample and, moreover, included the validation data in
PLSR model tuning dataset. More recently, Zhang et al. [18] erroneously [23] considered
optimistic bias of model cross-validation results as an advantage and did not present the
obtained independent validation statistics. It can be presumed that the models performed
not so satisfactorily on the test datasets. Deiss et al. [31] contrasted the performance of
PLSR and support vector machine models to predict OC in soil samples from two sites.
Despite testing multiple combinations of spectral pre-processing and modeling scenarios,
the authors presented only the performance measures of their best models. Those happened
to be comparable to our top-rated results. In addition, their selection was based on full-
validation statistics, which draws an over-optimistic picture of MIR-DRIFTS potential for
real-life applications, where only few or even no validation samples would be available.

Methodological issues aside, not all models have been reported to perform well.
The Bellon-Maurel and McBratney [26] review includes formulations that resulted in
modest RPDP values, similar to those obtained in the present study. In the more recent
Page et al. [10] work, MIR-DRIFTS substantially underestimated OC loss over time in a
long-term experiment, similar to our negative ilrTC biases. Moreover, the estimated effect of
evaluated management treatments contradicted that which was inferred using traditional
OC determination. Calderón et al. [85] predicted OC in several crop experiments using PLSR
and obtained RMSEP of 0.67–0.80 pp; that is beyond our upper RMSEP conservative bracket
for TC. More research, preferably based on cooperation between multiple spectroscopy
laboratories, is needed to determine to what degree different prediction performance results
across studies can be attributed to the training samples at hand [29], sample preparation
and scanning process differences [13,25,29], reference laboratory effect [13,29], or predictive
model family and calibration workflow [13,25].

The fragility of MIR-DRIFTS to assess SC is further illustrated by C lability prediction
performance. The negative 3650–3600 cm−1 and positive 1050 cm−1 Janovice PLSR regres-
sion coefficient peaks (Figure 8) can be related to the protective function of clay minerals
with respect to soil organic matter [7,62]. However, with the majority of the remaining ma-
jor peaks located in the <1000 cm−1 region, the predictions are prone to noise introduced
by variation in soil mineralogy [28]. Also in the area of lability assessment, studies with
over-optimistic results can be found. Our best ilrHWC calibrations performed similarly in
terms of R2 and RPDP to the PLSR models developed by Zhang et al. [27] for predicting
raw HWC. Like Deiss et al. [31], these authors presented only their top-performing models
for each investigated scenario, and in addition to that, they did not employ an independent
test dataset, reporting only cross-validation statistics. Yang et al. [86] adopted a similar
approach for the prediction of particulate organic carbon (POC), with comparable outcomes.
Zimmermann et al. [17] attempted to predict two labile pools and reported RPDP of only
2.0 for dissolved OC. Although the correlation between predicted and measured values was
satisfactory and particulate organic matter was predicted with high accuracy, there was an
information leak from the validation dataset while training of their models. A similar error
was made by Calderón et al. [85] while tuning PLSR models for permanganate oxidizable
carbon (POXC) predictions in a study that reported a high R2 of about 0.8.

One factor contributing to prediction performance deterioration of all of the present
study’s models was probably the noise introduced to the spectra by grinding the soil sam-
ples by hand. Stumpe et al. [87] demonstrated that long grinding can reduce undesirable
MIR spectra random variability. However, uniform grinding, a condition not attainable
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with a manual operation, turned out to be even more important for OC prediction quality.
The importance of controlled grinding in a MIR spectroscopy workflow is acknowledged
also by other authors [13,16,33]. Particle size differences, a problem related to soil sample
grinding [26,87], generate undesirable baseline shifts [88]. Many workers [80,85,86], in-
cluding those reporting highly accurate predictions [16,27,32,63], routinely apply baseline
correction to their measurements. Although we tested several combinations of spectral
pre-processing workflows, this step was not included in the present study, which might
have contributed to scanning artifacts remaining in the data. However, methods such as
MSC and Savitzky–Golay derivation also address baseline variations [58], yet we were
unable to associate them with systematic prediction improvement (Figure S4). According
to Du and Zhou [24], moving average can diminish information in absorbance features, so
perhaps we should have avoided it as a routine pre-processing step to remove noise.

The attempt to predict total, rather than organic, C probably also impaired the obtained
results. In addition to OC, TC includes carbonates as a major C source, which have a
different spectral profile, potentially interfering with the OC signal [17,25,88]. In the present
study, the Praha-Ruzyně is a site with moderate carbonate content. Although average
topsoil pH does not exceed seven, carbonates are visible by eye in a deeper soil layer.
Moreover, the locality included experimental plots with compost amendments, which were
associated with atypical C patterns (Figure 6). A compost fertilization experiment disrupted
PLSR prediction quality also in the Calderón et al. [85] study. The authors reported an
improvement after removing the problematic site from the dataset, and it is possible that a
similar effect would be obtained in the present study. Perhaps, with OC being modeled
instead of TC, PLSR regression coefficient peaks would have avoided the <1000 cm−1

region, hypothesized to interfere with ilrHWC predictions (Figure 8).
Some errors might have been related to insufficient sample dilution with KBr [89], especially

for Ústí nad Orlicí spectra, which lied outside of the long-term experiments envelope primarily in
the high-absorbance zone (Figure 4). This region coincided with the 1280–1070 cm−1 wavelength
range associated with the silicate inversion feature that can interfere with carbonates signal
below a certain dilution level [88]. However, Demyan et al. [80] did not confirm this effect
and, instead, associated strong dilutions with the absence of certain absorption features. The
traditional view on the need to mix soil samples with KBr for MIR-DRIFTS has been put into
question also by Reeves III [25], and according to Tinti et al. [89] and Reeves [90], it can even
have a negative effect. Perhaps, then, it would have been preferable to use neat samples in the
present experiment.

Inferior ilrHWC fit relative to ilrTC might have been related to low HWC concentrations
in the soil samples. Measurements of such minute pools tend to be more affected by external
conditions than those of major components [17,27]. Although HWC appears in both ilr
formulas, one can argue that a ratio, as employed for ilrHWC (Equation (2)), is more sensitive
to error than a geometric mean in the ilrTC formula (Equation (1)).

4.3. Model Performance with Individual Training Data Subsets

In addition to the Praha-Ruzyně issue, the obtained poor performance of global sce-
narios can be attributed to the calibration domain mismatch between the library samples col-
lected from long-term experiments and those collected at the target sites
(Figures 5 and 6). Especially in the case of Janovice, notable are the high TC and HWC con-
tents, which explain the strong negative bias in the predictions [26]. The negative influence
of OC mismatch across datasets on its predictions was demonstrated by Seidel et al. [30]
with VisNIR and by Guerrero et al. [39] with NIR spectroscopy.

The reference spectra in the experiment comprise long time series of observations
but represent a limited number of locations. Similarly, Zhang et al. [27] obtained their
samples from a limited number of long-term experiments, and their reported results
are similar to ours. Various authors stress an importance of long-term experiments for
studying SC, especially in the context of the low rates of its quantitative changes [3,5,11].
Nevertheless, maximizing the geographical extent of the reference data should apparently
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be prioritized for predicting a factor with a high spatial variability, as it is the case for
SC and its fractions [3–5]. A number of studies that adopted this strategy [16,20,33,35,82]
demonstrate that high-quality predictive models can be developed in this way.

These issues do not apply to the local-only models, which do not involve any library
spectra and a possibility of calibration domain mismatch is largely eliminated. Superior
predictions characterizing locally calibrated PLSR models in the present study can be in
part linked to the absence of Praha-Ruzyně samples in the training dataset, analogously
to the effect observed by Calderón et al. [85] after training a model without an atypical
site found in their data. This strategy largely removed ilrTC prediction bias in our study
(Figure 9), corroborating the calibration domain mismatch problem related to the reference
library. However, the model quality was still unsatisfactory, especially for ilrHWC, perhaps
due to the limited sizes of the training data. The importance of a sufficient sample size was
demonstrated by Guerrero et al. [39] in a NIR study and by Brown [91] in a VisNIR study,
where the obtained performance approached that of calibration-spiking models only when
large numbers of training samples were available. The costs and uncertain results involved
in such a scenario make the advantage of spectroscopic estimation over standard oxidation
methods questionable. According to Soriano-Disla et al. [13], local models are particularly
suitable at small spatial scales with homogeneous sites. This condition may explain why the
predictions for Janovice were superior and responded better to sampling intensity increase
(Figure 10) relative to Ústí nad Orlicí. In particular, it might have been related to the smaller
range of C measurements from this more homogeneous target site. After accounting for
this effect, the prediction quality superiority was not apparent, anymore, as illustrated by
the RPDP and RPIQP statistics.

Calibration spiking avoids an excessive reduction of training dataset sizes, and some
of the best models in the present study could be associated with this strategy. A generally
consistent positive relationship between the sampling and spiking intensity and PLSR
model performance was obtained across the scenarios. It is similar to the OC prediction
pattern with NIR spectroscopy obtained by Guerrero et al. [39] while increasing the number
of target samples from 8 to 16 and 32. Analogously to the ilrHWC pattern in the present study,
Janik et al. [20] reported improved POC prediction quality with both calibration-spiking and
local post-hoc models relative to unsatisfactory library-only predictions. The weaker effect
of spiking on the performance of Ústí nad Orlicí models than for Janovice can, again, be
explained by the high spectral variation of the geographically scattered samples, a situation
described by Cezar et al. [36] in an experiment with ASD Fieldspec measurements.

An interest in calibration spiking is motivated by economical and environmental
reasons [36]. Accordingly, satisfactory results should be expected even with a modest
number of spiking samples [38]. The prediction improvement equivalent to maximizing the
spiking intensity, but obtained by mere introduction of additional copies of the target-site
data points, as observed for Janovice, is encouraging in this regard. It is also in line with
our hypothesis on the potential of calibration spiking to reduce the number of samples
for which laboratory reference data need to be obtained. Similarly, Guerrero et al. [39]
reported that, for some target sites and a baseline spiking intensity of 8 samples, 25-fold
weighing had a stronger positive effect on OC prediction quality than increasing the spiking
sample number to 16 or 32. Perhaps further improvement would have been obtained with
even heavier weights. However, Stork and Kowalski [40] tested weights up to 70 and
determined an optimal number of spike sample copies as 24 in one scenario and less in
the remainder, according to the Hotelling’s T2 statistics. In recent years, possibilities of
predicting SC from MIR spectra collected in field rather than laboratory conditions without
sample pretreatment have been explored [92]. Studies are needed to find out whether the
positive influence of calibration spiking replicates in this more challenging setting.
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4.4. The Effect of Leverage Sampling and Evidence against the CPLSR Internal Weighing
Superiority Hypothesis

Clairotte et al. [33] and D’acqui et al. [81] reported OC prediction improvement with
MIR-DRIFTS spectroscopy when leverage sampling was employed. In the present study, no
apparent systematic differences were obtained with respect to the prediction performance
among the random spiking and the spiking spectra selection based on conditioned Latin
hypercube. The Kennard–Stone algorithm, on the other hand, was associated with biased
ilrTC predictions in Ústí nad Orlicí scenarios. This leverage sampling scheme tends to pick
distant observations, located at the edges of a hyperspace (Figure S5). It also operates incre-
mentally, as opposed to conditioned Latin hypercube, in the case of which the spectra are
picked at once and can be more representative of a dataset [83]. Kennard–Stone application
to the heterogeneous Ústí nad Orlicí dataset might have yielded outlier spiking samples,
perhaps corresponding to soils with atypical textures [87] or mineralogy [85]. Ng et al. [83]
obtained unstable calibrations involving this scheme except for large training samples. This
apparent unreliability of the Kennard–Stone algorithm for small sample sizes relative to
the size and heterogeneity of a target area puts in question its usability in campaigns aimed
at minimizing reference data collection effort to obtain cost-effective predictions.

Internal weighing capability of the CPLSR extension of PLSR [47] was tested as an
alternative to the spiking set augmentation by data point copies. Contrary to our hypothesis,
the obtained models performed poorly, especially for Janovice. Sankey et al. [41] attempted
to predict SC from VisNIR spectral data using boosted regression trees for different levels
of local sample weights relative to the weights of the samples in the reference library. The
authors expressed skepticism with respect to their results, in which the model performance
decreased substantially for one target site, and while a positive relationship was observed
for another, the obtained improvement was modest. Still, given the limited number of stud-
ies devoted to the topic so far, it seems worthwhile to further explore effects of embedded
weighing with other data and other classes of predictive models [31,63].

5. Conclusions

Log-ratio transformation of laboratory reference measurements is recommended to
avoid non-physical predictions, separate confounding factors, and improve data distribu-
tional properties. Accounting for carbon saturation limits and treating spectral measure-
ments as compositional are potential further refinements of this approach.

Conservative estimates of PLSR model performances were lower than the values
typically reported for MIR-DRIFTS SC predictions. This discrepancy could be attributed
to the noise in the data introduced by manual sample grinding, their inadequate dilution
with KBr, presence of an atypical site with carbonate soil and compost fertilization in the
spectral library, the library’s insufficient geographical coverage, and calibration domain
mismatch relative to the validation samples. It was also in part explained by optimistic
bias encountered in the literature due to preference of cross-validation over independent
model validation, information leaks from training to testing datasets, and presenting only
top-performing validated models by certain authors. There is a need for international
cooperation to identify leverage points that could improve reliability of MIR-DRIFTS SC
assessments, standardize data collection and treatment workflows, harmonize spectral
libraries, and facilitate their use.

Target-site comparison revealed differences in sample heterogeneity related to uneven
geographical extents and, possibly, varied soil sampling protocols where farmers were
involved. Not enough representative training data were available to satisfactorily predict
soil C properties in the more geographically extensive district-scale dataset. Here, spectral
and reference laboratory data variation was similar to that of the data from more scattered
long-term experiments, corroborating a need for a dense sampling grid to monitor soil C
and concerns about potential costs involved.

Predicting soil properties at a field scale removed the issues related to the reference
library. Although some models performed very well, the quality was unstable with respect
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to the choice of validation data even with an application of leverage selection algorithms.
C lability predictions were especially fragile, presumably due to the small size of the hot-
water extractable pool. The quality of field-scale models responded positively to increasing
sampling intensity in local-only scenarios, but further additions of samples in an attempt to
obtain more representative training datasets would have been incompatible with the aim
of reducing reference laboratory analysis expenses.

Calibration spiking combined with PLSR2 modeling was associated with a steep in-
crease of model quality as additional target-site calibration samples were added, especially
in combination with heavy weighing. It, therefore, appears to be a promising cost-effective
and environmentally friendly SC monitoring solution but only under the assumption that
the available spectral library accounts to a sufficient degree for soil variability. A similar
effect could not be obtained with CPLSR models and embedded weighing enabled by this
PLSR extension. Although prediction performance was poor in the present study, the inter-
nal weighing approach may still be worth testing with other multivariate model families.
A training-sample size constraint was encountered while applying Kennard–Stone leverage
sampling to the heterogeneous district-scale dataset, and it appears that application of this
algorithm is not compatible with the aim of reducing costs of SC assessments.
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Figure S1: The spectra employed in the study after subjecting to the investigated pre-processing
schemes for all train–test partitionings. Global and calibration-spiking scenarios; Figure S2: Visual
comparison of CPLSR model performance with respect to various experimental factor combinations
for each target site and ilr coordinate; Figure S3: The influence of spiking intensity and model family
on predictive performances of models trained to library spectra. Only scenarios with basic and no
further spectra pre-processing and 25-fold spike sample weighing are included. Each line represents
an ensemble of models associated with one leverage sampling strategy. A mean across 10 test datasets
is drawn along with its 95% confidence interval; Figure S4: The influence of spiking intensity and
spectra pre-processing on predictive performances of partial least squares regression (PLSR) models
trained to library spectra picked using the conditioned Latin hypercube. Only local scenarios and
global scenarios with 25-fold spike sample weighing are included. A mean across 10 test datasets
is drawn along with its 95% confidence interval; Figure S5: Representative raw training spectra
associated with the target sites for different selection algorithms and increasing sampling intensity.
The picked spectra are in gray color.
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