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Abstract: Most existing greenhouse decision support systems only consider external environmental
factors, such as soil and atmosphere, rather than plant response. A conceptual plant-response-based
strategy for irrigation and environmental controls for tomato (Solanum lycopersicum) seedling cultiva-
tion in greenhouse operations was proposed. Because stomatal conductance (gsw) is a comprehensive
indicator of plants, soil moisture, and atmospheric conditions, this study used gsw to design a concep-
tual system by employing factors affecting gsw as the key for decision-making. Logistic regression
was performed with independent variables (i.e., temperature (Tair), vapor pressure deficit (VPD),
and leaf–air temperature difference) to predict the gsw status. When the gsw status was “low,” the
system entered into the environmental control component, which examined whether the VPD and the
photosynthetic photon flux density (PPFD) were in the normal range. If the VPD and the PPFD were
not in the normal range, the system would offer a suggestion for environmental control. Conversely,
when both parameters were in the normal range, the system would determine that irrigation should
be performed and the irrigation amount could be estimated by the evapotranspiration model. Thus,
the strategy only considered leaf temperature, Tair, VPD, and PPFD, and the overall error rate to
characterize gsw was below 13.36%.

Keywords: tomato; greenhouse; stomatal conductance; irrigation; environmental controls

1. Introduction

Climate change has increased the occurrence of extreme climatic events, such as heavy
rainfall, drought, and high temperature, thereby posing many challenges to agricultural
production. Tomato (Solanum lycopersicum) is an important fruit and vegetable grown in
Taiwan. In 2019, tomato was cultivated in an area of approximately 4300 ha in Taiwan,
generating an output worth more than USD 132 million. However, in the same year,
tomato cultivation losses due to extreme weather influences were close to USD 1 million.
Therefore, stabilizing yield and improving quality are crucial for the cultivation of fruits
and vegetables, especially tomato. Undoubtedly, facility cultivation can help achieve
this goal [1,2]. According to the Markets and Markets [3] report, the global commercial
smart greenhouse market size is expected to grow from USD 29.6 billion in 2020 to USD
50.6 billion in 2025, expanding at a compound annual growth rate of 11.3% during the
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forecast period. Thus, facility agriculture has become a crucial method of agricultural
production globally.

Because tomato requires sufficient water throughout the growth period, severe water
shortages reduce yield and increase the incidence of blossom-end rot [4]. Although a
sufficient water supply during the flowering and fruit setting stages benefits flowering,
pollination, and fruit development, ponding should be avoided. Moreover, moderate water
control in the late stage of fruit maturity helps improve fruit quality [5]. Therefore, rational
water management is vital for tomato production. In addition, both the microclimate in a
facility and the plant growth status determine the amount of irrigation required. There-
fore, deciding the time and amount of irrigation is critical for greenhouse management.
Traditionally, for automated irrigation management in facilities, most farmers have used a
timer to regularly drive irrigation or measure the soil water content and air humidity in the
facility to ensure that these parameters are in accordance with the irrigation standards, typ-
ically neglecting to consider the plant physiological state [6]. However, if an automatically
controlled irrigation system is adopted, the problems of irrigation deficiencies or excesses
often become unavoidable. Because irrigation remains constant on cloudy and rainy days
when using the current irrigation method, it leads to water wastage. In addition, soil
moisture is only measured at a few fixed points and, hence, it cannot represent the moisture
status of the entire field, because the soil structure is generally nonhomogeneous [7]. More
importantly, sometimes, soil moisture may not accurately represent the plant water sta-
tus [8]. Water uptake pattern depends upon the complex interaction among soil characters
and root distribution. Different genotypes have various drought tolerance responses [9].
Therefore, soil moisture is not the best reference for irrigation.

High temperature is another problem associated with greenhouse cultivation in trop-
ical and subtropical regions as it is unfavorable for plant growth. Efficient cooling in
greenhouses is now increasingly crucial as the global average temperature is gradually
increasing. The currently commonly used cooling methods include ventilation, evaporative
cooling, and air conditioning and some auxiliary methods, such as shading, roof water
flow or spray, and ground humidification [10,11]. Because tomato is a photophilic plant,
the weights of single fruits and the number of fruits are limited in a low-light environ-
ment [12]. However, an increase in light intensity also increases the temperature inside
the facility. High temperature inhibits photosynthesis [12], and excessive light leads to
reactive oxygen species production, causing oxidative stress and, eventually, chlorosis and
yellowing [13–15]. Therefore, proper shading is required in the presence of excessive light.
Although many methods are available to control the greenhouse environment, how to
determine the timing of each decision and whether the decision is suitable for plant growth
remain pressing questions to resolve.

Decision support systems (DSSs) can assist growers in making more precise and con-
sistent decisions [16,17]. Most current greenhouse environmental controls are intended
not only to maintain a specific temperature or vapor pressure deficit (VPD) within the
facility but also to adjust light intensity when required. Among the measures, VPD control
technology for tomato greenhouses has recently received considerable research attention
and has also exhibited good performance [18–21]. Although greenhouse controls based on
atmospheric or soil conditions can improve plant growth and increase crop yield [2], con-
ducting greenhouse control on the basis of plant response is more appropriate and accurate.
This is because plant physiological responses result from the interaction of the atmosphere,
soil, and plant [22]. Kacira et al. [23] proposed the concept of an environmental control
production system with plant responses as the feedback. They contended that a good
greenhouse control system should consider both plant response and environmental factors.

Among the physiological responses of plants to drought stress, cell growth is the most
sensitive response, followed by stomatal closure [24]. At the initial stage of a drought,
stomatal conductance (gsw) first decreases; however, the assimilation ability of mesophyll
cells is not affected. Therefore, stomatal closure is generally believed to be the main
limiting factor for plant photosynthesis under a mild or moderate drought condition [25,26].
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Although the stomata are highly drought-stress sensitive, they are not completely controlled
by soil moisture. In fact, gsw is influenced by many external factors and internal plant
factors. For a small timescale (i.e., hours and days), light and VPD are the main factors that
induce changes in gsw, but air temperature and soil moisture are also critical factors [27]. A
VPD integrates the effects of ambient temperature and relative humidity (RH) and is the
key factor driving plant transpiration. Regarding the light–gsw relationship, photosynthetic
photon flux density (PPFD) and photosynthetic active radiation (PAR) are thought to be
positively related to gsw, with an increase in PPFD or PAR increasing gsw until it reaches
a stabilization state [28]. Yet, excess light inhibits stomatal opening, leading to stomatal
closure, which is one of the factors that limit tomato photosynthesis in greenhouses [29].

Plant temperature (e.g., canopy and leaf temperatures) and the leaf–air temperature
difference can be used to indirectly assess plant gsw [30–33]. In plants under drought
stress, gsw is reduced and the heat loss through leaf transpiration is also hindered, thereby
increasing plant temperature. Therefore, plant temperature can be effectively used as an
indicator of plant water status [34–36]. The leaf temperature is often used to represent the
crop temperature in some experiments [37].

The aim of this study is to propose a conceptual plant-response-based strategy for
irrigation and environmental controls for greenhouse tomato seedling cultivation. The
strategy is based on plant response and also considers environmental factors. This study
collected physiological and environmental parameters of tomato seedlings under normal
and water-deficient statuses to construct the control strategy for a DSS. The strategy first
indirectly assessed the gsw status by using the leaf temperature and environmental data;
it also used the factors affecting gsw as the key for decision-making. In addition, the
amount of irrigation water was estimated using an evapotranspiration model. This strategy
is expected to not only meet the needs of tomato growth but also serve as a reference
for irrigation and environmental controls for automatic and intelligent tomato seedling
cultivation in greenhouses.

2. Materials and Methods
2.1. Experimental Materials and Drought Treatment

The experiment was conducted from June 2018 to March 2021. Eleven batches of the
most common tomato variety in Taiwan (Rosada) were used as plant materials. The plant
material was grown in a glasshouse at the Taiwan Agricultural Research Institute (24◦03′ N,
120◦69′ E). Natural sunlight was used as the light source, and the air temperature (Tair)
and RH inside the greenhouse were regulated by a pad-fan system to remain at 22–36 ◦C
and 75–90%, respectively. Abnormal seedlings were excluded approximately 4 weeks after
sowing for each batch, and 16 plants were selected and planted in two plastic baskets
(50 cm× 40 cm× 30 cm) with a 6D soil substrate (BVB, De Lier, The Netherlands). The
tomato seedlings had 3–4 leaves at this time. For each batch, tomato seedlings randomly
received either regular watering treatment or drought treatment. In regular watering
treatment, the seedlings were irrigated daily until the field water capacity was reached.
In drought treatment, the substrate was irrigating to reach the field water capacity at the
time of transplanting. However, no irrigation was applied after transplanting, to mimic a
drought condition.

2.2. Physiological and Environmental Data Measurements

Between 10:00 and 14:00 daily, the tomato leaf temperature (Tleaf), Tair (within-leaf
chamber), the net CO2 assimilation rate (A), the evapotranspiration rate (ET), gsw, and the
VPD were simultaneously measured using the LI-6800 portable photosynthesis system (LI-
COR Biosciences, Lincoln, NE, USA). The measurements were performed using 3–5 fully
expanded leaves from the top of each tomato plant of the two treatments. The measurement
conditions of the LI-6800 system were set at an ambient air temperature (27–32 ◦C) and air
humidity (RH = 60%), a reference CO2 concentration (400 µmol mol−1), and a stable light
intensity of 1200 µmol photons m−2s−1 from an internal LED light source (red:blue = 9:1).
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The greenhouse environmental parameters—Tair and RH—were measured automatically
every minute and averaged every 15 min using a data logger (CR200; Campbell Scientific
Inc., Logan, UT, USA). The substrate water content was determined by WaterScout SM100
(Spectrum Technologies, Aurora, IL, USA). Four digital sensors were inserted evenly into
the substrate of each plastic basket. The substrate water content was recorded every 30 min
after the regular irrigation and drought treatments were applied to tomato seedlings.

For each batch, the collection of physiological and environmental data was started
when the irrigation treatment was conducted. Once the visible symptoms of water shortage
occurred (about 2 to 3 weeks after irrigation treatment), the collecting process ceased. At
the beginning of each batch (Day 0), the substrate water content of both regular irrigation
treatment and drought treatment was about 52–57%. On Day 0, there were no significant
differences (α = 0.05) in tomato physiological parameters (ET, A, gsw, and Tleaf) between
the two treatments (Supplementary Table S1). The substrate water content of regular
irrigation treatment was about 49–57% in the experiment, while the substrate water content
of drought treatment was 7–12% on the last day of each batch. However, all the measured
tomato physiological parameters were significantly different (p < 0.001) between the two
treatments (Supplementary Table S1).

In addition, to obtain data closely representing the actual situation in the greenhouse,
the leaf chamber of the LI-6800 system was replaced with a transparent leaf chamber,
which used natural light as the light source from February to March 2021. Additionally,
the measurement time was extended by 2 h, starting 1 h earlier and ending 1 h later,
running from 09:00 to 15:00. The PPFD inside the greenhouse was measured by the LI-190R
quantum sensor (LI-COR Biosciences, Lincoln, NE, USA) attached to the sensor head of
LI-6800. In this step, the physiological data were collected only from regularly irrigated
plants. The data collection started from the transplanting until the seedlings entered the
flowering stage. The data collected by the transparent leaf chamber were used to establish
the evapotranspiration model and evaluate the performance of the strategy.

The physiological data included a total of 1142 and 524 measurements collected by an
opaque (LED light source for both treatments) and a transparent (natural light source for
regular irrigation only) leaf chamber, respectively.

2.3. Construction of the Conceptual Decision Support System

Based on plant physiological responses and environmental factors, this study pro-
posed a conceptual DSS for irrigation and environmental controls for greenhouse tomato
cultivation. The system was divided into three main components: the gsw status model, the
environmental control component, and the irrigation component. The decision-making
process of the system started from the gsw status model and used the VPD and the PPFD,
which are the main factors that affect gsw, as the key input for environmental control. When
gsw was lower than the threshold, if both VPD and PPFD were in a normal range, the system
judged that irrigation should be performed at this time point and entered into the irrigation
component. In the irrigation component, the amount of water required for irrigation was
estimated by the evapotranspiration model. The established processes of each component
were as follows:

2.3.1. gsw Status Model

Since our aim was to propose a control strategy based on plant responses, irrigation
treatments were not used as the basis for data labeling. Data were first pooled from regular
irrigation and drought treatments and then classified as “normal” or “low” based on gsw
values as explained below.

In this study, logistic regression was used to establish the gsw status model. The envi-
ronmental variables considered included VPD and Tair. The plant indicator considered the
leaf–air temperature difference (Tdiff = Tleaf − Tair). Because the original gsw measurements
collected by the LI-6800 system were continuous, finding the cutoff points was essential for
transforming the gsw value to categorical data. As A is the most direct physiological indica-
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tor of crop production, we first related gsw to A by using gsw as the independent variable
(X) and A as the dependent variable (Y) to fit a logarithmic curve (Equation (1)). After the
relationships between A and gsw were established, the mean response of A corresponding
to the maximum gsw in the data was considered the upper bound of A (Amax). Considering
the practical seedling cultivation, the values of maintained 90%, 80%, and 70% of Amax
were used as the control standards. The regression model of gsw on A was used to inversely
predict gsw values corresponding to 90%, 80%, and 70% of Amax and then to obtain the three
gsw cutoff points.

Y = β0 + β1 ln (X) + εi (1)

where β0 and β1 are the model parameters and εi is the error term.
After the gsw cutoff points were obtained, the gsw values were transformed into di-

chotomous data; when the gsw value of the tomato leaves was higher than the cutoff point,
it was defined as “normal” and coded as “0”; otherwise, it was defined as “low” and
coded as “1.” However, it must be emphasized that low gsw is not necessarily caused by
plants under the water-deficient status. Low gsw may represent that the plants are under
unsuitable PPFD or VPD conditions. The gsw status model was established using VPD,
Tair, and Tdiff as independent variables to classify the gsw status through logistic regression.
Before model building, the data were randomly divided into the training dataset (70%) and
the testing dataset (30%). The training dataset was used for model building, and the testing
dataset was used to evaluate the classification performance. Sensitivity, specificity, and
accuracy were used to evaluate the classification ability of the gsw status model.

Sensitivity = TP/(TP + FN) (2)

Specificity = TN/(TN + FP) (3)

Accuracy = (TP + TN)/(TP + TN + FP + FN) (4)

where TN is true negative (the true gsw status of the tomato was “normal,” and the model
also classified it as “normal”); FP is false positive (the true gsw status of the tomato was
“normal,” but the model classified it as “low”); FN is false negative (the true gsw status of
the tomato was “low,” but the model classified it as “normal”); and TP is true positive (the
true gsw status of the tomato was “low,” and the model also classified it as “low”).

The aforementioned analysis was performed using the statistical software R (ver-
sion 4.0.4), and the sensitivity, specificity, and accuracy of logistic regression were obtained
using the InformationValue package (version 1.2.3).

2.3.2. Environmental Control Component

When constructing the environmental control component of the conceptual system,
the appropriate ranges of VPD and PPFD had to be determined for tomato growth. The
information from the literature review was used for the ranges of the VPD (0.5–1.2 kPa) in
this study [38,39].

The light response curve is mainly used to describe the relationship between plant
photosynthesis and light intensity. In general, when light intensity increases, photosyn-
thesis also increases until a light saturation point is reached. The light saturation point of
tomatoes is about 1300–1400 µmol m−2s−1. However, when the light intensity exceeds the
light saturation point, photosynthesis no longer increases and may even start to decline. Ex-
cessive light frequently induces oxidative stress and limits the growth and photosynthetic
capacity of plants [13–15]. Therefore, in this study, the upper bound of the PPFD in the light
response curve measurement was set to 1200 µmol m−2s−1 instead of the light saturation
point. We measured the A values of 30 regularly watered plants (6 plants × 5 replications)
at different PPFD levels (1200, 900, 600, 300, 200, 150, 100, 70, 30, and 0 µmol m−2s−1) by the
LI-6800 portable photosynthesis system. Each PPFD level was provided by the internal LED
light source (red:blue = 9:1) of the LI-6800. These data were fitted with logarithmic curves
(Equation (1)) by using PPFD as the independent variable and A as the dependent variable.
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After obtaining the light response curve, the mean response of A at 1200 µmol m−2s−1

PPFD was considered the upper bound Amaxl and the curve was further used to infer PPFD
values corresponding to 90%, 80%, and 70% of Amax1, thereby obtaining the lower bound of
the PPFD (PPFDlowerlimit) within the PPFD normal range under the three control standards.
The upper bound of the PPFD (PPFDupperlimit) within the PPFD normal range for all three
control standards was set to 1200 µmol m−2s−1 rather than the light saturation point.

2.3.3. Irrigation Component

In the irrigation component, the evapotranspiration model was used to estimate the
required amount of irrigation water. The empirical evapotranspiration model is generally
fitted with VPD, light, and wind speed [40–42]. Given that the wind speed in a greenhouse
is typically slow, we constructed the evapotranspiration model only with VPD and PPFD.
Before model building, the data of regularly watered plants obtained by the transparent
leaf chamber were randomly divided into the training dataset (70%) and the testing dataset
(30%). The training dataset was used to fit the linear regression model (Equation (5)), with
VPD and PPFD as independent variables and with E as a dependent variable, as follows:

E = β0 + β1 VPD + β2 PPFD + εi (5)

where β0 to β2 are model parameters and εi is the error term.
The model performance was evaluated using the adjusted coefficient of determination

(R2
adj), and the fitted line between the fitted and observed values of the testing dataset

was compared with a straight line having a slope of 1. Additionally, the mean absolute
error (MAE) and the mean absolute percentage error (MAPE) were used to evaluate
predictive capability.

MAE =
∑n

i=1|yi − ŷi|
n

(6)

MAPE =
∑n

i=1

∣∣∣ yi−ŷi
yi

∣∣∣
n

× 100% (7)

where n is the number of observations, yi is the ith observation value, and ŷi is the fitted
value of the ith observation.

2.4. Performance Evaluation of the Conceptual Decision Support System

To evaluate the reliability and stability of the conceptual DSS established for green-
houses, the data of regularly watered plants obtained by the transparent leaf chamber were
used as the test data (n = 524). The reason for only using regularly watered plants’ data
was that gsw was affected by the substrate moisture and atmospheric conditions (PPFD
and VPD). Had we used the data from drought treatment plants to evaluate the system,
we could not have determined whether the low gsw was due to the low substrate moisture
content or the unsuitable atmospheric conditions. This might have made it difficult to judge
the correctness of the decision. Therefore, we only employed regularly watered plants
data for the evaluation of the whole system. Before evaluation, the data were classified as
“normal” and “low” according to the cutoff points of gsw under the three control standards.

The evaluation considered the performance of the gsw status model and of the whole
system. First, the test data were classified using the gsw status model established previously
and the sensitivity, specificity, and accuracy of the classification results were calculated.
Furthermore, due to the obvious class imbalance of the test data (Supplementary Table S2),
we used Cohen’s kappa (κ) [43] as another evaluation criterion for the gsw status model.
The κ value of the model should be >0.60 for it to be regarded as a credible result [44].

κ =
po − pc

1− pc
(8)
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where po is the actual proportion of correct classification of the model and pc is the pro-
portion of correct classification achieved purely by chance. The formula of pc is given in
Equation (9):

pc =
(cm1 × rm1) + (cm2 × rm2)

n2 (9)

where cm1 is the total number in the first row of the confusion matrix [45], rm1 is the total
number in the first column of the confusion matrix, cm2 is the total number in the second
row of the confusion matrix, rm2 is the total number in the second column of the confusion
matrix, and n is the total number of observations.

For the whole system evaluation, both the false positive (the true gsw status of the
tomato was “normal,” but the model classified it as “low”) and the false negative (the true
gsw status of the tomato was “low,” but the model classified it as “normal”) results of the
gsw status model were wrong decisions (Figure 1). Moreover, the test data were collected
from regularly watered plants. When the system indicated the need for irrigation on the
basis of the test data, this was also a wrong decision (Figure 1). These cases demonstrate
that our proposed system probably does not contain all factors affecting the gsw.
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Figure 1. Tree diagram of the whole system evaluation. TN is true negative (the true gsw status of the
tomato was “normal,” and the model also classified it as “normal”); FP is false positive (the true gsw

status of the tomato was “normal,” but the model classified it as “low”); FN is false negative (the true
gsw status of the tomato was “low,” but the model classified it as “normal”); and TP is true positive
(the true gsw status of the tomato was “low,” and the model also classified it as “low”). In the final
decision box, a decision with a green background is the correct decision and a decision with a red
background is the wrong decision.

The percentage of wrong decisions (Equation (10)) was used as a criterion to determine
the performance of the whole system.

Wrong decision % =
FN + FP + I

n
× 100% (10)

where FP is the number of false positives, FN is the number of false negatives, I is the
number of true positives (the true gsw status of the tomato was “low,” and the model also
classified it as “low”) that entered into the irrigation component, and n is the number of
test data.
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3. Results
3.1. Establishment of the Conceptual Decision Support System

The four key processes in establishing the three components of the conceptual DSS
were to (1) determine the cutoff points of gsw to transform gsw to the binary status (“normal”
and “low”), (2) establish gsw status models with logistic regression, (3) determine the
lower limits of the PPFD in the environment control component, and (4) establish an
evapotranspiration model for the irrigation component to estimate the amount of irrigation
water required. The results of these four processes are described as follows.

3.1.1. Determination of gsw Cutoff Points

The physiological data of Rosada tomatoes were used to fit a logarithmic curve with
gsw and A as the independent and dependent variables, respectively. The results are shown
in Figure 2, and the fitted logarithmic curve is presented as Equation (11), with r = 0.8124.

A = 20.79 + 3.88 ln (gsw) (11)
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When the logarithmic curves of gsw and A were obtained, the maximum gsw value of
1.00 mol H2O m−2s−1 was incorporated into Equation (11) to achieve the corresponding
value of A, which was 20.79 µmol m−2s−1. Taking this value as the Amax of Rosada, we
defined the maintenance of 90%, 80%, and 70% of Amax as the three control standards
(I–III) of the system. The corresponding cutoff points of gsw were calculated by solving
Equation (11) for gsw, given the different percentages of Amax. The cutoff points for the
three control standards were 0.59, 0.34, and 0.20 mol H2O m−2s−1.

3.1.2. Establishment of gsw Status Models

In this study, logistic regression was used to establish gsw status models by using VPD,
Tair, and Tdiff as independent variables. The Tair of the training data was 22.6–34.2 ◦C, the
Tleaf was 21.5–36.0 ◦C, the Tdiff was −2.9 ◦C to 2.1 ◦C, and the VPD was 0.7–3.5 kPa (Table 1).
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Table 1. Descriptive statistic used to establish the gsw status model.

Year Tair (◦C) Tleaf (◦C) Tdiff (◦C) VPD (kPa)

2018 Minimum 27.1 26.8 −0.8 1.5
Mean 31.4 31.7 0.3 2.2

Maximum 34.2 36.0 1.9 3.1
2019 Minimum 22.6 23.0 −1.0 1.3

Mean 30.2 30.7 0.5 2.1
Maximum 34.8 35.8 1.8 3.5

2020 Minimum 23.6 21.5 −2.9 0.7
Mean 28.0 27.4 −0.6 1.6

Maximum 31.9 32.2 2.1 2.9
Tair: air temperature; Tleaf: leaf temperature; Tdiff: leaf–air temperature difference; VPD: vapor pressure deficit.

The gsw status models established by logistic regression for the three control standards
are expressed by Equations (12–14). The sensitivity of the models was 0.91–1.00, the
specificity was 0.66–0.85, and the accuracy was 88.01–97.00% (Table 2). In Table 2, the
threshold probability is the probability threshold of logistic regression for classifying new
observations. If the probability is above the threshold, the model classifies the observation
with gsw as a “low” condition; otherwise, the model classifies the observation with gsw as a
“normal” condition.

Control standard I : logit (p) = 16.29 + 4.38 VPD− 0.63 Tair + 3.94 Tdiff (12)

Control standard II : logit (p) = 4.86 + 3.90 VPD− 0.34 Tair + 2.79 Tdiff (13)

Control standard III : logit (p) = −2.72 + 4.49 VPD− 0.22 Tair + 3.26 Tdiff (14)

Table 2. Probability thresholds and model performances of the gsw status logistic models under the
three control standards.

Control
Standard

Threshold
Probability Sensitivity Specificity Accuracy

I 0.36 1.00 0.66 97.00%
II 0.40 0.98 0.71 90.74%
III 0.34 0.91 0.85 88.01%

3.1.3. Determination of Lower Limits of PPFD

The average values of A measured at 1200, 900, 600, 300, 200, 150, 100, 70, 30, and
0 µmol m−2s−1 PPFD for the regularly watered plants were 21.45, 21.01, 19.54, 13.43, 9.46,
7.14, 4.47, 2.77, 0.35, and −1.72 µmol m−2s−1, respectively (Supplementary Table S3). The
fitted logarithmic light response curve of A and PPFD are expressed as Equation (15), with
r = 0.9487, and the scatter plot is shown as Figure 3. After obtaining the light response
curve of Rosada tomatoes, we considered A corresponding to 1200 µmol m−2s−1 PPFD to
be the upper bound Amaxl, and then PPFD values corresponding to 90%, 80%, and 70% of
Amax1 were obtained as the lower limits of PPFD by solving Equation (15) for PPFD, given
the different percentages of Amax1. The PPFDlowerlimits values of the three control standards
were 855.63, 610.00, and 434.88 µmol m−2s−1 (Table 3).

A= −24.24 + 6.54 ln (PPFD) (15)
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Table 3. Lower limits of PPFD corresponding to the three control standards.

Control Standard PPFDlowerlimit (µmol m−2s−1)

I 855.63
II 610.00
III 434.88

3.1.4. Establishment of the Evapotranspiration Model

In this study, ET, VPD, and PPFD data collected by the transparent leaf chamber were
used to establish a tomato evapotranspiration model with VPD and PPFD as independent
variables. The evapotranspiration model of Rosada tomatoes is represented in Equation (16),
with R2

adj = 0.9775, MAE = 0.0033 mL m−2s−1, and MAPE = 2.95%. In addition, the fitted
regression line between the fitted values and values of the actual ET of the testing dataset
almost overlapped with the straight line having a slope of 1 (Figure 4), indicating that the
fitted values were close to the observed values. When the ET can be accurately estimated,
the amount of irrigation water recommended by the conceptual DSS will be a product of
the ET and the time interval since the last irrigation.

ET = 2.74× 10−2 + 5.69× 10−2 VPD− 6.36× 10−7 PPFD (16)

where ET is the evapotranspiration rate in mL m−2s−1, VPD is given in kPa, and PPFD is
given in µmol m−2s−1.
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3.2. Description and Evaluation of the Plant-Response-Based Control Strategy

With the aforementioned results, the process of the plant-response-based control
strategy established is as Figure 5. The strategy for the conceptual DSS started from the gsw
status model. If the model classifies the tomato gsw status as “normal,” no treatment is to be
applied; otherwise, the system enters into the environmental control component, which first
determines whether the VPD is within the normal range (0.5–1.2 kPa) for tomato growth.
If the VPD is too high, spray cooling is to be recommended; however, if the VPD is too
low, ventilation and dehumidification are recommended. If the VPD is within the normal
range, the environmental control component will check whether light is in the normal
range. Shading is recommended when light is higher than 1200 µmol m−2s−1; however,
a light supplement is recommended when light is lower than PPFDlowerlimit. If both VPD
and light are in the normal range, the system judges that irrigation should be conducted at
this time point and enters into the irrigation component. In the irrigation component, the
amount of irrigation water required is estimated by the evapotranspiration model.

The performance of the strategy was based on the consideration of the classification
ability of the gsw status model, and the percentage of wrong decisions made by the whole
system was evaluated. A total of 524 test observations were used in this study. The Tair of the
test data was 22.7–34.8 ◦C, the Tleaf was 21.8–35.6 ◦C, the Tdiff was−2.6–1.7 ◦C, the VPD was
0.7–3.4 kPa, and the PPFD was 58.3–1370.0 µmol m−2s−1 (Table 4). The data distribution
under the three control standards was as follows: 48 normal and 476 low observations
in control standard I, 149 normal and 375 low observations in control standard II, and
302 normal and 222 low observations in control standard III (Supplementary Table S2).

The sensitivity of the gsw status model was 0.93–0.98, the specificity was 0.54–0.82, and
the accuracy was 86.64–94.27% under the three control standards (Table 5). In addition, the
κ values of the gsw status models were all >0.60 (Table 5), indicating that the classification
ability of the models was credible and stable rather than a product of random guessing.
The percentage of wrong decisions relative to gsw characterization was 9.92–13.36% for the
whole system (Table 5).



Agriculture 2022, 12, 633 12 of 17

Agriculture 2022, 12, x FOR PEER REVIEW 12 of 18 
 

 

system was evaluated. A total of 524 test observations were used in this study. The Tair of 
the test data was 22.7–34.8 °C, the Tleaf was 21.8–35.6 °C, the Tdiff was −2.6–1.7 °C, the VPD 
was 0.7–3.4 kPa, and the PPFD was 58.3–1370.0 µmol m−2s−1 (Table 4). The data distribution 
under the three control standards was as follows: 48 normal and 476 low observations in 
control standard I, 149 normal and 375 low observations in control standard II, and 302 
normal and 222 low observations in control standard III (Supplementary Table S2). 

Table 4. Descriptive statistics used to verify the gsw status model and the whole system. Data were 
collected by the transparent leaf chamber from regularly watered plants. 

 Tair (°C) Tleaf (°C) Tdiff (°C) VPD (kPa) PPFD (µmol m−2s−1) 
Minimum 22.7 21.8 −2.6 0.7 58.3 

Mean 30.3 30.4 0.1 1.9 1068.7 
Maximum 34.8 35.6 1.7 3.4 1370.0 

Tair: air temperature; Tleaf: leaf temperature; Tdiff: leaf–air temperature difference; VPD: vapor pressure 
deficit. 

The sensitivity of the gsw status model was 0.93–0.98, the specificity was 0.54–0.82, 
and the accuracy was 86.64–94.27% under the three control standards (Table 5). In addi-
tion, the κ values of the gsw status models were all >0.60 (Table 5), indicating that the clas-
sification ability of the models was credible and stable rather than a product of random 
guessing. The percentage of wrong decisions relative to gsw characterization was 9.92–
13.36% for the whole system (Table 5). 

 

Figure 5. The basic structure of the plant-response-based strategy for irrigation and environmental
controls for greenhouse tomato seedling cultivation.

Table 4. Descriptive statistics used to verify the gsw status model and the whole system. Data were
collected by the transparent leaf chamber from regularly watered plants.

Tair (◦C) Tleaf (◦C) Tdiff (◦C) VPD (kPa) PPFD (µmol
m−2s−1)

Minimum 22.7 21.8 −2.6 0.7 58.3
Mean 30.3 30.4 0.1 1.9 1068.7

Maximum 34.8 35.6 1.7 3.4 1370.0
Tair: air temperature; Tleaf: leaf temperature; Tdiff: leaf–air temperature difference; VPD: vapor pressure deficit.

Table 5. Performance of gsw status models and the percentage of wrong decisions of the strategy
under the three control standards.

Control
Standard

gsw Model Performance Wrong
Decision %Sensitivity Specificity Accuracy κ

I 0.98 0.54 94.27% 0.60 9.92%
II 0.98 0.70 90.27% 0.74 10.11%
III 0.93 0.82 86.64% 0.73 13.36%
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4. Discussion

To the best of our knowledge, few DSSs include both environmental and irrigation
controls for greenhouse tomato cultivation in the subtropical region. Gupta et al. [17]
developed a DSS for greenhouse tomato seedling production by incorporating growth
models to achieve the desired dry weight of seedlings. The system made recommendations
about daily average temperature, the need for supplementary light, and the need for shade
but not about irrigation. The VegSyst simulation model was developed to assist with nitro-
gen and irrigation management of crops grown in Mediterranean-type greenhouses [46].
Based on the VegSyst simulation model, Gallardo et al. [47] proposed a prototype DSS for
calculating the nitrogen and water requirements of tomato. The system can be potentially
useful as a management tool for greenhouse-grown vegetable crops; however, it does
not involve environmental control and is currently only available in the Mediterranean
region. Linker et al. [48] conducted a simulation study with cotton, potato, and tomato to
optimize deficit irrigation schedules for field cultivation but not greenhouse cultivation. In
addition, environmental control in greenhouses typically involves maintaining a specific
air temperature or adjusting the available light level, with few existing control strategies
based on stomatal opening measurements or modeling [49]. Tu et al. [50] used Tdiff, soil
water content and spectroscopy to detect the drought stress of tomato, but the study did
not establish a DSS.

A conceptual plant-response-based strategy for a DSS for irrigation and environmental
controls for greenhouse tomato seedling cultivation was established in this study. The
system has three control standards with different levels available for control. Although the
strategy only uses four variables, namely Tleaf, Tair, VPD, and PPFD, its overall error rate to
characterize gsw was <13.36% (Table 5). This error rate indicated that our proposed system
probably does not include all factors that may affect the gsw. Park et al. [51] have mentioned
that indoor temperature and humidity do not exactly represent the temperature and
humidity of leaves. Therefore, they recommend detecting the temperature and humidity
of leaves separately. The VPD can integrate the effects of temperature and humidity
simultaneously. In a greenhouse, the light intensity is usually monitored to be maintained at
a fixed level [2]. When the light intensity is low, supplementary lighting should be supplied.
Conversely, appropriate shading should be adopted when the light intensity is high. It
must be noted that although a greenhouse could provide a relatively uniform environment
compared to the field, the climate within the greenhouse is still heterogeneous and can be
treated as a microclimate [52]. Therefore, the important environmental parameters used in
this study, i.e., Tair, VPD, and PPFD, were measured by the LI-6800 portable photosynthesis
system and its accessory. In other words, the microclimate around the tomato leaves was
measured, in place of the traditional sensors used for macroclimate measurements, in this
greenhouse study.

As is known, classification models tend to be highly biased for class imbalance data.
The most common situation is that the recognition ability of a model for the minor class
(category with few data) is considerably lower than that for the major class (category
with more data) [53,54]. In such cases, considering only the overall accuracy would be
problematic [55]. With control standard I, the difference between the numbers of normal and
low observations was nearly 10 times (Supplementary Table S2). Although the sensitivity of
models in this situation was 0.98 and the accuracy was also as high as 94.27%, the specificity
was only 0.54 and κ was only 0.60 (Table 5). Galar et al. [56] reported that using ensemble
methods for class imbalance data can improve the model performance. Methods such as
resampling, cost-sensitive learning, and training set partition from the realms of statistics
and data science are also available for improving model performance [54,55,57,58]. In the
future, we can attempt to improve the performance of the gsw status model of this study by
using those methods.

In this study, an evapotranspiration model for the irrigation component was estab-
lished in the strategy by using an empirical model. The advantage of an empirical model
is that it can fit a relatively simple form of data, but further extending the model to an
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environment with conditions different from the original site is difficult. However, the
mechanistic model of the evapotranspiration is based on theories such as those concern-
ing energy balance and water vapor diffusion. The Penman–Monteith (PM) equation is
the most widely used mechanistic model for estimating the evapotranspiration. The PM
equation has an excellent theoretical basis and computational accuracy; it considers the
effects of crop physiological characteristics on evapotranspiration and involves changes
in parameters of gas dynamics [59–61]. Boulard and Wang [62] derived a model for esti-
mating evapotranspiration in greenhouse crops based on the PM equation. However, their
parameters for the mechanistic model included not only basic meteorological data but also
information on the leaf area index and the canopy height. These additional parameters
must be measured using a sensor; thus, the cost of such a system is higher in practical
application. Although the evapotranspiration can be estimated using growth models,
additional studies supporting the accuracy of the value are warranted before applying
it practically.

When we scrutinize the evapotranspiration model established in this study (Equation (16)),
it can be seen that the ET estimated by the model is directly affected by the PPFD and
the VPD. It is assumed that under different weather conditions (i.e., sunny, cloudy, or
rainy), the system will adjust the amount of irrigation water. In addition, crop evapo-
transpiration varies with irrigation conditions [63–65]. Many studies have shown that
reducing the amount of irrigation water would limit the evapotranspiration of greenhouse
tomatoes [63,66,67]. Chen et al. [66] pointed out that tomato evapotranspiration under full
irrigation at each growth stage was always higher than that under deficit irrigation in solar
greenhouse. The evapotranspiration model established in this study only considers the
conditions of full irrigation. Therefore, this model overestimates the evapotranspiration
of water-deficient plants. It means that this strategy always provides enough water for
tomato growth. Modeling the evapotranspiration under full and deficit irrigations needs to
be considered in the future.

An intelligent system for crop production includes parts such as a cloud-based DSS, a
sensing system, a multipurpose vehicle system, an agricultural robot system, and a drip
irrigation system. A conceptual plant-response-based strategy has been proposed in this
study. The strategy can be incorporated into a DSS and improved in many directions that
require further validation. In the future, the system can be combined with technologies
such as sensors and artificial intelligence of things to achieve automatic and intelligent
greenhouse production.

5. Conclusions

In this study, various physiological parameters of tomato seedlings and environmental
parameters were collected and a conceptual plant-response-based strategy and a future
DSS for irrigation and environmental controls were presented. This system first uses Tleaf
and environmental data to indirectly assess the gsw status. The system proposed herein
includes three control standards with different crop performance levels. This system can
provide decisions for the three main factors affecting gsw (i.e., VPD, PPFD, and substrate
moisture) in greenhouse tomato seedling cultivation. In practice, this system only needs a
few simple variables, namely Tleaf, Tair, VPD, and PPFD, to characterize gsw with an overall
error rate < 13.36%. In the future, this system can be extended to nutrient supply and can
be combined with technologies such as sensors and artificial intelligence of things. This
system is expected to serve as a reference for irrigation and environmental controls for
automatic and intelligent tomato cultivation in greenhouses.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/agriculture12050633/s1: Table S1: Leaf temperature (Tleaf, ◦C), net
CO2 assimilation rate (A, µmol m−2s−1), evapotranspiration rate (ET, mL m−2s−1), and stomatal
conductance (gsw, mol m−2s−1) of regular irrigation and drought treatment plants; Table S2: The gsw
cutoff and corresponding ordinary and low observations for the three control standards of test data;
Table S3: The net CO2 assimilation rate of Rosada tomatoes under different PPFD.

https://www.mdpi.com/article/10.3390/agriculture12050633/s1
https://www.mdpi.com/article/10.3390/agriculture12050633/s1
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