
����������
�������

Citation: Hsiou, D.-C.; Huang, F.;

Tey, F.J.; Wu, T.-Y.; Lee, Y.-C. An

Automated Crop Growth Detection

Method Using Satellite Imagery

Data. Agriculture 2022, 12, 504.

https://doi.org/10.3390/

agriculture12040504

Academic Editor: Belen Franch

Received: 17 February 2022

Accepted: 28 March 2022

Published: 2 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

agriculture

Article

An Automated Crop Growth Detection Method Using Satellite
Imagery Data
Dong-Chong Hsiou 1, Fay Huang 2 , Fu Jie Tey 3, Tin-Yu Wu 4,* and Yi-Chuan Lee 5

1 Information Management Center, Council of Agriculture Executive Yuan, Taipei City 10014, Taiwan;
chong@mail.coa.gov.tw

2 Department of Computer Science and Information Engineering, National Ilan University,
Yilan 260007, Taiwan; fay@niu.edu.tw

3 Department of Electrical Engineering, National Taiwan University of Science and Technology,
Taipei City 106335, Taiwan; d10907001@mail.ntust.edu.tw

4 Department of Management Information Systems, National Pingtung University of Science and Technology,
Pingdong 912301, Taiwan

5 Department of Biotechnology and Animal Science, National Ilan University, Yilan 260007, Taiwan;
yclee@niu.edu.tw

* Correspondence: tyw@mail.npust.edu.tw

Abstract: This study develops an automated crop growth detection APP, with the functionality to
access the cadastral data for the target field, that was to be used for a satellite-imagery-based field
survey. A total of 735 ground-truth records of the cabbage cultivation areas in Yunlin were collected
via the implemented APP in order to train a deep learning model to make accurate predictions of the
growth stages of the cabbage from 0 to 70 days. A regression analysis was performed by the gradient
boosting decision tree (GBDT) technique. The model was trained on multitemporal multispectral
satellite images, which were retrieved from the ground-truth data. The experimental results show
that the mean average error of the predictions is 8.17 days, and that 75% of the predictions have
errors less than 11 days. Moreover, the GBDT algorithm was also adopted for the classification
analysis. After planting, the cabbage growth stages can be divided into the cupping, early heading,
and mature stages. For each stage, the prediction capture rate is 0.73, 0.51, and 0.74, respectively. If
the days of growth of the cabbages are partitioned into two groups, the prediction capture rate for
0–40 days is 0.83, and that for 40–70 days is 0.76. Therefore, by applying appropriate data mining
techniques, together with multitemporal multispectral satellite images, the proposed method can
predict the growth stages of the cabbage automatically, which can assist the governmental agriculture
department to make cabbage yield predictions when creating precautionary measures to deal with
the imbalance between production and sales when needed.

Keywords: multispectral satellite imagery; multitemporal satellite imagery; artificial intelligence;
gradient boosting decision tree (GBDT); heading cabbage

1. Introduction

Taiwan is mainly covered by mountainous terrains and forests, and it ranks among
the 20 most densely populated places in the world. Hence, there are very limited lands
available for agricultural farming. Other factors, such as the aging agricultural population
and climate change, make the cost of agricultural operations much higher than in other
countries. Moreover, because of the frequent occurrence of typhoons and the impact
of extreme weather in recent years, the income of farmers is not as stable as in other
industries. In order to ensure benefits for farmers, especially in terms of income security,
one of the important primary tasks of the government’s agricultural department is to
accurately forecast the crop yield production in order to stabilize the production and sales
of agriculture products.
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Since 2008, the Agricultural Research Institute in Taiwan has started to use aerial
photos and hyperspectral satellite images for crop cultivation area estimation [1–3]. Some
of its achievements have been recognized by the government’s agriculture office, under
the Council of Agriculture, Taiwan, and the methods were adopted to collect reference
data. However, these agricultural surveys were conducted manually or semiautomatically.
This study develops an automated crop growth detection method that integrates artificial
intelligence (AI) with the geographic information platform that was built by the Council of
Agriculture in order to provide a faster, more accurate, and labor-saving prediction of the
crop yield production.

Cabbage is an important vegetable in Taiwan, and it is usually grown and harvested
during the intercropping period in the fall and winter. Because the growth period of
cabbage is short, and growing cabbage is fairly easy, cabbage is always selected as one of
the intercrops. Nevertheless, the imbalance between cabbage production and sales remains
a perennial problem. When overproduction occurs, the market price drops dramatically,
and, on the other hand, if crops are devastated by typhoons, the cabbage prices rise
substantially. Therefore, being able to accurately estimate the area of the cabbage field and
predict the cabbage yield are important tasks for the government agriculture department
in order to stabilize cabbage prices. The total area of cabbage fields can be estimated by
the monthly number of seedlings. Currently, the Agriculture and Food Agency in Taiwan
collects the numbers of seedlings every ten days, with a numerical error less than 10%.
Since cabbages will be ready to harvest at around 70 days after planting, the monthly
cabbage yield can also be obtained. However, the price-stabilization policy might not be
efficiently implemented since the agricultural survey by the Agriculture and Food Agency
does not include the cabbage cultivation locations. The Taiwan Agricultural Research
Institute, on the other hand, uses satellite photos for agricultural interpretations. Basically,
after 40 days of growth, the cultivation locations of cabbages can be inferred from the
satellite photos and, on the basis of the calculated harvest areas, the cabbage yield can
be predicted. Although the method that has been adopted by the Taiwan Agricultural
Research Institute is able to capture the geographic locations, it can only be performed
during the early heading stage (i.e., the mid-to-late growth stages). As a result, the cost of
price stabilization has increased significantly.

In this study, we used the abovementioned ground-truth data of the collected cabbages,
multitemporal multispectral satellite image information with deep learning, and GBDT for
the loopback analysis, in order to train a model that can predict the full cycle of the cabbage
growth days. If properly implemented, this model can help agricultural units to estimate
the harvest areas of cabbage in the early stage, and to deal with the problem of imbalance
in production and sales.

This paper consists of six sections. Section 1 introduces the motivation and the problem
statement. Section 2 presents the background and a review of the related literature and
studies, including the production and sales challenges of cabbages, studies based on
multitemporal satellite images, and research on spectral satellite image analysis for feature
recognition. Section 3 describes how to collect ground-truth data, and how to obtain the
corresponding satellite spectral data. Moreover, the gradient boosting decision tree (GBDT)
algorithm for data mining is stated. Section 4 reports the experiment results, including the
assembly of the ground-truth data and the satellite imagery data, the selection of the image
features, the GBDT validation results, and the programming language and software that
are adopted in this paper. Sections 4 and 5 provide the results and discussions, and the
conclusions, respectively.

2. Materials and Methods

This study aims to create an AI-based model that can interpret satellite images and
that can predict the growth stages, or the days of growth, of cabbage. First, ground-truth
data, with accurate records of the areas and the values of the land and information on the
landholders, must be gathered. The traditional process of ground-truth data collection
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involves the information and photographs that are collected on location, and the validation
of the cadastral data. In order to make it easier to conduct surveys, this study develops
an APP that can obtain the cadastral data at the time of the image acquisition. Next,
agricultural professionals can interpret the growth stages of the crops according to these
ground-truth data. After the interpretations of the agricultural professionals and the
cadastral data labelling, these ground-truth data can be used as the learning goals of the
data mining techniques on the satellite images in this study.

On the basis of the cadastral data of the grouth-truth data, the satellite images on the
day of the image acquistion, and the growth stages that were interpreted by professionals,
as Figure 1 shows, the APP accessed the satellite images of the full growth stages before
and after the photos were taken as the raw data for interpretation and anticipation.
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Figure 1. Multitemporal satellite image analysis.

Data mining is a technology that is used for full data analysis, and it mainly involves
the process of finding useful information in big data, the results of which are usually used
to make various decisions. The cleaned data will be divided into training data and test data.
Training data is used to train a model that can identify or make this decision, and the model
defines its parameters, and it is then continuously trained to find the best parameters. Test
data is used to validate the final trained model for final validation in order to ensure that
the model is not recognized by only the training data. The overall process is shown in
Figure 2.
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2.1. Ground-Truth Data Collection

The development of the agricultural survey APP allows users to easily photograph
ground objects without additional equipment or special photography techniques. The
key point for ground-truth data collection is to take photos that can accurately reveal the
location of an object (i.e., the distance between the smartphone camera and the target object)
(see Figure 3.).
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Figure 3. The crucial technique for the agricultural survey APP is to measure the distance between
the camera and the object.

Although smartphone cameras have built-in GPS systems to find the coordinates of
the phone, the purpose of agricultural surveys is to find the cadastral data of the crop
cultivation area. Therefore, the proposed agricultural survey APP adds a reference point on
the camera screen for users to set on the target object. Since GPS results may differ between
the smartphones of different brands, some brands of cameras are made of non-single lenses,
and the target distance can be calculated by using the function of the camera. However, if
the phone has only a single lens, it is impossible to calculate the target distance directly.
Therefore, in order to avoid brand differences, some adjustments were made, and the
proposed APP has a function to detect variations in the GPS. As shown in Figure 4, it is
only when variations in the GPS are small that the user can take photos successfully.
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As depicted in Figure 5, this study assumes that the coordinates of the CCD center are
(0,0,0); that the coordinates of the target object (P) are (X,Y,Z); that the coordinates of the
object in the image plane is (x,y); and that the focal length is f (Equation (1)):

x− 0
X− 0

=
y− 0
Y− 0

=
f − 0
Z− 0

(1)
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Moreover, the study assumes that the coordinates of the object (P) in the local co-
ordinate system are (XP, YP, ZP); that the coordinates of the CCD center are (X0, Y0, Z0);
and the matrix is rotated in order to obtain the coordinates of the object (P)
(Equations (2) and (3)): (XP − X0)

(YP −Y0)
(ZP − Z0)

 =

 R11 R12 R13
R21 R22 R23
R31 R32 R33

 X− 0
Y− 0
Z− 0

 (2)

X− 0 = R11(XP − X0) + R21(YP −Y0) + R31(ZP − Z0)
Y− 0 = R12(XP − X0) + R22(YP −Y0) + R32(ZP − Z0)
Z− 0 = R13(XP − X0) + R23(YP −Y0) + R33(ZP − Z0)

(3)

The abovementioned equations can lead to the following two collinearity equations
(Equation (4)):

x− 0 = f R11(XP−X0)+R21(YP−Y0)+R31(ZP−Z0)
R13(XP−X0)+R23(YP−Y0)+R33(ZP−Z0)

y− 0 = f R12(XP−X0)+R22(YP−Y0)+R32(ZP−Z0)
R13(XP−X0)+R23(YP−Y0)+R33(ZP−Z0)

(4)

With the coordinates of the smartphone at the time of the image acquisition and the
angle of elevation, the proposed APP can find the coordinates of the CCD center. Next,
the camera with a 55AE lens must be set at a height of 1.5 m in order to calculate the
coordinates of the object (XP, YP, ZP).

2.2. Satellite Image Processing

According to the cadastral data of the grouth-truth data (the date of the image ac-
quistion and the growth stages that were interpreted by the agricultural professionals)
the proposed APP retrieves the needed satellite images of the full growth stages. This
study uses the multispectral SkySat satellite imagery that is owned by the U.S. company,
Planet, which records the red, green, blue, and near-infrared (NIR) light that is reflected off
the ground.
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The satellite images were postprocessed with Haralick Texture [4,5], which was in-
troduced by Haralick in 1973. Haralick Texture can express the quantitative value of the
surface material of an object, and, when it is necessary to compare the touch, texture, or
pattern of different materials, this method can express the difference value in their features.
Thus, it was used to extract the features of the satellite image as one of the parameters for
the training. The SEaTH algorithm [6] was also used to find the most suitable threshold
value for each band of the satellite spectrum as a feature to recognize cabbage.

The processed data were also classified into growers by using by differenced image
classification [7,8] (shown on Figure 6) and the photographic images in order to ensure that
the satellite images could effectively distinguish objects that were not otherwise apparent
in the images of the single growth days. For example, on the basis of the normalized
difference vegetation index (NDVI) and the spectral reflection curves of the cabbage on
different growth days, several satellite images of different growth days can be selected in
the same area, and the image of the growth time of the cabbage can be used as the reference
point to calculate the growth days of the cabbage in the satellite images of the same area.
The difference values of the different growth days for the influence characteristics of the
same area can be used to highlight the differences in the different growth periods of
the cabbage.
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2.3. Data Mining Method: Gradient Boosting Decision Tree (GBDT)

Decision trees (DTs) are used as a basic machine learning method for classification
and regression [9]. DTs with visual explainability speed up the processing time, but
overfitting can easily occur. Although pruning helps to prevent overfitting, its efficacy is
not significant. Boosting is a method that is used in classification to equally weight all of
the training examples, such as by increasing the weight of incorrectly classified examples,
and by decreasing the weight of correctly classified examples. The boosting method trains
multiple classifiers in linear combinations so as to improve their performance.

The gradient boosting algorithm is an ensemble machine learning method that com-
bines many different algorithms in the framework, and every model is created at the
gradient descent direction of the loss function for the model performance evaluation [10].
Generally, the smaller values of the loss function represent the better performance of the
model. Minimizing the loss function simultaneously boosts the performance of the model.
Therefore, the optimal method is to decrease the gradient of the loss function so as to
improve the model performance.
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2.3.1. Tree Ensemble Methods

Tree ensemble methods, including GBM, GBDT, and random forests, are commonly
used, and particularly for classification and regression problems. Tree ensemble methods
comprise several features:

1. Tree ensemble methods do not reduce or change the input variables. It is not necessary
to standardize the input variables;

2. Tree ensemble methods allow users to understand the correlations between variables;
3. Tree ensemble methods can be used in multiple research fields for quantization.

GBDT, which is the model that is based on tree ensembles, is a technique that continu-
ously wins Kaggle and other data analysis competitions, and it has also been extensively
used in both academia and industry. GBDT integrates the gradient boosting algorithm
with the decision tree algorithm for deep learning. Since one single decision tree cannot
satisfy practical applications, GBDT creates many CART-based decision trees, and the sum
of the functions ( fk) on each decision tree is used to reflect the result of each attribute
(Equation (5)):

ŷi =
K

∑
k=1

fk(xi), fk ∈ F (5)

The definitions of the variables are as follows: K is the number of decision trees; f is
the functions in the function space, F ; and F is all possible CART ensembles.

Generally, the way to optimize supervised learning is to train the sum of
Loss + Regularization (Equations (6)–(8)) to the minimum. The loss function (∑n

i l(yi, ŷi))
must be trained first before regularization (∑K

k=1 Ω( fk)) in order to simplify the branches
and the depths of the decision trees, or to adjust the weight for a second derivative:

θ =
{

Wj
∣∣j = 1, . . . , n

}
(6)

Obj(θ) = L(θ) + Ω(θ) (7)

Obj =
n

∑
i

l(yi, ŷi) +
K

∑
k=1

Ω( fk) (8)

The optimization of GBDT can be achieved by using the following heuristic method
(Equation (9)):

Obj =
n

∑
i=1

l
(

yi, ŷ(t)i

)
+

t

∑
i=1

Ω( fi) (9)

1. Determine the next step according to the computational results: train the model by
using the loss function to minimize errors;

2. Cut off redundant branches: standardize the branches of the decision trees to simplify
the complexity of the trees;

3. Explore the deepest decision tree: limit the expansion of the functions;
4. Balance the extensiveness of the leaf nodes: standardize the weight of the second-

derivative leaf nodes.

2.3.2. Gradient Boosting Machine Learning Techniques

GBDT first fixes what has been learned, and it determines the function of a tree
whenever a new tree is added. In Equation (10), t is the t-th step:

ŷ(0)i = 0
ŷ(1)i = f1(xi) = ŷ(0)i + f1(xi)

ŷ(2)i = f1(xi) + f2(xi) = ŷ(1)i + f2(xi)
. . .

ŷ(t)i =
t

∑
k=1

fk(xi) = ŷ(t−1)
i + ft(xi)

(10)
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As Equation (11) shows, the decision tree that learned in the t-th step determines the
tree to add ( ft(xi)) according to the minimum optimization objective:

ŷ(t)i = ŷ(t−1)
i + ft(xi) (11)

2.3.3. Optimization Objective

1. Reduce the loss function to the minimum (Equations (12–(14)):

n

∑
i=1

l

(
yi,

ˆ
y
(t−1)

i + ft(xi)

)
(12)

Obj(t) =
n
∑

i=1
l
(

yi, ŷ(t)i

)
+

t
∑

i=1
Ω( fi)

=
n
∑

i=1
l
(

yi, ŷ(t−1)
i + ft(xi)

)
+ Ω( ft) + const

(13)

To achieve the goal of square loss = 0, l
(

yi,
ˆ
yi

)
=

(
yi −

ˆ
yi

)2
≈ 0

Obj(t) =
n
∑

i=1

(
yi −

(
ŷ(t−1)

i + ft(xi)
))2

+ Ω( ft) + const

=
n
∑

i=1

(
2
(

ŷ(t−1)
i − yi

)
ft(xi) + ft(xi)

2
)
+ Ω( ft) + const

(14)

2. Regularization for Decision Trees

According to Equation (15), the tree is defined as a set of vectors, in which γT is the
number of leaves, and 1

2 λ ∑T
j=1 ω2

j is the second regularization of the leaf weight:

ft(x) = ωq(x), ω ∈ RT , q : Rd → {1, 2, · · · , T}

Ω( ft) = γT + 1
2 λ

T
∑

j=1
ω2

j
(15)

2.3.4. K-Fold Cross Validation for Data Mining

The K-fold cross-validation method splits the training dataset into k subsamples,
among which one subsample is used as the test data for the model validation, while the
rest of the k-1 subsamples are used as training data. The k-fold cross-validation process is
repeated k times, with each of the k subsamples used exactly once for validation. The k
results from the folds are averaged or combined in order to generate a single estimation
(Figure 7).

2.3.5. Model Validation

Validation of Regression Models: the mean absolute error (MAE) is the average
absolute difference between the observed values and the calculated values. Since absolute
errors in replicated measurements of the same physical quantity may differ, we averaged
the absolute value of the errors in order to obtain the MAE. Compared with the mean error,
the MAE is an absolute error measure that is used to prevent the positive and negative
deviations from canceling one another. Therefore, the MAE can better reflect the real
situation of the error of prediction (Equation (16)):

MAE =
1
n

n

∑
j=1

∣∣yj − ŷj
∣∣ (16)
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Since our dataset is recorded over consistent intervals of time, the data are arranged in
chronological order for the cross validation. The growth days of the cabbages can then be
predicted according to the historical data collected, as shown in Figure 8.
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Validation of Classification Models: a confusion matrix is created on the basis of
the values of the real target attributes and the predicted values in order to compute the
classification metrics, including the precision, the recall and the F-measure.

Figure 9 shows the abovementioned steps and the flowchart of the methodology.
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3. Results
3.1. Ground-Truth Data and Satellite Imagery Data Collection
3.1.1. Ground-Truth Data

During the period from 15 December 2018 to 11 February 2019, the field survey APP
captured 735 ground-truth data records of the cabbage cultivation areas in Yunlin County,
and agricultural professionals examined the records in order to interpret the cabbage
growth stages, as shown in Figures 10 and 11.
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Figure 11. Agricultural professionals interpret the growth days of cabbages according to the field
survey images.

3.1.2. Satellite Imagery Data

The multitemporal multispectral images that contain the ground-truth data were cap-
tured by miniature satellites operated by Planet Labs. For cabbages, the days to maturity
are about 70 days, but this could vary according to seasons or regions. Therefore, this study
gathered the data on 0–70 days of cabbage growth for the analysis, and it collected the satel-
lite imagery data on the basis of the cadastre during the complete cabbage growth stages,
according to the ground-truth data and the professional interpretations (Figures 12–15). The
data collection was conducted from 15 October 2018 to 19 March 2019, and 5654 records were
collected for 0–70 days of the cabbage growth (Figure 16).
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3.2. Feature Selection
3.2.1. Spectral Feature Selection

The multispectral satellite images that are used in this study are 3 m × 3 m pixels,
and each pixel can reflect all of the visible RGB lights and the invisible infrared radiation
(four spectral values in total). The corresponding pixel values are obtained according to the
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cadastral data. Next, a data analysis is conducted in order to distinguish the correlation
between 16 attributes, including the mean, the std, the max and min of all the pixel values
on each cadastre, and the days of cabbage growth (Figure 17). The timeframe of 20 to
60 days of cabbage growth was selected to present the values of the spectral features,
including the mean, max, and min of the infrared radiation (Table 1).
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Table 1. Correlation coefficients between spectral features and cabbage growth stages.

Spectral Features Correlation Coefficient

mean_nir Mean value of NIR 0.486128

std_nir Standard deviation of NIR 0.393943

max_nir Maximum of NIR 0.478906

3.2.2. Vegetation Index Feature Selection

The pixel spectral values were used to calculate eight types of vegetation indices,
including the NDVI [11–13], the infrared percentage vegetation index (IPVI) [14], the
cropping management factor index (CMFI), the band ratio (BR), the square band ratio
(SQBR), the vegetable index (VI), the average brightness index (ABI), and the modified soil
adjusted vegetation index (MSAVI) [15,16]. A total of 16 attributes, including the mean and
standard deviation of the individual vegetation index, were employed for the correlation
analysis between the indices and the cabbage growth stages (i.e., the days of growth of the
cabbages). The results are shown in Figures 18 and 19. The period between 20 and 60 days
indicates a highly positive correlation with the vegetation indices. In particular, Figure 19
shows that the vegetation indices are more correlated, in comparison with the spectrum
information, to the days of growth of the cabbages. However, most of the vegetation
indices are calculated on the basis of near-infrared and red-light values, which happen to
be highly correlated. Therefore, only one of the three completely correlated (i.e., correlation
coefficients equal to 1 or −1) vegetation indices, such as the NDVI (IPVI, MSAVI, CMFI),
the BR (SQBR), or the VI, was adopted (as shown in Table 2).
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Figure 19. High or even complete correlations between pairs of vegetation index features.

Table 2. Correlation analysis between vegetation indices and cabbage growth stages.

Vegetation Index Correlation Coefficients

NDVI 0.47121

IPVI 0.47121

CMFI −0.47121

BR 0.443567

SQBR 0.458123

VI 0.508448

MSAVI 0.468535

3.2.3. Texture Feature Selection

The texture features of the satellite images that are taken into account include: a
total of 6 image gradient [17] attributes (the mean and standard deviations of gx, gy, and
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gxy), and 13 attributes that are derived from the GLCM method, which makes a total of
19 attributes. However, the correlation analysis shows that all of the texture features are
not correlated with the days of growth of the cabbages (Table 3). The reason may be that
the resolution of the satellite imagery that was used was not high enough. Therefore, these
features were not included in the model training.

Table 3. Correlations between texture features and cabbage growth stages.

Texture Feature Correlation Coefficients

haralick_1 −0.012057

haralick_2 −0.011231

haralick_3 0.004898

haralick_4 −0.029392

haralick_5 0.065032

haralick_6 −0.123112

haralick_7 −0.029654

haralick_8 −0.054594

haralick_9 −0.016616

haralick_10 0.016184

haralick_11 −0.009838

haralick_12 0.060944

haralick_13 −0.014681

gxy_mean −0.004639

gxy_std 0.022363

gx_mean −0.002482

gx_std 0.005792

gy_mean 0.000629

gy_std 0.045106

3.2.4. Threshold Feature Selection

In order to increase the model prediction accuracy, the respective thresholds for
the abovementioned features that were strongly correlated to the cabbage growth stages
(namely, the near-infrared spectrum value and the NDVI, the BR, and the VI, which are the
three vegetation indices) were used to filter the noise. The range of each of these features
was defined by their induvial maximum and minimum values. For each of the four features,
the 5654 samples were partitioned into three subsets according to their range values (see
Table 4). Two threshold candidates were obtained for each feature. For example, one of the
thresholds (2588) for the NIR can be obtained by (5785−-990)/3 + 990. GBDT was applied
five times in order to train the model on the basis of the cross-validation method, and the
minimum mean square error (MSE) was adopted to select the optimal threshold values
(Table 5).

Once the optimal threshold value for each of the four features was determined, the
additional 20 features for each image sample were defined as follows: the proportion of
pixels with values above the threshold, and the mean/standard deviations of pixels with
values above/below the threshold. The features are listed in Appendix A.
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Table 4. Important features and their threshold candidates.

Features Minimum Maximum
Threshold
Candidates

(3 Partitions)

NIR 990 5785 2588, 4186

NDVI −0.09 0.76 0.19, 0.47

BR 0.83 7.4 3.02, 5.21

VI −519 4142 1034, 2588

Table 5. The optimal threshold values for each feature on the basis of cross-validation method.

Features Minimum Maximum Optimal Threshold Value

NIR 990 5785 4186

NDVI −0.09 0.76 0.47

BR 0.83 7.4 3.02

VI −519 4142 1034

3.2.5. Features Defined by the Differences between Two Consecutive Satellite Images

In the analysis of the cabbage vegetative index, the NDVI curve of the cabbage in
different periods, which is averaged in units of 10 days, shows a significant positive
correlation between the 20th and 60th days of the cabbage-growing period (Figure 20).
Compared to the growth stages of cabbage (Table 6), the NDVI values of the cabbage show
a rising trend in both the mature stage and the cupping stage (Figure 21). Considering
the result from the previous comparison, it can be inferred that the NDVI growth rate of
the two consecutive satellite images can be used to effectively predict the growth stage of
cabbages. Therefore, the individual difference values of the two consecutive images of each
of the previously mentioned features were selected as the features to be used in this study,
as shown in Table 7.
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Table 6. Cabbage growth stages.

Cabbage Growth Stages Days

Cupping Stage 0–40

Early Heading Stage 40, 50, 60

Mature Stage 70–80
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Figure 21. Cabbage growth stages vs. NDVI values.

Table 7. Differences in individual features between two consecutive satellite images captured at the
same location.

Day ndvi std_nir . . . std_nir_diff

7 0.721168 647.696193 . . . NaN

28 0.281660 1019.547319 . . . 371.851125

37 0.270601 1351.375908 . . . 331.828589

48 0.447606 1576.486765 . . . 225.110857

55 0.454097 1657.495210 . . . 81.008445

63 0.515093 1578.958585 . . . −78.536626

3.2.6. Feature Summary

In summary, this study uses a total of 54 image features, 3 near-infrared light features
(the average, standard deviation, and maximum values), 3 vegetation index features (NDVI,
BR, and VI), 20 features that were obtained from near-infrared light, the NDVI, the BR, and
the VI after threshold filtering (proportion of pixels with values above the threshold, and
mean/standard deviation values of pixels with values above/below the threshold), and
1 feature that indicates the day of the year that the image was captured. So far, there are
27 features listed above, and the individual difference value for each feature was calculated
on the basis of two consecutive images, which adds up to 54 features for the data mining
(see Appendix A).

3.3. Modeling and Verification

The collected ground-truth data, along with the location information, consist of a total
of 735 samples, among which 220 samples were randomly selected for testing, and the
remaining 515 samples were used for the cross-validation training of the regression and
classification models.

3.3.1. GBDT Regression Analysis

The GBDT regression technique was applied to the testing set (with 220 samples) to
predict the growth stage of the cabbage from Day 0 to Day 70. The experimental results are
shown in Table 8 and Figure 22. The average error is 8.17 days, with 75% of the prediction
errors within 11 days, which are summarized in Table 9 and Figure 22.
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Table 8. Growth stage prediction results of cabbage from Day 0 to Day 70.

Day Count Mean Std. Min. 25% 50% 75% Max.

10 3.00 3.27 2.52 0.85 1.96 3.08 4.48 5.88

20 161.00 7.26 9.46 0.02 2.13 4.59 8.30 52.81

30 322.00 9.12 8.18 0.08 3.75 7.04 11.96 43.66

40 296.00 9.04 7.64 0.02 3.18 6.84 13.20 38.71

50 366.00 8.19 7.69 0.02 2.21 5.69 12.11 43.20

60 184.00 7.74 6.46 0.02 3.17 6.57 10.77 46.61

70 91.00 4.52 3.49 0.19 1.78 3.57 7.20 13.64
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Table 9. Cabbage growth stage prediction summary.

Statistics MAE

Count 1423

Mean 8.17072

Std. 7.746078

Min. 0.017453

25% 2.672483

50% 5.971289

75% 11.03056

Max. 52.809956

3.3.2. GBDT Classification Analysis

The GBDT classification technique was applied to the testing set (with 220 samples) to
identify the growth status of the cabbage from three different stages: namely, the cupping,
early heading, and mature stages. The experimental results are shown in Table 10 And
Figure 23 and the confusion matrix shown in Figure 24. The classification recalls are 73, 51
and 74%, respectively. If the growth status of cabbage has been divided into two stages
instead of three (namely, within 40 days and beyond 40 days), then the prediction recalls
become 83 and 76%, respectively. The results are shown in Table 11 and Figure 25.
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Table 10. Growth status classification results of cabbage from cupping, early heading, and
mature stages.

Stages Precision Recall F1-Score Support

Cupping Stage
(0–25 days) 0.69 0.73 0.71 415

Early Heading Stage
(25–40 days) 0.50 0.51 0.50 379

Mature Stage
(40–70 days) 0.79 0.74 0.77 629

Avg./Total 0.68 0.68 0.68 1423
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Table 11. Growth stage classification results of cabbage from early growth and mid-heading stages.

Stages Precision Recall F1-Score Support

Early Growth Stage
(0~40 days) 0.81 0.83 0.82 794

Mid-Heading Stage
(40~70 days) 0.78 0.76 0.77 629

Avg./Total 0.80 0.80 0.80 1423
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3.4. Programing Language and Libraries

This study uses Python, which is the most popular language for data analysis, data
science, and machine learning. The biggest advantage of using Python is that there are
plenty of libraries to support the latest technologies. Table 12 lists all the libraries or
packages that were used to conduct the experiments.

Table 12. Python libraries or packages used in this study.

Functionality Libraries or Packages

Data Manipulation Pandas

Image Preocessing cv2

Reading Satellite Images Tifffile

Model Training scikit-learn

Model LightGBM

4. Discussion

This paper first attempts to use multiperiod multispectral satellite image information
for training a deep learning model. Cabbage is an important short-term cash crop, which
often encounters an imbalance between production and sales. This study uses GBDT for the
regression analysis. With the limited amount of training data (i.e., 735 ground-truth images),
the trained model was able to automatically predict the days of growth of the cabbage on
the basis of the satellite images of the cabbage field, with an average error of 8.17 days, and
75% of the predictions having errors less than 11 days. (Note: the cabbage’s growth cycle is
between 0 and 70 days.) Moreover, this study also uses GBDT for the classification analysis.
First, if the cabbage growth status is divided into three stages (the cupping, early heading,
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and mature stages), then the prediction recalls for these three stages are 73, 51, and 74%,
respectively. Second, if the growth status is divided into two stages (within 40 days and
beyond 40 days), then the prediction recalls become 83 and 76%, respectively. These results
show that, with the appropriate data mining technology, multiperiod and multispectral
satellite image information can be used to automatically determine the days of growth
and the growth stages of cabbage. If the government’s agriculture department could make
use of such results, by knowing the harvested area of cabbage, government staffs can
prepare and respond early when the possibility of an imbalance between production and
sales emerges.

In addition, the field survey APP that was developed in this study for collecting the
ground-truth data, together with the cadastral information, have proven to come in handy.
The ground-truth data for the experiments were captured with the help from colleagues at
the Yunlin Irrigation Association. The collected photos were manually examined before use
as training data. The mobile devices were also screened to ensure that the data obtained
by their GPS and digital compass sensors, as well as the alignment information set by the
APP, were accurate. The cadastral information of the image can be calculated by these data,
which provide the ground-truth information for the AI training of the aerial and satellite
images. The experimental result is an important opportunity for agricultural production
surveys. If this APP can be adopted by agricultural administration offices, the on-site
surveys of agricultural products can be more accurate. Previously, only statistical data from
townships were available, but, with the help of this APP, it is possible to obtain the cadastral
information. When there is an important crop that needs production guidance, the producer
can be found through the cadastral information so that the related actions can be directly
and effectively performed, or, in cases where the agricultural product is damaged because
of natural disasters, farmers can use the APP to take pictures and to apply for assistance so
that the rescue can take place more efficiently. Moreover, this APP is easy to use, which
makes it a handy tool for agricultural market reporters during agricultural investigations.
It can also be used by general users in order to collect updated agricultural information
through mass outsourcing, which has the advantages of saving time, manpower, and costs.

5. Conclusions

The results of the proposed method have verified that data mining technology can
be used to predict the growth stages or days of growth of cabbage by analyzing the
multispectral satellite images. For future works, besides the further improvement of the
model, it is also necessary to develop a recognition method to identify cabbage fields by
multispectral satellite images. The combination of these two methods would become a
highly effective solution for assisting the production and sales of cabbage.

Future research could use the Assisted Global Positioning System, which is a technol-
ogy that uses cell-phone-based station signals to obtain GPS locations more accurately and
quickly, and to find the location of photographed objects. In addition, it may be possible
to try other crops for growth prediction, and, possibly, the methods of this study could be
applied to other similar species for growth prediction.
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Appendix A

No. Category Features Attributes Description If Used?

1

Date

Month month Captured month

2 Day date Captured day

3 Day of the year yday
The day of the year
that the image
was captured.

Y

8

Spectrum

Red-light average mean_r

9 Red-light
standard deviation std_r

10 Red-light max value max_r

11 Red-light min value min_r

12 Green-light average mean_g

13 Green-light
standard deviation std_g

14 Green-light
max value max_g

15 Green-light
min value min_g

16 Blue-light average mean_b

17 Blue-light
standard deviation std_b

18 Blue-light max value max_b

19 Blue-light min value min_b

20 Near-infrared-
light average mean_nir Y

21 Near-infrared-light
standard deviation std_nir Y

22 Near-infrared-light
max value max_nir Y

23 Near-infrared-light
min value min_nir

24

Texture

Image x
gradient average gx_mean RGB image

x gradient

25 Image x gradient
standard deviation gx_std RGB image

x gradient

26 Image y
gradient average gy_mean RGB image

y gradient

27 Image y gradient
standard deviation gy_std RGB image

y gradient

28 Image x and y
gradients average gxy_mean RGB image x and

y gradients

29
Image x and y
gradients
standard deviation

gxy_std RGB image x and
y gradients
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No. Category Features Attributes Description If Used?

30

Haralick texture

haralick_1

GLCM gives
13 features

31 haralick_2

32 haralick_3

33 haralick_4

34 haralick_5

35 haralick_6

36 haralick_7

37 haralick_8

38 haralick_9

39 haralick_10

40 haralick_11

41 haralick_12

42 haralick_13

43

Vegetation
Index

Normalized
difference
vegetation index

ndvi Average Y

44 ndvi_std Standard deviation

45 Infrared percentage
vegetation index

ipvi Average

46 ipvi_std Standard deviation

47 Cropping
management
factor index

cmfi Average

48 cmfi_std Standard deviation

49
Band ratio

br Average Y

50 br_std Standard deviation

51 Square band ratio sqbr Average

52 sqbr_std Standard deviation

53 Vegetation index vi Average Y

54 vi_std Standard deviation

55 Average
brightness index

abi Average

56 abi_std Standard deviation

57 Modified soil
adjusted
vegetation index

msavi Average

58 msavi_std Standard deviation

59

Threshold

Proportion of pixels
with values above the
near-infrared threshold

nir_ratio

Threshold 4186

Y

60

The mean value of
pixels with values
above the
near-infrared threshold

nir_mean Y

61

The standard
deviation value of
pixels with values
above the
near-infrared threshold

nir_std Y

62

The mean value of
pixels with values
below the
near-infrared
threshold

nir_un_mean Y
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No. Category Features Attributes Description If Used?

63

The standard
deviation value of
pixels with values
below the
near-infrared threshold

nir_un_std Y

64
Proportion of pixels
with values above the
NDVI threshold

ndvi_ratio

Threshold 0.47

Y

65

The mean value of
pixels with values
above the
NDVI threshold

ndvi_mean Y

66

The standard
deviation value of
pixels with values
above the
NDVI threshold

ndvi_std Y

67

The mean value of
pixels with values
below the
NDVI threshold

ndvi_un_mean Y

68

The standard
deviation value of
pixels with values
below the
NDVI threshold

ndvi_un_std Y

69
Proportion of pixels
with values above the
BR threshold

vi_ratio

Threshold 3.02

Y

70

The mean value of
pixels with values
above the
BR threshold

vi_mean Y

71

The standard
deviation value of
pixels with values
above the
BR threshold

vi_std Y

72

The mean value of
pixels with values
below the
BR threshold

vi_un_mean Y

73

The standard
deviation value of
pixels with values
below the
BR threshold

vi_un_std Y

74
Proportion of pixels
with values above the
VI threshold

abi_ratio

Threshold 1034

Y

75

The mean value of
pixels with values
above the
VI threshold

abi_mean Y
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No. Category Features Attributes Description If Used?

76

The standard
deviation value of
pixels with values
above the
VI threshold

abi_std Y

77

The mean value of
pixels with values
below the
VI threshold

abi_un_mean Y

78

The standard
deviation value of
pixels with values
below the
VI threshold

abi_un_std Y

79 Difference
The difference values
of all the
features used.

*_diff

Only calculate
features that are
marked Y in the
last column.

*_diff is is only that column If Used? calculate, eg: abi_un_std_diff.
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