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Abstract: (1) Background: Vermicompost is enriched with plant essential nutrients and has been
shown to suppress the incidence of pests; however, its potential is affected by its food sources.
(2) Methods: Earthworms were fed cabbage or pig manure to produce two vermicomposts enriched
in sulfur and nutrients, respectively. A pot experiment and a feeding experiment were then conducted
to determine whether the application of the vermicomposts and sulfur could increase soil fertility,
promote the growth of Brassica chinensis L., and inhibit the growth of Spodoptera litura Fabricius
larvae. (3) Results: The characteristics of the vermicomposts were mainly affected by the food sources,
and vermicomposted cabbage was found to have a higher sulfur content than vermicomposted
pig manure. The application of the vermicomposts enhanced the concentrations of organic matter
and available phosphorus, as well as the exchange concentrations of potassium, cadmium, and
magnesium in the soil. Moreover, the growth of and the accumulated phosphorus and sulfur in the
B. chinensis L. samples significantly increased when the plants were grown in soils treated with
the two vermicomposts. Hence, the addition of vermicomposted cabbage and sulfur fertilizers can
decrease the relative growth rate, total consumption, efficiency of conversion of ingested food, and
relative consumption rate of S. litura larvae, possibly due to the increase in leaf sulfur concentration.

Keywords: soil fertility; Spodoptera litura Fabricius larvae; sulfur; vermicompost

1. Introduction

Large amounts of agricultural waste are produced by the agricultural activities that are
required to meet the needs of the increasing human population. Agricultural waste can be
converted into vermicompost (VC) when earthworms and microorganisms cooperate, and,
due to the lower temperatures at which vermicomposting takes place, there is generally a
greater amount and diversity of microorganisms present during vermicomposting than
during composting [1]. Given that higher macronutrient concentrations have been reported
in VC compared with compost [2,3], it is not surprising that the application of VC has been
demonstrated to preserve and restore soil quality and plant growth [4–6]. In addition to a
beneficial effect on plant yield, a number of studies have also reported that VC application
induces biological resistance in plants against diseases and pests due to the presence of
actinomycetes and antibiotics [7–9]. A meta-analysis conducted by Blouin et al. [10] found
that the application of VC enhances commercial crop production, total biomass, shoot
biomass, and root biomass by 26%, 13%, 78%, and 57%, respectively. Furthermore, VC has
potential as an environmentally friendly alternative for the control of pests and diseases.
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Many chemicals used in conventional agriculture to suppress pests and diseases have been
shown to decrease the population of beneficial soil organisms and to have negative effects
on environmental quality [11]. Therefore, the development of environmentally friendly
alternatives, such as VC, is crucial.

Vermicomposting is a degradation process mediated by interactions between earth-
worms and microorganisms that results in the conversion of organic matter (OM) into VC.
Only 5–10% of the OM is metabolized by the earthworms during this process; consequently,
VCs have a high OM content [12]. Many studies have demonstrated that the application
of VC can enhance aggregate stability and aeration [13–15], improve soil quality, and pro-
mote plant growth [4–6]. Since vermicomposting is conducted at ambient temperature,
the VC microbial population is richer than that of the raw material [16] and can include
nitrogen-fixing bacteria, phosphorus-solubilizing bacteria, mycorrhizal fungi, and actino-
mycetes [4,17]. This enriched microbial population has led to VC being used as a biological
control material to suppress pests, parasitic nematodes, and many diseases [18,19]. The
possible mechanisms employed to suppress pest attacks include the release of phenolic and
toxic substances, an increase in the number and diversity of active microbes and pathogenic
nematodes, and an increase in the availability of nutrients [11,20]. In addition, it has been
reported that Brassicaceae family members utilize sulfur (S) to synthesize glucosinolate
and suppress the growth of many insects [21,22]. Field and greenhouse experiments have
also demonstrated that the application of VC significantly reduced pest damage to tomato
and cucumber plants [23].

According to the experimental results of our previous study [24], the characteristics of
VC are affected by food supplements, and amendments to VC can improve soil fertility and
the growth of pak choi (Brassica chinensis L.). Moreover, increasing the soil and leaf S content
can decrease the relative growth rate (RGR) of tobacco cutworm (Spodoptera litura) larvae.
Therefore, in this study, and in accordance with the experimental results of Fong et al. [24],
two VCs were selected and then applied to the soil used to grow pak choi. The leaves of
mature pak choi were infested with S. litura larvae to assess the suppressive potential of
the two VCs using four nutritional indexes. The objectives of this study included assessing
(I) the effect of the VCs on soil fertility and pak choi growth, and (II) the influence of the
different VC and S treatments on the secondary metabolite content, antioxidant capacity,
and resistance to S. litura larvae of pak choi.

2. Materials and Methods
2.1. VC, Crop, Soil, and Larvae

A combination of two species of epigeic earthworms, red wiggler (Eisenia andrei or
Eisenia foetida) and Indian blue worm (Perionyx excavates), were used in this study. Used
shiitake mushroom sawdust was used as the primary medium for the growth of the
earthworms, and they were fed either pig manure or cabbage. In total, 5.0 kg of used
shiitake mushroom sawdust was placed in an opaque rectangular polypropylene box
(L 47 cm × W 33 cm × H 18 cm), the moisture content was adjusted to 70–75% by adding
deionized water (DI water), and 0.5 kg of earthworms was added. The top of each box was
covered with a 32-mesh nylon net to avoid both the escape of earthworms and predation
by animals. After one week of incubation, 50 g of fresh pig manure or cabbage was added
every two days, and residual food was removed if necessary. The moisture content during
vermicomposting was adjusted to 70–75% by weighing the box and adding DI water every
two to three days. The supply of food and DI water was stopped on day 53, and the VCs
produced were collected seven days later. The VC produced by feeding the earthworms
pig manure was termed VPM, and the VC produced by feeding the earthworms cabbage
was termed VCM. The two VCs were air-dried and then used in the S treatment and pot
experiments described in Sections 2.2 and 2.3, respectively.

Pak choi (Brassica chinensis L. var. Chinensis), a leafy vegetable commonly found in
Taiwanese markets and whose leaf is usually consumed by S. litura larvae, was used as
the target crop. The surface layer (0–30 cm) of an important soil series, Erhlin, located in
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central Taiwan, was selected as the study soil. Soil samples were air-dried, ground, sieved
with a 5-mesh stainless sieve, and then used in the pot experiment. Second-instar S. litura
larvae were bought from the Taiwan Agricultural Chemicals and Toxic Substances Institute,
and third-instar S. litura larvae were used in the infesting experiments. Two separate
experiments, the details of which are given in Sections 2.2 and 2.3, were conducted, and the
recommended doses (RDs) of nitrogen (N), phosphoric oxide (P2O5), and potassium oxide
(K2O) for pak choi recommended by the Agriculture and Food Agency of the Council of
Agriculture were 250, 150, and 180 kg ha−1, respectively.

2.2. Sulfur Treatment Experiment

VPM and VCM were selected because in previous experiments they were found to be
the best promoter of pak choi growth and to have the highest content of S, respectively [24].
Higher amounts of S fertilizer and VC were applied in this experiment compared to
previous experiments to increase the S content in the soil and in the pak choi, and their
effect on decreasing the nutritional indexes of S. litura larvae was assessed. The following
nine treatments were tested with four replicates each: CK (control): no amendments; CF
(1×): chemical fertilizers CO(NH2)2, Ca(H2PO4)2·H2O, and KCl at the RDs; CF (1.5×): the
same chemical fertilizers as CF (1×) at 1.5 times the RDs; CF + S (1×): ammonium sulfate
((NH4)2SO4), Ca(H2PO4)2·H2O, and KCl at the RDs; CF + S (1.5×): the same chemical
fertilizers as CF + S (1×) at 1.5 times the RDs; VPM (1×); VPM (1.5×); VCM (1×); and
VCM (1.5×). Unlike chemical fertilizers, VC has to be mineralized to release inorganic N so
that it can be taken up by plants. Therefore, in the VPM (1×), VPM (1.5×), VCM (1×), and
VCM (1.5×) treatments, VC was added at 2.5 times (1×) or 3.75 times (1.5×) the RD for N
according to the N content of the two VCs.

2.3. Pot Experiment

The sieved soil samples prepared as outlined in Section 2.1 were homogeneously
mixed with the different chemical fertilizers or VCs prepared as described in Section 2.2,
and then 1.0 kg of mixture was added to each pot. The pot experiment was conducted in a
growth chamber (14 h of light, temperature of 25.16 ± 1.66 ◦C, and relative humidity of
60.83 ± 17.17%) and 30 pak choi seeds were sown in each pot. The soil moisture during the
pot experiment was controlled at 50–70% of the water-holding capacity by weighing and
adding DI water every two to three days. Only five pak choi seedlings with similar shoot
heights were left for seven days after germination and the others were removed.

For the infesting experiment (described in Section 2.1), two pak choi plants from each
treatment were randomly selected and two separate sub-experiments were conducted. In
the first sub-experiment, one of the pak choi replicates was infested with four third-instar
S. litura larvae for one week, and the whole pak choi was covered with 32-mesh nylon
during the experiment. In the second sub-experiment, three third-instar S. litura larvae
were placed on individual Petri dishes and fed with the third and fourth leaves of the
second pak choi replicate. The leaves were first washed with DI water, and the stems were
placed in 2 mL centrifuge tubes, which were then filled with DI water and sealed with
paraffin film. The second sub-experiment lasted for one week with four replicates, and the
pak choi leaf was renewed every two days.

After growing for seven weeks, the shoots of the pak choi grown with the different
treatments were harvested and washed with tap water and DI water, and then shoot height
and fresh weight were determined. The relative chlorophyll content (i.e., the SPAD reading)
of the most extended leaf of each pak choi replicate was determined using a chlorophyll
meter (SPAD-502, Konica Minolta, Osaka, Japan). Plant tissues were oven-dried at 70 ◦C
for 72 h or freeze-dried for 48 h in preparation for the property analyses.

2.4. VC, Soil, Plant, and Larvae Analyses

The moisture content, pH (w/v = 1/5) [25], electrical conductivity (EC; w/v = 1/5) [26],
total nitrogen content (TN) [27], and OM [28] of the two VCs were analyzed. In addition,
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each VC was digested with nitric acid and perchloric acid (v/v = 4/1) [29], filtered through
Whatman No. 42 filter paper, and quantitated. The P concentration in the filtered digestants
was determined in accordance with Murphy and Riley [30]. The K and S concentrations in
the filtered digestants were determined with a flame photometer (Sherwood 410, Sherwood
Scientific Ltd., Cambridge, UK) and an ion chromatography system (930 Compact IC
Flex, Metrohm, Herisau, Switzerland), respectively. The concentrations of calcium (Ca)
and magnesium (Mg) in the digestants were determined using an atomic absorption
spectrometer (Z-2000, Hitachi, Tokyo, Japan), and the cadmium (Cd), chromium (Cr),
copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn) concentrations in the digestants were
determined using an inductively coupled plasma atomic emission spectrometer (ICP-OES
Avio 200, Perkin Elmer, MA, USA).

Soil samples were collected after the pot experiment, air-dried, ground, and passed
through 10-mesh or 80-mesh sieves according to the properties analyzed. The pH, EC,
and OM of the soil samples were analyzed using the methods described above. Other
properties analyzed included: concentrations of available N [30], available P [31], and
available S [32]; exchangeable concentrations of K, Ca, and Mg [33]; and wet aggregate
stability (WAS) [34]. The oven-dried plant tissue was ground, digested with nitric acid
and perchloric acid (v/v = 4/1) [29], filtered through Whatman No. 42 filter paper, and
quantitated. The concentrations of N, P, K, Ca, Mg, and S in the filtered digestant were then
determined using the method outlined above. The freeze-dried plant tissue was used to
determine the 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging ability and the
concentrations of total phenolics and total flavonoids in accordance with Hatano et al. [35].

In the sulfur treatment experiment described in Section 2.2, the nutritional indexes
used by Farrar et al. [36] and Nawaz et al. [37] were calculated using Equations (1)–(4) to
identify the effect of the treatments on the suppression of S. litura larval growth.

Relative growth rate (RGR)

=
Fresh weight increase of larvae/Initial fresh weight of larvae

Period of experiment
(1)

Total consumption (TC) = Initial fresh weight of food − final fresh weight of food (2)

Relative consumption rate (RCR) =
Food consumption/Initial fresh weight of larvae

Period or experiment
(3)

Efficiency of conversion of ingested food (ECI)

=
Fresh weight increase of larvae

Food consumption
× 100 (4)

2.5. Statistical Analysis

Statistical analysis was performed using the Statistical Analysis System (SAS) v9.4
software. A one-way analysis of variance (ANOVA) was performed using a generalized
linear model (GLM) across the treatments. Fisher’s protected least significant difference
(LSD) test was used to identify significant differences between means, and p < 0.05 denoted
statistical significance.

3. Results and Discussion
3.1. The Properties of the Two VCs

The basic properties of the two VCs used in this study are shown in Table 1. Relative
to VPM, VCM had a higher pH value, which possibly resulted from the difference in the
food source and OM mineralization rate. The release of organic acids (i.e., fulvic acid and
humic acid) during the degradation of OM can decrease the pH value [38]; however, the
pH of VC increases when salts are released during the degradation of OM [39]. Huang
et al. [5] reported that more leachate was produced by earthworms when the food had a
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high water content. Therefore, the lower EC of VCM compared to that of VPM possibly
resulted from cabbage having a higher water content than pig manure, which may have
led to more soluble salts leaching out of VCM during vermicomposting. The OM content
of VPM and VCM was 68.3% and 70.2%, respectively, and the C/N ratio for both was
between 16 and 24. The C/N ratio was regressed as an important index in the assessment
of compost maturation and quality [40]. Immobilization is preferred, and a N depression
period might have occurred during the degradation of the OM when material with a high
C/N ratio was applied [39].

Table 1. The characteristics 1 of two vermicomposts 2.

pH EC Water
Content OM TN P2O5 K2O CaO MgO S

dS m−1 %

VPM 6.9 5.2 46.8 68.3 2.4 2.5 1.2 4.3 1.0 0.33
VCM 8.5 2.1 34.0 70.2 1.7 1.4 1.3 4.5 0.9 0.51

1 EC: electrical conductivity; OM: organic matter content; TN: total nitrogen content. 2 VPM: vermicomposted pig
manure; VCM: vermicomposted cabbage.

Compared to VCM, VPM had higher concentrations of total N and P2O5. In agreement
with the findings of Fahey et al. [41], the S content of VCM (0.51%) was higher than that
of VPM (0.33%). Cd, Cu, Ni, and Pb were not detectable in the two VCs. Cr and Zn were
detected in the two VCs at concentrations of <1 mg kg−1 and 10–12 mg kg−1, respectively.

3.2. Sulfur Treatment
3.2.1. The Effect of Sulfur on Soil Properties

The eight additive treatments resulted in a significantly lower soil pH (p < 0.05) than
the CK treatment, especially the two CF + S treatments; however, all the pH values were
in the alkaline range (Table 2). This was due to sulfate ammonium being used to supply
N and S in the CF + S treatment and H+ being secreted by roots and produced during
nitrification. In agreement with the results described above, soils amended with VPM and
VCM had a lower pH than the CK soil, which was possibly due to the release of organic
acids during VC degradation [38,42]. Relative to the CK soil, soils amended with the other
eight treatments had significantly (p < 0.05) higher EC, particularly those that received
the two CF + S treatments, which reached 19–31 mS m−1. This phenomenon was possibly
the result of the chemical fertilizer treatments having higher NH4

+, SO4
2−, K+, and Cl−

contents. Moreover, the additional H+ ions in the CF + S treatments (which resulted in the
low pH values) possibly acted as exchangeable cations, replacing the exchangeable sites of
the soil and thus increasing the EC. As the two VCs were 68–71% OM (Table 1), the addition
of different amounts of the two VCs significantly increased the soil OM content from 2.7%
(CK treatment) to 3.7–5.0% (p < 0.05). High soil OM content is helpful in increasing crop
yield; for example, the humic acid released during VC degradation has been shown to
promote crop growth and yield [43,44]. The enhancing effect of VC on WAS [13–15] was
not observed in this study because the pot experiment was conducted for only a short
period of seven weeks.
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Table 2. The soil properties 1 after the pot experiment, in which soil was subjected to different treatments 2.

Treatment
pH EC OM WAS Avail. N Avail. P Ex. K Avail. S Ex. Ca Ex. Mg Ca/Mg

mS m−1 % mg kg−1 g kg−1 mg kg−1 Mole Ratio

Without Spodoptera litura
CK 8.69 ± 0.05 a 8.04 ± 0.28 k 2.78 ± 0.09 d 57.7 ± 5.6 a 13.5 ± 0.0 bc 6.61 ± 1.05 j 45.1 ± 2.8 ef 3.74 ± 1.02 d 3.27 ± 0.04 def 236 ± 8 fg 8.33 ± 0.28 ab

CF (1×) 8.41 ± 0.02 b 11.3 ± 1.7 ghij 2.81 ± 0.08 d 52.6 ± 8.2 abcd 20.2 ± 8.2 b 15.7 ± 1.2 hi 55.5 ± 4.6 ef 3.73 ± 0.81 d 3.14 ± 0.06 gh 217 ± 9 gh 8.69 ± 0.38 a
CF (1.5×) 8.27 ± 0.05 c 13.5 ± 1.5 efg 2.79 ± 0.06 d 51.0 ± 11.8 ab 33.8 ± 16.8 a 20.4 ± 0.4 fg 57.3 ± 3.8 def 4.25 ± 0.86 d 3.16 ± 0.11 fgh 217 ± 9 gh 8.73 ± 0.26 a

CF + S (1×) 8.10 ± 0.02 de 19.1 ± 1.9 c 2.75 ± 0.10 d 58.2 ± 7.0 abc 18.6 ± 10.0 b 14.1 ± 0.7 i 52.3 ± 4.7 ef 107 ± 20 c 3.20 ± 0.05 efg 224 ± 13 fgh 8.60 ± 0.37 ab
CF + S (1.5×) 7.86 ± 0.04 i 29.3 ± 0.6 a 2.80 ± 0.06 d 56.0 ± 8.5 bcd 13.5 ± 4.8 bc 18.5 ± 2.8 gh 47.5 ± 4.8 ef 198 ± 18 b 3.22 ± 0.09 defg 229 ± 8 fgh 8.47 ± 0.25 ab

VPM (1×) 8.12 ± 0.05 d 12.1 ± 2.3 ghi 4.02 ± 0.14 b 53.2 ± 7.7 d 8.45 ± 2.93 c 30.3 ± 0.8 cd 70.1 ± 10.2 cde 5.77 ± 3.10 d 3.55 ± 0.12 b 389 ± 21 cd 5.49 ± 0.23 e
VPM (1.5×) 8.06 ± 0.03 def 16.0 ± 0.6 de 4.20 ± 0.24 b 44.8 ± 3.2 cd 13.5 ± 4.8 bc 42.5 ± 1.5 b 60.8 ± 4.6 cdef 9.53 ± 0.81 d 3.40 ± 0.06 c 409 ± 3 c 5.00 ± 0.11 efg
VCM (1×) 8.26 ± 0.03 c 17.4 ± 0.5 cd 3.71 ± 0.05 c 41.3 ± 2.8 abcd 8.45 ± 2.93 c 34.4 ± 3.1 c 140 ± 15 b 8.53 ± 0.41 d 3.55 ± 0.09 ab 392 ± 14 c 5.44 ± 0.14 e

VCM (1.5×) 8.27 ± 0.10 c 15.5 ± 3.7 def 4.95 ± 0.35 a 50.9 ± 12.2 bcd 13.5 ± 6.7 bc 49.9 ± 5.2 a 240 ± 55 a 6.97 ± 3.61 d 3.67 ± 0.05 a 468 ± 24 a 4.72 ± 0.25 fg
Infested with S. litura

CK 8.41 ± 0.02 b 11.0 ± 0.4 hij 2.72 ± 0.05 d 62.6 ± 2.1 a 10.1 ± 5.6 c 7.95 ± 0.43 j 43.1 ± 1.1 f 4.90 ± 0.51 d 3.06 ± 0.01 hi 242 ± 10 f 7.60 ± 0.32 cd
CF (1×) 8.25 ± 0.05 c 9.15 ± 0.89 jk 2.74 ± 0.06 d 53.9 ± 6.6 abcd 10.1 ± 3.4 c 14.6 ± 0.4 hi 46.4 ± 2.9 ef 1.86 ± 0.16 d 2.86 ± 0.02 j 213 ± 10 h 8.06 ± 0.37 bc

CF (1.5×) 8.10 ± 0.07 de 10.8 ± 1.4 hij 2.67 ± 0.08 d 59.8 ± 3.8 ab 18.6 ± 5.6 b 23.4 ± 4.0 ef 50.9 ± 5.7 ef 2.06 ± 0.30 d 2.87 ± 0.03 j 231 ± 12 fgh 7.49 ± 0.32 d
CF + S (1×) 7.95 ± 0.02 h 22.3 ± 1.2 b 2.64 ± 0.02 d 59.4 ± 5.5 abc 10.1 ± 3.4 c 14.7 ± 0.3 hi 41.4 ± 1.4 f 114 ± 12 c 3.04 ± 0.10 hi 238 ± 21 f 7.73 ± 0.83 cd

CF + S (1.5×) 7.65 ± 0.02 j 30.2 ± 2.2 a 2.78 ± 0.09 d 49.4 ± 11.2 bcd 20.2 ± 4.8 b 27.0 ± 2.9 de 44.9 ± 3.2 ef 225 ± 20 a 2.95 ± 0.04 ij 235 ± 15 fg 7.57 ± 0.52 cd
VPM (1×) 8.02 ± 0.01 fg 13.0 ± 2.8 fgh 4.17 ± 0.11 b 47.4 ± 8.1 d 10.1 ± 3.4 c 29.9 ± 0.4 d 81.4 ± 22.2 cd 8.85 ± 6.19 d 3.14 ± 0.07 gh 366 ± 13 e 5.15 ± 0.12 ef

VPM (1.5×) 7.98 ± 0.03 gh 10.5 ± 0.3 hij 4.74 ± 0.21 a 48.2 ± 5.1 cd 13.5 ± 0.0 bc 41.4 ± 5.9 b 66.0 ± 1.9 cdef 2.65 ± 0.30 d 3.29 ± 0.14 cde 408 ± 5 c 4.84 ± 0.24 fg
VCM (1×) 8.09 ± 0.05 def 10.1 ± 0.4 ijk 4.10 ± 0.23 b 52.1 ± 10.3 abcd 18.6 ± 3.0 b 27.3 ± 1.2 de 83.2 ± 5.7 c 4.17 ± 1.74 d 3.16 ± 0.03 fgh 370 ± 6 de 5.13 ± 0.06 ef

VCM (1.5×) 8.05 ± 0.02 efg 11.7 ± 0.7 ghi 4.87 ± 0.07 a 50.0 ± 3.7 bcd 10.1 ± 3.4 c 44.2 ± 1.9 b 154 ± 18 b 4.62 ± 0.13 d 3.33 ± 0.05 cd 445 ± 7 b 4.49 ± 0.03 g
F-value 87.6 49.2 108.6 0.78 4.51 77.9 33.1 207 28.7 163 71.9
F17,54,0.95 1.82

1 Mean ± standard deviation (n = 4). Means within a column followed by the same letters are not significantly different at p < 0.05. EC: electrical conductivity; OM: organic matter
content; TN: total nitrogen content; WAS: wet aggregate stability. 2 CK: no amendments; CF (1×): CO(NH2)2, Ca(H2PO4)2·H2O, and KCl based on the recommended amount (RD); CF
(1.5×): the same chemical fertilizers as CF (1×) at 1.5 times the RDs; CF + S (1×): (NH4)2SO4, Ca(H2PO4)2 H2O, and KCl at the RDs; CF + S (1.5×): the same chemical fertilizers as CF + S
(1×) at 1.5 times the RDs; VPM (1×): vermicomposted pig manure (VPM) at the RD, based on VPM’s TN; VPM (1.5×): VPM at 1.5 times the RD, based on VPM’s TN; VCM (1×):
vermicomposted cabbage (VCM) at the RD, based on VCM’s TN; VCM (1.5×): VCM at 1.5 times the RD, based on VCM’s TN.
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At the end of the pot experiment, the concentration of available N was higher or
significantly higher in the soils amended with the CF (1.5×) and CF + S (1.5×) treatments
than in the CK soil (p < 0.05) (Table 2). This might have been due to a faster release
rate and the higher amount of fertilizer applied. The concentration of available P signif-
icantly increased from 6.6–8.0 mg kg−1 (CK treatment) to 14–50 mg kg−1 with the CF,
CF + S, and two VC treatments (p < 0.05). As the two VCs were 1.4–2.5% P2O5 (Table 1),
the concentration of available P was higher in soils treated with VPM and VCM than in
soils treated with CF and CF + S. Among the nine treatments used, the concentration
of available P was less than 10 mg kg−1 only in CK-treated soil; this is the level con-
sidered sufficient for plant growth [31]. As SO4

2− is released through the dissolution
of applied (NH4)2SO4, the two CF + S treatments significantly increased the available S
content in the soil from 1.8–5.0 mg kg−1 (CK and two CF treatments) to 107–225 mg kg−1

(p < 0.05). In agreement with the findings of Ramawtar et al. [45], the application of the
two VCs increased the general available S content in the soil, which was the result of
VC mineralization. The available S content in the soils amended with the two VCs was
in the range of 2.6–9.6 mg kg−1. The concentrations of exchangeable K, exchangeable
Ca, and exchangeable Mg were significantly higher in the soils treated with the two VCs
compared with the CK soil (p < 0.05), which resulted from the high content of K2O, CaO,
and MgO in the two VCs (Table 1). In soils treated with CK, CF, and CF + S, the mole
ratio of exchangeable Ca to exchangeable Mg was 8.3–8.8, which is higher than the value
recommended (6.0) for plant growth [46,47]. In soils treated with VPM (1×) and VCM (1×),
the mole ratio decreased to a much more suitable level, 5.1–5.5, due to a significant increase
in exchangeable Mg content.

3.2.2. The Effect of Sulfur on Pak Choi Growth

Table 3 shows the effects of the nine treatments on different aspects of pak choi growth.
It was found that the SPAD reading, shoot height, and fresh weight of pak choi increased
or significantly increased after the CF, CF + S, and VC treatments compared to the CK
treatment (p < 0.05). The pak choi grown in soil that received CF and CF + S treatments also
exhibited generally better growth than those grown in soils with VC treatments. The supply
of N in the soil has a drastic influence on the growth of short-term crops, and N could be
readily released from the urea and (NH4)2SO4 present in the CF and CF + S treatments;
however, organic N must be mineralized to inorganic N before uptake by plants. Of the
two VCs used, the two VPM treatments resulted in better pak choi growth than the two
VCM treatments, which was possibly due to the higher TN and P2O5 contents (Table 1)
and the higher concentrations of other nutrients not analyzed in this study. As a result of
the different foods used to produce VPM and VCM, the population of microorganisms
and thus the mineralization rates were quite different [48], and this might help explain the
experimental results.

Table 3. The SPAD readings, shoot heights, and fresh weights of the Brassica chinensis samples grown
in soils that received different treatments 1.

Treatment
SPAD Reading Shoot Height Fresh Weight

cm g Plant−1

Without Spodoptera litura
CK 6.93 ± 0.51 h 19.0 ± 1.4 hij 2.83 ± 0.29 f

CF (1×) 14.6 ± 1.7 a 25.6 ± 2.8 bcd 20.9 ± 2.5 def
CF (1.5×) 14.0 ± 0.6 ab 26.5 ± 2.5 bc 28.3 ± 4.7 bcd

CF + S (1×) 11.8 ± 1.1 bcdef 23.1 ± 3.6 defg 18.1 ± 1.8 def
CF + S (1.5×) 14.8 ± 1.2 a 30.9 ± 2.5 a 46.0 ± 1.5 ab

VPM (1×) 13.5 ± 1.7 abc 22.2 ± 2.1 efg 11.1 ± 0.5 def
VPM (1.5×) 12.8 ± 1.1 abcd 23.5 ± 1.7 def 22.6 ± 3.0 def



Agriculture 2022, 12, 494 8 of 16

Table 3. Cont.

Treatment
SPAD Reading Shoot Height Fresh Weight

cm g Plant−1

Without Spodoptera litura
VCM (1×) 10.4 ± 0.3 efg 18.2 ± 1.8 ij 4.91 ± 0.22 ef

VCM (1.5×) 10.8 ± 1.1 defg 18.8 ± 1.4 hij 5.91 ± 0.40 ef
Infested with S. litura

CK 5.15 ± 0.82 h 16.7 ± 1.7 j 3.05 ± 0.88 f
CF (1×) 12.7 ± 1.8 abcde 25.2 ± 2.8 cd 23.7 ± 0.3 cdef

CF (1.5×) 12.2 ± 1.9 bcdef 24.7 ± 5.1 cde 21.8 ± 3.0 def
CF + S (1×) 12.8 ± 1.8 abcd 23.3 ± 5.4 def 51.3 ± 16.8 a

CF + S (1.5×) 12.7 ± 1.1 abcde 28.4 ± 2.9 ab 44.8 ± 15.8 abc
VPM (1×) 11.3 ± 0.6 cdefg 23.4 ± 2.9 def 21.6 ± 0.2 def

VPM (1.5×) 13.1 ± 1.9 abc 24.8 ± 2.7 cde 26.3 ± 8.9 bcde
VCM (1×) 10.0 ± 0.4 fg 20.4 ± 2.3 ghi 9.42 ± 0.27 def

VCM (1.5×) 9.40 ± 1.34 g 21.3 ± 1.8 fgh 8.00 ± 1.18 def
F-value 10.4 15.1 3.96

F17,54,0.95 1.82
1 The codes have the same meanings as those in Table 2. Mean ± standard deviation (n = 4); means within a
column followed by the same letters are not significantly different at p < 0.05.

The concentrations of N, P, K, S, Mg, and Ca were determined in the leaves of pak choi
plants grown in the treated soils. Only the N, P, K, and S concentrations were significantly
higher in the leaves of pak choi grown in soil treated with CF, CF + S, and the two VCs
compared to those grown in CK-treated soil (p < 0.05). The CF and CF + S treatments
significantly increased the N and P concentrations to 1.8–4.2% and 0.32–0.56%, respectively,
compared with CK treatment (p < 0.05) (Table 4). These results were due to the higher con-
centrations of available N and available P in the soils compared with the other treatments
(Table 2). As the two VCs were 1.4–2.5% P2O5 and the concentration of available P after VC
treatment was significantly higher than after CK, CF, and CF + S treatment, the pak choi P
concentration also increased to 0.34–0.55% when the different VC treatments were applied.
Regarding the S concentration, the leaves of pak choi grown in the soils treated with CF + S
(1×), CF + S (1.5×), VCM (1×), and VCM (1.5×) had significantly higher S concentrations
than leaves from plants grown in CK-treated soil (p < 0.05). The high concentrations of
available S in the soil (Table 2) most likely contributed to the highest concentrations of
S being recorded in the pak choi grown in soil treated with the two CF + S treatments
(0.28–0.48%). The concentration of S in the pak choi grown in soil treated with the two VCM
treatments also significantly increased from approximately 0.01–0.03% (CK treatment) to
0.05–0.08% (p < 0.05). Even though the infection of S litura induced an increase in S content
in the leaves of pak choi under VCM treatments, the differences were not significant.

Table 4. The concentrations of nitrogen, phosphorous, potassium, calcium, magnesium, and sulfur in
the leaves of Brassica chinensis grown in soils that received different treatments 1.

Treatment
N P K Ca Mg S

%

Without Spodoptera litura
CK 1.16 ± 0.12 de 0.199 ± 0.083 h 2.97 ± 0.24 ef 3.46 ± 0.25 bcd 0.417 ± 0.023 cde 0.011 ± 0.012 f

CF (1×) 2.52 ± 0.39 b 0.403 ± 0.064 cdef 2.93 ± 0.43 efg 4.15 ± 0.62 ab 0.411 ± 0.027 def 0.040 ± 0.009 def
CF (1.5×) 2.81 ± 0.27 b 0.447 ± 0.125 abcde 2.95 ± 0.04 ef 3.68 ± 0.47 bcd 0.352 ± 0.065 ef 0.037 ± 0.001 def

CF + S (1×) 2.93 ± 0.08 b 0.321 ± 0.034 fg 3.52 ± 0.11 bcd 3.31 ± 0.70 cd 0.399 ± 0.022 def 0.387 ± 0.046 b
CF + S (1.5×) 2.87 ± 0.06 b 0.389 ± 0.113 def 3.78 ± 0.35 ab 3.82 ± 0.70 bc 0.454 ± 0.077 abcd 0.477 ± 0.094 a

VPM (1×) 1.66 ± 0.05 cd 0.475 ± 0.019 abcd 2.61 ± 0.20 fgh 2.30 ± 0.26 f 0.383 ± 0.028 def 0.048 ± 0.007 def
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Table 4. Cont.

Treatment
N P K Ca Mg S

%

Without Spodoptera litura
VPM (1.5×) 1.61 ± 0.34 cde 0.520 ± 0.110 abc 3.05 ± 0.36 def 3.20 ± 0.25 cde 0.445 ± 0.033 bcd 0.038 ± 0.010 def
VCM (1×) 1.23 ± 0.10 de 0.472 ± 0.076 abcd 3.41 ± 0.02 bcde 2.31 ± 0.24 f 0.398 ± 0.012 def 0.063 ± 0.009 de

VCM (1.5×) 1.14 ± 0.10 de 0.482 ± 0.066 abcd 3.29 ± 0.06 bcde 2.93 ± 0.98 def 0.395 ± 0.054 def 0.055 ± 0.002 de
Infested with S. litura

CK 1.68 ± 0.29 cd 0.268 ± 0.059 gh 3.20 ± 0.21 cde 3.63 ± 0.31 bcd 0.518 ± 0.033 ab 0.029 ± 0.003 ef
CF (1×) 2.70 ± 0.29 b 0.556 ± 0.075 a 3.35 ± 0.42 bcde 3.47 ± 0.38 bcd 0.433 ± 0.076 bcde 0.038 ± 0.007 def

CF (1.5×) 4.12 ± 0.93 a 0.514 ± 0.066 abc 3.58 ± 0.71 bc 4.63 ± 0.13 a 0.499 ± 0.025 abc 0.039 ± 0.010 def
CF + S (1×) 1.89 ± 0.31 c 0.340 ± 0.080 efg 2.94 ± 0.08 ef 3.34 ± 0.33 cd 0.373 ± 0.044 def 0.281 ± 0.021 c

CF + S (1.5×) 3.82 ± 0.88 a 0.489 ± 0.086 abcd 4.13 ± 0.66 a 3.99 ± 0.99 abc 0.534 ± 0.142 a 0.324 ± 0.014 c
VPM (1×) 1.04 ± 0.10 e 0.346 ± 0.035 efg 2.42 ± 0.09 gh 2.29 ± 0.21 f 0.329 ± 0.026 f 0.030 ± 0.005 def

VPM (1.5×) 1.16 ± 0.21 de 0.431 ± 0.054 bcdef 2.35 ± 0.11 h 2.34 ± 0.23 f 0.372 ± 0.019 def 0.031 ± 0.009 def
VCM (1×) 1.39 ± 0.03 cde 0.483 ± 0.044 abcd 3.59 ± 0.11 bc 2.37 ± 0.19 f 0.392 ± 0.037 def 0.073 ± 0.003 d

VCM (1.5×) 1.24 ± 0.12 de 0.541 ± 0.012 ab 3.77 ± 0.20 ab 2.45 ± 0.09 ef 0.413 ± 0.013 def 0.063 ± 0.002 de
F-value 21.5 5.48 7.00 6.73 3.26 90.6

F17,54,0.95 1.82
1 The meanings of the codes are the same as in Table 2. Mean ± standard deviation (n = 4); means within a column
followed by the same letters are not significantly different at p < 0.05.

The CF and CF + S treatments resulted in pak choi that had a higher DPPH free radical
scavenging ability and total flavonoid content than the other treatments (Table 5); however,
the additive treatments did not significantly influence total phenolic content compared
with the CK treatment. Total flavonoid content increased from 7.7–12.4 mg-QE g-DW−1

in pak choi grown in CK-treated soil to 12.7–28.5 and 16.7–35.3 mg-QE g-DW−1 in pak
choi grown in CF- and CF + S-treated soil, respectively. This was in contrast to the C–N
balance theory [49] and the growth–differentiation balance hypothesis [50], which state that
the application of N could inhibit the synthesis of C-containing secondary metabolites. In
agreement with the results of previous studies [51,52], all treatments increased the DPPH
free radical scavenging ability of pak choi to 58–88% compared with the 41–53% of pak
choi grown in CK-treated soil.

Table 5. The concentrations of total phenolics, total flavonoids, and DPPH scavenging ability in the
leaves of Brassica chinensis grown in soils that received different treatments 1.

Treatment
Total Phenolics Total Flavonoids DPPH Scavenging Ability

mg-GAE g-DW−1 mg-QE g-DW−1 %

Without Spodoptera litura
CK 5.58 ± 0.00 cdef 12.4 ± 0.0 cde 52.9 ± 0.0 gh

CF (1×) 5.82 ± 0.51 bcde 28.5 ± 9.9 ab 80.3 ± 7.0 abcd
CF (1.5×) 4.55 ± 0.23 fgh 12.7 ± 4.5 cde 63.0 ± 2.8 efg

CF + S (1×) 5.66 ± 0.35 cde 35.3 ± 3.1 a 69.8 ± 10.61 cdef
CF + S (1.5×) 5.41 ± 0.38 def 20.7 ± 1.1 abcde 85.0 ± 7.4 ab

VPM (1×) 5.79 ± 0.05 bcde 8.36 ± 4.72 e 69.0 ± 1.1 cdef
VPM (1.5×) 5.57 ± 0.01 def 9.81 ± 0.36 e 75.1 ± 2.0 abcde
VCM (1×) 5.84 ± 0.26 bcde 10.2 ± 2.2 de 69.4 ± 4.9 cdef

VCM (1.5×) 5.55 ± 0.23 def 9.09 ± 0.36 e 75.9 ± 1.1 abcde
Infested with S. litura

CK 3.95 ± 0.00 h 7.70 ± 0.00 e 41.4 ± 0.0 h
CF (1×) 6.18 ± 0.10 bcd 27.3 ± 8.7 abc 78.0 ± 3.4 abcde

CF (1.5×) 7.85 ± 1.09 a 25.2 ± 9.7 abcd 77.6 ± 11.9 abcde
CF + S (1×) 6.75 ± 0.11 b 25.3 ± 10.5 abcd 80.6 ± 6.0 abcd

CF + S (1.5×) 5.29 ± 0.29 defg 16.7 ± 5.1 bcde 71.0 ± 2.2 bcdef
VPM (1×) 5.70 ± 0.01 bcde 6.91 ± 0.36 h 83.0 ± 2.1 abc

VPM (1.5×) 6.67 ± 0.51 bc 11.6 ± 2.2 de 87.2 ± 1.9 a
VCM (1×) 4.88 ± 0.06 efgh 6.54 ± 0.73 e 66.9 ± 3.1 defg
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Table 5. Cont.

Treatment
Total Phenolics Total Flavonoids DPPH Scavenging Ability

mg-GAE g-DW−1 mg-QE g-DW−1 %

VCM (1.5×) 4.22 ± 0.38 gh 7.63 ± 1.09 e 58.8 ± 0.1 fg
F-value 6.31 3.12 5.35

F17,54,0.95 1.82
1 The meanings of the codes are the same as in Table 2. Mean ± standard deviation (n = 4); means within a column
followed by the same letters are not significantly different at p < 0.05.

There were no statistically significant differences in the concentrations of the six
essential elements assessed, the total phenolic content, the total flavonoid content, and the
DPPH free radical scavenging ability of the pak choi infested with S. litura larvae compared
with those not infested. Some plants can avoid being consumed by insects by lowering
their nutrient concentrations [53]. The activation and strength of this defense mechanism
have been determined not only by testing the saliva composition of insects [54,55] but
also by detecting enzymes in insect saliva [56]. Here, infesting S. litura larvae did not
significantly affect the antioxidant ability or secondary metabolite content of pak choi in
general. Since pak choi grown in soil treated with VCM has a higher S content in its leaves
(Table 4), another secondary metabolite, glucosinolate, might be responsible for the defense
mechanism of pak choi [21].

3.2.3. The Effect of Sulfur on S. litura Larvae

The S. litura larvae that infested the pak choi grown in the soils treated with CF + S
(1×), VCM (1×), and VCM (1.5×) treatments had significantly lower RGRs than those
that infested the pak choi grown in the soils that received the other treatments, except for
CK (p < 0.05) (Figure 1). This aligns with the findings presented in Section 3.2.2, which
revealed that the CF + S and VCM treatments increased the S content in the leaves of pak
choi and therefore inhibited the growth of S. litura larvae. The larval RGR decreased when
the larvae were fed pak choi grown in soil that received the VCM treatments; the RGR was
10.4–11.3 mg mg−1 d−1 when the soil was treated with CF and 7.7–8.9 mg mg−1 d−1 when
the soil was treated with VCM. Although the S could inhibit the growth of larvae and the
CF + S (1.5×) treatment resulted in the highest S content in the leaves of pak choi among
treatments, the resultant RGR was not the lowest. In addition to S, N might also have an
influence on the RGR of S. litura larvae. The above phenomenon possibly resulted from
the higher N content in the leaves resulting from the CF + S (1.5×) treatment, which may
have promoted the growth of larvae, although the higher S content could have inhibited
growth. Apart from the VCM (1×) and VCM (1.5×) treatments, the CK treatment also
resulted in a lower RGR compared with other treatments. S. litura larvae require N-rich
foods for growth [57,58]. Thus, the lower RGR associated with plants from CK-treated soil
may have been due to the N content being insufficient to support S. litura larvae growth.
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Figure 1. The relative growth rate (RGR) of the Spodoptera litura larvae were assessed in the sulfur
treatment test. (The meanings of the codes are the same as in Table 2. Means within a column
followed by the same letter are not significantly different at p < 0.05.)

3.2.4. Short-Term Feeding Experiment

In addition to directly infesting pak choi with S. litura larvae, a short-term feeding
experiment was conducted for one week, as described in Section 2.3. Three third-instar
S. litura larvae were grown in individual Petri dishes and then fed two pak choi leaves
from plants grown in soils that received different treatments with four replicates. After the
one-week experiment, the TC, ECI, RGR, and RCR were calculated using the change in
fresh weight of larvae and fresh weight of leaves determined during the experiment, using
Equations (1)–(4) [58].

It was found that larvae fed with pak choi grown in soils treated with CK, VCM (1×),
and VCM (1.5×) had lower or significantly lower (p < 0.05) TC and ECI compared to those
fed with pak choi grown in soils that received other treatments (Figure 2). This possibly
resulted from the higher leaf S content found in the plants grown in soils that received
the two VCM treatments and the lower N content in the plants grown in CK-treated soil,
as illustrated in Section 3.2.3. Although the highest S content was observed after the two
CF + S treatments, the TC and ECI of the larvae fed the resulting leaves were not the lowest
recorded. However, the TC resulting from the two CF + S treatments was lower than that
resulting from the two CF treatments, which revealed that raising the S content in the feeding
leaves of pak choi decreased larvae consumption. Nawaz et al. [37] recently showed that
the ECI based on the dry weight of S. litura larvae fed okra was 30–60%, which was higher
than that in this study and possibly resulted from the difference in the food source and in
the experimental period.

In addition to the TC and ECI, the RCR and RGR of larvae that were fed leaves from
pak choi grown in soils treated with CK, VCM (1×), and VCM (1.5×) were generally lower
than those resulting from other treatments (Figure 2). In agreement with the TC and ECI
results, the CF + S (1×) and CF + S (1.5×) treatments significantly decreased the RCR and
RGR compared with the CF (1×) and CF (1.5×) (p < 0.05) treatments. A previous study
reported that the RCR and RGR of second-instar S. litura larvae fed cabbage and okra were
2–3 mg mg−1 d−1 and 0.6–0.9 mg mg−1 d−1, respectively [37]. The higher S. litura larval
RGR, 3–25 mg mg−1 d−1, found in this study possibly resulted from the difference in the
food source and the age of the larvae used.
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3.2.5. The Potential of the VCs to Suppress the Growth of S. litura Larvae

The results presented in Sections 3.2.3 and 3.2.4 show that S. litura larval growth was
determined not only by the S content in the pak choi leaves but also by the N content.
This finding is identical to those of previous studies [57,58]. A linear regression was
developed using the total N taken up through the consumption of pak choi (x) and the
corresponding fresh weight increase in S. litura larvae (y) for the non-S treatments (i.e., CK,
CF, and VPM treatments) (Figure 3). The theoretical values for fresh weight increase in the
S treatments (i.e., CF + S and VCM treatments) were obtained using the total N intake by
the S. litura larvae and the regressing equation (y = 37.081x + 40.976). The actual values
for fresh weight increase in the two CF + S and two VCM treatments were all 16–35%
lower than the theoretical values. This revealed that the leaves of the pak choi grown in
the S-treated soils (i.e., with CF + S and VCM treatments) had a higher S content, which
decreased the food intake and growth of the S. litura larvae. High S content in Brassicaceae
family members could promote glucosinolate synthesis and thus strengthen the defense
against insects [21,22]; the experimental results of this study support this notion. Besides S,
enrichment in the number and diversity of microorganisms [18,19] or the release of toxic
substances from VC [11,20] may also have contributed to suppressing the growth of S. litura
larvae; however, these mechanisms were not evidenced in this study using current data.
Nevertheless, this study has demonstrated the potential of VCM for the suppression of
S. litura larval growth.

The CF treatment was included in this study because chemical fertilizers are commonly
used in conventional agriculture, and the effects of the CF + S and two VC treatments were
compared with those of the CF (1×) treatment. Different relative nutritional indexes were
lower after the CF + S, VPM, and VCM treatments than after the CF treatment (Table 6). The
two VCM treatments had significantly (p < 0.05) lower relative nutritional indexes among
the CF, CF + S, and VC treatments, which possibly resulted from the higher S content
in the leaves of the pak choi. Due to the low mobility of S in the plant, approximately
90–94% of S accumulates in the old leaves of plants [21]. Two major organic S-containing
amino acids, cysteine and methionine, are synthesized using SO4

2− taken up from the soil
and are affected by plant maturity [22]; therefore, the parts of the plant fed to the S. litura
larvae might have also influenced their growth. In the short-term feeding experiment
(Section 3.2.4), the third and fourth leaves of the pak choi were fed to the larvae; however,
the entire plant was used as the food source in the infesting experiment (Section 3.2.3).
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Although the leaves consumed by the larvae might have been quite different, the results
revealed that raising the S content in the leaves could restrict the growth of S. litura larvae.
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Figure 3. The relationship between intake nitrogen weight (x) and weight increase (y) in Spodoptera
litura larvae in the short-term feeding trial. (The meanings of the codes are the same as in Table 2.)

Table 6. The relative nutritional indexes 1,2 of Spodoptera litura larvae in the short-term feeding
experiment.

Treatment
TC ECI RCR RGR

mg % mg mg−1 d−1

CF (1×) 1.000 b 1.000 ab 1.000 ab 1.000 a
CF (1.5×) 1.460 a 0.888 abc 1.410 a 1.220 a

CF + S (1×) 0.812 bc 1.010 a 0.720 bc 0.559 b
CF + S (1.5×) 0.968 b 0.743 bcd 0.979 ab 0.624 b

VPM (1×) 0.697 bcd 0.738 bcd 0.688 bc 0.514 b
VPM (1.5×) 0.609 bcd 0.721 cd 0.603 bc 0.426 bc
VCM (1×) 0.471 cd 0.484 d 0.473 c 0.236 c

VCM (1.5×) 0.337 d 0.594 d 0.347 c 0.212 c
F-value 10.9 4.26 7.23 18.7

F17,54,0.95 2.31
1 TC: total consumption; ECI: efficiency of conversion of ingested food; RCR: relative consumption rate; RGR:
relative growth rate. 2 The meanings of the codes are the same as in Table 2. The relative nutritional indexes = nu-
tritional indexes of each treatment/nutritional indexes of CF (1×). Means within a column followed by the same
letters are not significantly different at p < 0.05.

4. Conclusions

Agricultural waste can be recycled into vermicompost through the interaction of earth-
worms and microorganisms. In this study, it has been shown that vermicompost properties
can be determined by the food source and that adding vermicompost to soil increases soil
fertility and pak choi growth. Moreover, it was found that adding vermicomposted cabbage
reduces the growth indexes of S. litura larvae consuming pak choi, which is possibly due to
the higher S content of vermicomposted cabbage and pak choi leaves. Although the poten-
tial of vermicomposted cabbage to reduce the growth of S. litura larvae was demonstrated
in this study, the presence of parasites and pathogens which may affect human health was
not considered in this study. Other mechanisms besides S content must be examined and
confirmed in further studies.
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