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Abstract: The quantitative prediction of CO2 concentration in the growth environment of crops is a
key technology for CO2 enrichment applications. The characteristics of micro/nanobubbles in water
make CO2 micro/nanobubble water potentially useful for enriching CO2 during growth of crops.
However, few studies have been conducted on the release characteristics and factors influencing
CO2 micro/nanobubbles. In this paper, the factors influencing CO2 release and changes in CO2

concentration in the environment are discussed. An autoregressive integrated moving average
and backpropagation neural network (ARIMA-BPNN) model that maps the nonlinear relationship
between the CO2 concentration and various influencing factors within a time series is proposed to
predict the released CO2 concentration in the environment. Experimental results show that the mean
absolute error and root-mean-square error of the combination prediction model in the test datasets
were 9.31 and 17.48, respectively. The R2 value between the predicted and measured values was 0.86.
Additionally, the mean influence value (MIV) algorithm was used to evaluate the influence weights
of each input influencing factor on the CO2 micro/nanobubble release concentration, which were in
the order of ambient temperature > spray pressure > spray amount > ambient humidity. This study
provides a new research approach for the quantitative application of CO2 micro/nanobubble water
in agriculture.

Keywords: CO2 prediction; CO2 enrichment; CO2 micro/nanobubble; combined prediction model

1. Introduction

Carbon dioxide (CO2) concentration is an important environmental factor that affects
crop growth [1,2]. Traditional CO2 gas fertilizers cannot be used in open environments
because of their high diffusivity. CO2 micro/nanobubbles have a measurable surface zeta
potential, long residence time, slow release process, high gas mass transfer efficiency, and
easy adsorption [3–6]. CO2 nanobubbles have been widely used in gas-induced flotation
technology and wastewater aeration [7,8]. In agriculture, they can be used in CO2 slow-
release and enrichment technology to increase agricultural yield.

In recent years, quantitative evaluations of the performance of artificially enriched
CO2 in a controlled environment, the regulation of the crop growth environment, and
effective promotion of photosynthesis during crop growth have been applied. Zhang and
Yasutake et al. proposed a 3D computational fluid dynamics (CFD) model to simulate gas
distribution in a greenhouse after CO2 enrichment [9]. Moon et al. proposed a method
to predict the CO2 concentration in a greenhouse using a long short-term memory model
that realizes the quantitative regulation of CO2 enrichment and promotes the growth of
strawberries in a greenhouse [10]. To achieve the precise regulation of agricultural planting
environments, machine learning algorithms, such as artificial neural networks (ANNs),

Agriculture 2022, 12, 445. https://doi.org/10.3390/agriculture12040445 https://www.mdpi.com/journal/agriculture

https://doi.org/10.3390/agriculture12040445
https://doi.org/10.3390/agriculture12040445
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/agriculture
https://www.mdpi.com
https://doi.org/10.3390/agriculture12040445
https://www.mdpi.com/journal/agriculture
https://www.mdpi.com/article/10.3390/agriculture12040445?type=check_update&version=1


Agriculture 2022, 12, 445 2 of 18

are increasingly used in agricultural environmental information prediction [11,12]. Several
studies focused on the application of combination prediction ANN models in agricultural
management. In recent years, there has also been a significant increase in their application
in different scientific fields, such as financial and economic research, meteorology, and
agro-ecological research studies [13–15]. The backpropagation neural network (BPNN), a
widely used ANN model, has become an important fundamental model for constructing
combination models. Zou et al. used a combination of BPNN and autoregressive integrated
moving average (ARIMA) models to provide a useful method for predicting temporal
changes in soil salt and water content in agriculture [16]. Cheng et al. [17] proposed an
ARIMA-BPNN model, which is a new weighting method for a combined forecasting model,
to predict grain production in China. The experimental results showed that the combined
forecasting model obtained using the minimum sum of squared errors (MSSEs) method
can effectively improve forecasting accuracy. These studies indicate that combination
prediction models can successfully model the complex relationship between independent
and dependent variables in various scenarios.

Moreover, the stability of micro/nanobubbles is affected by factors, such as the gas
type, bubble size, and liquid viscosity [18,19]. However, there has been no relevant re-
search on CO2 micro/nanobubbles and their release concentration characteristics in the
environment. This study aims to clarify the spatiotemporal distribution characteristics and
factors influencing the release of CO2 from CO2 micro/nanobubble water and construct a
related prediction model. The specific objectives are to: (1) analyze the factors that affect
the release of CO2 from micro/nanobubble water and determine the temporal and spatial
distribution characteristics of the CO2 concentration after it is released; (2) construct the
ARIMA-BPNN combination prediction model coupled with temporal and spatial charac-
teristics to predict the CO2 release concentration in the environment after spraying the CO2
micro/nanobubble water; and (3) evaluate the performance of the combination model and
analyze the importance of the influencing factors of ambient temperature, environmental
humidity, spraying pressure, and spraying amount.

2. Materials and Methods
2.1. Preparation of CO2 Micro/Nanobubble Water

In this experiment, the micro/nanobubble-generating equipment created by Hangzhou
AiXiyue Technology Co., Ltd. (Hangzhou, China) was used. This generator uses the pres-
surized dissolved gas release method. Figure 1 illustrates a schematic of the equipment
principle. The micro/nanobubble water prepared and used in this study takes CO2 gas
as the gas source, and the preparation procedure includes the following parameters that
are the optimal preparation parameters of the equipment: a gas–liquid ratio of 2.76%,
inlet water temperature of 25.5 ◦C, and cycle time of 30 min. The bubble content and gas
solubility in the CO2 micro/nanobubble water created according to the specifications were
optimized at 7.76 mg/L and the average bubble particle size was 134.9 µm.
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2.2. Construction of Experimental Environment

To explore the release characteristics and concentration distribution of CO2 micro/nano
-bubbles in a particular spatial environment, we designed and developed a set of CO2
concentration-monitoring devices for CO2 micro/nanobubble release. The device consists of
liquid supply, temperature control, and parameter monitoring assemblies. The temperature
control assembly was composed of a temperature control box, temperature-regulating equip-
ment, and an incubator. The internal spaces of the temperature control box and incubator
were 180 cm × 120 cm× 150 cm and 60 cm× 40 cm× 100 cm (length × width × height),
respectively. The role of the temperature control assembly was to avoid the impact of
evaporation by micro/nanobubble water that can disturb data monitoring in the environ-
ment. The temperature control equipment was kept in a relatively constant experimental
environment outside the incubator to avoid damage to the devices in the incubator. The
liquid supply assembly was mainly composed of a micro/nanobubble generator and spray
component. Figure 2 shows the spraying head coordinates as (30 cm, 20 cm, and 0 cm). The
device enabled micro/nanobubble water to be ejected in the form of droplets of different
particle sizes. Three sensors (Jingxun Changtong Electronic Technology Co., Ltd., Weihai,
China) that could capture the CO2 concentration, temperature, and humidity from the
data monitoring assembly were installed at three monitoring points (20 cm, 40 cm, and
30 cm), (20 cm, 40 cm, and 60 cm), (20 cm, 40 cm, and 90 cm), referring to the coordinates
in Figure 2. Thus, the released concentration of micro/nanobubbles could be measured at
various temperatures. The impact of the temperature on the release of micro/nanobubbles
could be studied by varying the temperature of the monitoring device. The details are
shown in Figure 2.
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Figure 2. Schematic diagram of the experimental environment. 1© Temperature control box; 2© incu-
bator; 3© CO2 cylinder; 4© storage tank; 5© micro/nanobubble generator; 6© temperature regulating
equipment; 7© spraying components; and 8© data monitoring assembly.

2.3. Design of CO2 Gas-Release Experiment

To investigate the distribution characteristics and influencing factors of the CO2 concen-
tration in the environment following the release of CO2 micro/nanobubbles, the following
experiments were conducted. This experiment obtained the initial ambient temperature
(25–35 ◦C) and initial ambient humidity (20–50% RH), and used the sensors to note the
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temperature, humidity, and CO2 concentration within 2 hours after spraying CO2 mi-
cro/nanobubble water at the current site (30, 60, and 90 cm); the sampling frequency of the
sensor was 1 min. The spray pressure and amount of micro/nanobubble water per unit
area could be adjusted manually to 0.15–0.35 Mpa and 1.0–2.0 L, respectively.

2.4. Data Analysis Tools

The experimental data were stored in .xlsx format and the results were visualized using
the Origin (version 2021b) software. All implementations of the programing code were
performed using the Python programing language in the Pycharm (version 2019) integrated
development environment. The ARIMA model was constructed using the Python third-
party toolkit ARIMA module and the BP neural network model was constructed using the
Python third-party library scikit-learn.

3. Fundamentals Analysis
3.1. ARIMA Model

The ARIMA model is a time-series modeling technique that can be used to capture
the properties of linear data [20]. It is a method for forecasting nonstationary time-series
data with a high-precision linear time-series forecasting approach. The model is divided
into three components: autoregressive (AR (p)), moving average (MA (q)), and ARIMA (p,
q) [21]. Equation (1) expresses this concept:

Φ(B)∇dXt = Θ(B)at
E(at) = 0, Var(at) = σ2

a , E(atas) = 0, s 6= t
EXsat = 0, ∀s < t

, (1)

where Φ(B) = 1− ϕ1B− ϕ2B2 − . . .− ϕpBp is the autoregressive correlation coefficient
polynomial of the time-series ARIMA model, ∇d = (1− B)d is the higher-order difference,
Xt is a time series, and Θ(B) = 1− θ1B− θ2B2 − . . .− θqBq is a moving average coefficient
polynomial.

The construction of the ARIMA model includes four stages: data stationarity testing,
model establishment, model testing, and prediction [22]. The specific prediction steps are
as follows:

Step 1: Determine the stationarity of the data according to the data autocorrelation
function (ACF), partial autocorrelation function (PACF), variance and scatter plot, or unit
root test method.

Step 2: Stationary processing of the nonstationary series. The autoregressive method
is used to perform d-order differencing processing on the nonstationary series to stabilize
the time series and extract effective information from the time-series data.

Step 3: Model identification and selection. The ACF and PACF are examined to select
the model type.

Step 4: Select orders q and p from the ARIMA model. Several methods were devel-
oped based on the Akaike information criterion (AIC) [23], minimum description length
(MDL) [24], AIC, Bayesian information criterion (BIC) [25], and Hannan–Quinn information
criterion (HQIC) in the ARIMA model.

Step 5: Model checking. The model is tested according to the results of the model-
residual ACF and PACF plots and the final ARIMA model-fitting diagram. When the model
residual sequence lies within the confidence interval, the model passes the verification.
Figure 3 shows the flowchart of the algorithm.
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3.2. BPNN

The BPNN model is a multilayer feedforward neural network trained by an error back-
propagation algorithm [26]. Its main structure is composed of input, output, and hidden
layers, and the different nodes in the same layer are independent and have no influence
on each other. The output of each node only affects the output of its corresponding node
in the next layer. It has been widely used in prediction, evaluation, language recogni-
tion, self-applicable control, and other fields [27–29]. The BPNN model is a supervised
machine learning model that adopts an error-reverse algorithm and causes the output
results to converge to the expected value by adjusting the weights and other parameters
during training.

For a three-layer BP network, we assume that the number of neurons in the input,
hidden, and output layers are n, m, and q, respectively, and the input to the neurons is

xj
i = σ

(
n
∑

i=1
wikxi + bj

)
, where j = 1, 2, 3, . . . , p; the output from the neurons in the output

layer is yk =
p
∑

j=1
wikxj + bk, where k = 1, 2, 3, . . . , m. The network transmits the error

between the predicted and actual values, and updates the weights between the neurons at
each layer. The performance of the BPNN is mainly affected by the number of nodes and
learning rate at each layer.
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4. CO2 Emission-Concentration Prediction with Spatiotemporal Coupled Properties
Based on ARIMA-BPNN
4.1. Construction of the ARIMA-BPNN Hybrid Model

Linear regression can be considered if the periodic characteristics of a time series
are stable over time and there is a correlation between different series within a certain
timeframe. Equation (2) shows the linear relationship.

yt = α + βxt + et, (2)

where yt and xt are two different time series and e is the error series. If et has autocor-
relation, the model is a regression model with time series errors [30]. Compared to the
general situation, the ARIMA model considers the endogenous relationship of the sequence
and quantifies the influence of external variables that can theoretically improve the pre-
diction effect when the external environment changes [31]. The release process of CO2
micro/nanobubbles is affected by external environmental factors and equipment parame-
ters. These factors have a nonlinear relationship with the concentration of CO2 released into
the environment. Simultaneously, the released concentration of CO2 exhibits periodicity in
the time series under the same conditions. Therefore, to accurately predict the release con-
centration of CO2 micro/nanobubbles, an ARIMA-BPNN combination prediction model is
proposed. Figure 4 shows the flowchart of the process.
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4.2. Calculation of CO2 Concentration Spatiotemporal Coupling

An increase in CO2 concentration in short-distance spaces affects the CO2 concen-
tration in long-distance spaces over time, owing to environmental factors, such as wind
speed, temperature, and humidity. The CO2 concentration in long-distance spaces reacts
with the concentration in short-distance spaces, which is affected by the density of CO2
gas [32,33]. To describe the temporal correlation of a single measurement point and the
spatial correlation of multiple measurement points, a “spatiotemporal coupling coefficient”
with spatiotemporal characteristics is proposed to describe the relationship between CO2
release concentrations in the experimental environment and quantitatively describe the
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intensity of spatial correlation at different times. The spatiotemporal coupling coefficient of
the CO2 concentration can be calculated using Equation (3).

R(XA, XB, τ) =
covτ(XA, XB)

σXA σXB

, (3)

where XA and XB represent CO2 concentration time-series data in two spatial points in
the environment, XA = {xA,t}N

t=1 and XB = {xB,t}N
t=1; τ is the time-delay parameter that

represents the time delay of the CO2 concentration between spatial distances A and B.
In this experiment, τ was equal to the time between the collection intervals of the CO2
concentration. σXA and σXB represent the standard deviation of the time-series data on
CO2 concentrations at various spatial distances A and B. Additionally, covτ(XA, XB) is the
covariance between XA and XB based on the time-delay parameter, and its calculation
formula is as follows:

covτ(XA, XB) =
1

N − τ

N−τ

∑
t=1

(xA,t − µXA)
(
xB,t+τ − µXB

)
. (4)

The measurement unit for the time-lag parameter was in minutes (min) because CO2
micro/nanobubble release and gas diffusion characteristics refine the delay time of CO2
concentration data into the minimum data collection interval. Thus, the delay time in the
spatiotemporal coupling connection between the CO2 concentration and temperature is
only connected to the minimum collection interval of the concentration-collecting device,
and is unrelated to the duration of the release of micro/nanobubble water. The param-
eters are more adaptable and, therefore, more capable of precisely describing the CO2
spatiotemporal coupling coefficient.

4.3. Prediction of the Concentration of Released CO2 Micro/Nanobubbles

The linear and nonlinear factors in the release process of CO2 micro/nanobubbles were
fully explored by constructing the ARIMA–BPNN hybrid model. Therefore, spatiotemporal
coupling coefficients were used to measure the time-lag parameters of CO2 concentration
in different spaces, considering the temporal and spatial characteristics of CO2-release
concentration in the environment, for improving the prediction accuracy of the model. The
prediction steps of the above combination model are as follows:

Step 1: Use the CO2 concentration data with the time-series characteristics obtained in
three different spaces to calculate the coupling coefficient using the Equation (3) coupling
coefficient equation. The CO2 concentration data of the corresponding time intervals are
selected according to the size of the coupling coefficient for the construction and training of
the ARIMA model.

Step 2: Select a suitable dataset of CO2 concentration data collected within 2 h after
spraying CO2 micro/nanobubble water under different conditions and normalize these
data to converge the value of the CO2 concentration to the interval (0, 1).

x∗ =
x− xmin

xmax − xmin
, (5)

where x∗ represents the CO2 concentration after normalization, xmax represents the maxi-
mum value in the dataset, and xmin represents the minimum value in the dataset.

Step 3: Determine the parameters p, d, and q of the ARIMA model based on the data
characteristics of CO2 concentration. The ARIMA (p, d, q) model is used to predict the CO2
concentration and obtain the preliminary prediction value of the CO2 concentration, as
shown in Algorithm 1.



Agriculture 2022, 12, 445 8 of 18

Algorithm 1 ARIMA

Require: x
Ensure: y
1: for i = 0; i < 7; i++ do
2: if ad f(x) = true then
3: x← Dif f
4: break
5: else
6: x← Dif ference(x)
7: continue
8: p, q← AIC (x), BIC(X), HQIC(x)
9: y← ARIMA (x, p, d, q)

Step 4: Use the real value in the CO2 concentration dataset in Step 2 to subtract the
preliminary prediction value in Step 3 to obtain the residual value of the CO2 concentration
prediction.

Step 5: Determine the initialized weights of the BPNN and network training parameters.
The CO2 concentration data predicted by the ARIMA model, coupled with spatiotem-

poral characteristics, were used as the actual values, and the other four parameters were
used to construct a dataset for the neural network prediction model. The datasets were
divided into training and test sets in an 8:1 ratio. The training set was used for model
creation and training, whereas the test set was used to test the performance of the model.
The pseudocode of the BPNN used for model training is shown in Algorithm 2:

Algorithm 2 BPNN

Require: y, x, net
Ensure: result
1: x[i]← {tem[i], h[i], p[i], u[i], y[i], e[i]}
2: net.train(net, inputn, outputn)
3: inputntest ←mapminmax(inputtest)
4: BPsim ← sim(net, inputntest)
5: result←mapminmax(reverse, BPsim)

5. Instance Simulation and Analysis of Results
5.1. Factors Involved in CO2 Release and Dataset Selection

Considering the unique characteristics of CO2 micro/nanobubble release, data were
collected within 2 hours of spraying CO2 micro/nanobubble water in the experimental
environment. According to the experimental method described above, 12,600 datasets were
obtained. Two methods were used to divide the datasets.

Dataset 1: Within 2 hours of spraying CO2 micro/nanobubble water, the CO2 concen-
tration data were monitored by the sensors at 3 different spatial distances. Three parameters
were included in the dataset: spatial distance, time after spraying, and CO2 concentration.
Subsequently, the time-series datasets of CO2 concentrations were built based on the calcu-
lated spatiotemporal correlation coefficients. The first 80% CO2 concentration time-series
data were used as the training set to establish the ARIMA time-series model to predict
the CO2 concentration coupled with spatiotemporal characteristics. The second 20% CO2
concentration data were used as the validation set to conduct the prediction-effect test.

Dataset 2: The CO2 concentration data predicted by the ARIMA model coupled with
spatiotemporal characteristics were used as the actual values, and the other four parameters
were used to construct a dataset for the neural network prediction model. The datasets
were divided into training and test sets in an 8:1 ratio. The training set was used for model
creation and training, whereas the test set was used to test the performance of the model.
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5.2. Simulation Parameters

The process of selecting the model parameters and experimental platform used in this
study was as follows:

(1) ARIMA model
Step 1: Calculate the spatiotemporal correlation coefficient of the distance of 0.6 m and

0.9 m with a target space 0.3 m. The results are shown in Figure 5. It shows that, when the
time-delay parameter of the 2 nontarget spaces is 60 s, the correlation coefficient with the
target space is the largest, that is, 0.895 and 0.837, respectively. Therefore, the collection
interval of the CO2 concentration was 1 min, and the CO2 concentration time-series dataset
was constructed by coupling with the 0.3 m space.
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Step 2: Judge the stationarity of the sequence preliminarily by observing the diagram
of CO2-release concentration change and use the ADF test for the stationarity test. The
ADF test results are shown in Table 1.

Table 1. Comparison of ADF test results.

Comparison Item ADF 1% Significance Level 5% Significance Level 10% Significance Level

Before first-order
difference test −0.6987 −3.16 −2.89 −2.85

First-order difference test −24.44 −3.44 −2.87 −2.57

From the table, the sequence is unstable before the differential operation, and the
ADF value of the dataset is −24.44, which is evidently less than the 1%, 5%, and 10%
significance level values after the first-order difference. The ADF test indicates that the
data are stationary and reached the ARIMA model stabilization requirements after the
first-order difference.

Step 3: Use the autocorrelation and partial correlation coefficients to estimate the
model order. The results of data correlation detection are shown in Figures 6 and 7. To
further identify the order of the model, numerous (p, q) combinations were set and the AIC,
BIC, and HQIC values were compared under different combinations. Figure 8 shows that
when the model order (p, q) combination was (4, 6), the AIC value was the smallest (635.66),
the minimum BIC value was 631.89, and the model order was ARIMA (4, 1, 4); when the
model order (p, q) combination was (3, 5), the HQIC value was the smallest. Considering
the lowest AIC value as the premise, the value of (p, q) was (4, 6). Therefore, BIC and HQIC
are 640.77 and 647.60, respectively, and the difference between them and the corresponding
minimum value is the smallest. Therefore, the parameters of the experimental ARIMA
model are ARIMA (4, 1, 6).
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Step 4: Perform ARIMA model checking and use residuals to test the model quality.
The Durbin–Watson statistic can be used to test a model when the regression model contains
an intercept term, explanatory variables are non-random, or the random disturbance term
is a first-order linear autocorrelation [34]. Based on this, white noise was used to assess
the residual sequence, that is, to determine whether the residual sequence autocorrelation
function graph fell within the confidence interval. Figures 9 and 10 show the test results.
The image shows that the residual sequence is almost entirely within the confidence
interval, proving that the data sequence is white noise and that the ARIMA regression
model is effective.
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(2) BPNN model
In this hybrid model, the BPNN model describes the nonlinear relationship between

the ambient temperature, humidity, equipment pressure, amount of bubble water sprayed,
and residual CO2 concentration predicted by ARIMA. Therefore, these parameters were
taken as the input values, and the CO2 concentration in a specific space coupled with
space–time properties as the output values were used to train the network. The neural
network had four layers: the input layer, output layer, and two hidden layers. The number
of neurons in the input layer was equal to the number of model input parameters, that is,
five, and the number of neurons in the output layer was one. The selection of the number
of neurons in the hidden layer was obtained according to empirical formula 6, and the
number of nodes in the hidden layer with the best fitting result was obtained by repeatedly
testing the number of neurons within the value range.

H =
√

M + N + c, (6)

where M and N represent the number of neurons in the input and output layers, respec-
tively, and c is an integer in the range (1, 10). The comparison and analysis of each training
result of the model show that when the number of neurons in the hidden layer is (7, 5),
the training mean squared error reaches a minimum. Figure 11 shows the structure of the
neural network used in this experiment.
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Figure 11. Architecture of the BPNN prediction model coupled with spatiotemporal characteristics.

The parameters for the model training are listed in Table 2. Figure 12 shows the
variation curve of the root-mean-square error (RMSE) with the number of iterations during
the learning process of the training and test datasets. As shown, when the number of
iterations was 1000, the RMSE of the model was stable and reached the optimum value.
The RMSEs of the training and test sets were 3.58 × 10−5 and 3.07 × 10−4, respectively.

Table 2. Training parameter settings of ARIMA-BPNN.

Parameter Value

Activation function tan-sigmoid
Training function traingdx

Loss function L2 loss
Optimizer SGD (stochastic gradient descent)

Learning rate 0.01
Iterations 1000
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5.3. Model Evaluation Index

This study adopted three commonly used standard statistical measures, the RMSE,
mean absolute error (MAE), and correlation coefficient (R2), to evaluate the predictive
ability of the combined model, which is the deviation between the prediction result and
actual value. The specific calculation formulas are as follows:

RMSE =

√
1
m

n

∑
i=1

(yi − ŷi)
2, (7)

MAE =
1
m

m

∑
i=1
|yi − ŷi|MAE, (8)

R2 = 1−
∑
i
(ŷi − y)2

∑
i
(yi − y)2 . (9)

In these three formulas, m is the quantity of sample data, yi and ŷi are the measured
and model-predicted values, respectively, and y is the mean value of the sample data. The
smaller the RMSE and MAE values of the three model evaluation indices, the higher is
the accuracy of the prediction model and the better its prediction effect. R2 represents the
goodness of fit between the predicted results and measured values; the closer R2 is to 1,
the better is the interpretation of the independent variable to the dependent variable in the
regression model [25].

5.4. CO2 Release Prediction and Analysis in Micro/Nanobubble Water
5.4.1. Model Prediction Results and Analysis

To verify the effect of the combined prediction model ARIMA–BPNN, the prediction
results of the single models, ARIMA and BPNN, were compared and analyzed with the
prediction results of the ARIMA–BPNN model, and the results are presented in Table 3.

Table 3. Evaluation index values of each model.

Model RMSE MAE

BPNN 38.77 29.51
ARIMA 42.82 33.58

ARIMA-BPNN 17.48 9.31

Table 3 shows that there are obvious differences in the RMSE and MAE values of
the single and combined prediction models, and the accuracy of the combined model
is significantly higher than that of the single models. This indicates that the combined
model with coupled spatiotemporal characteristics is more feasible for predicting CO2
concentrations in the environment.

Figure 13 shows scatter plots of the prediction results of the three models for the test
dataset. Through comparative experiments, it was concluded that the fitting result based on
the ARIMA–BPNN hybrid model was the best, with the correlation coefficient R2 between
the measured and predicted values reaching 0.86. The fitting results of the other two
models were not significantly different from each other. The combined prediction model
compensates for the individual limitations of the single prediction models. Simultaneously,
it can completely incorporate the effects of various environmental conditions on the release
of CO2 micro/nanobubbles, while maintaining the time-series prediction effect, allowing
the model to better adapt to external factors.
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5.4.2. Analysis on Factors Affecting CO2 Release in Micro/Nanobubble Water

To analyze the importance and relationship among the factors affecting the release
of CO2 micro/nanobubbles, the mean influence value (MIV) algorithm [35] was used
to evaluate the influence of the input neurons (environmental influence factor variables:
temperature, humidity, spraying pressure, and spraying amount) of the hybrid prediction
model on the output value of CO2 concentration. The steps of the MIV influence factor
algorithm are shown in Algorithm 3:

Algorithm 3 MIV

Input: ki, Pi
Output: |MIVi|, yprediction
1: set adjustment rate ki of MIV, k1 = 10%, k2 = 15%, k3 = 20%, k4 = 25%;
2: generate a new sample dataset Pi−max, Pi−min;
3: use ARIMA-BPNN model to predict the new data set Pi−max, Pi−min, obtain the predicted
results Ri−max, Ri−min;
4: IVi = Ri−max − Ri−min;
5: |MIVi| = abs(mean(IVi)).

The results of MIV influence factor algorithm measure the relative importance and
weights of the input factors influencing the output variable. This algorithm can be used to op-
timize the input variables to reconstruct the training model, thereby reducing the dimensions
of the network input parameters and further minimizing the complexity of the model.

The following adjusted rates were set in the experiment: k1 = 10%, k2 = 15%, k3 = 20%,
and k4 = 25%. The |MIVi| of each variable under each adjusted rate was calculated using
several experiments, and the results are shown in Figure 14. It shows that the weights of the
different input parameters were essentially the same at different adjusted rates. Ambient
temperature (AT) is the most important element that influences the release concentration of
CO2 micro/nanobubbles among the four input variables; it was presented with the highest
weight in the prediction model. The spray pressure and amount of spray had a large weight
proportion, whereas the weight of ambient humidity had the smallest proportion. The
results demonstrate that the release of CO2 micro/nanobubbles is influenced by various
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factors, and the correlation between these factors should be considered while building the
prediction model.
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humidity, spray pressure, spray amount, and other variables on the ambient CO2 concen-
tration. Figure 15 presents the results. 

Figure 14. Change chart of |MIV| for four impact factors.

Furthermore, the CO2 concentration in the environment 2 hours after spraying CO2
micro/nanobubble water was collected to investigate the effects of ambient temperature,
humidity, spray pressure, spray amount, and other variables on the ambient CO2 concen-
tration. Figure 15 presents the results.
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Figure 15. Histogram of the effect of different influencing factors on the concentration of CO2 mi-
cro/nanobubbles. (a), (b), (c), and (d) represent the bar charts of CO2 concentration in the experi-
mental environment with the change of ambient temperature, spraying pressure, ambient humidity, 
and spraying amount, respectively. 

Figure 15 shows that the ambient temperature, ambient humidity, spray pressure, 
and spray amount have an impact on the release of CO2 micro/nanobubbles. Temperature 
had the highest influence on the release of CO2 micro/nanobubbles, and the CO2 concen-
tration increased with temperature. The influence of humidity and spray amount on the 
release of CO2 was less than that of spray pressure. With an increase in spray pressure, 
the CO2 concentration increased in the environment; however, the increasing trend was 
not obvious. These results are basically consistent with the results of the MIV algorithm. 
It indicates that the evaluation method for the influencing factors of CO2 micro/nanobub-
ble release based on the MIV algorithm is reliable. 
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Figure 15. Histogram of the effect of different influencing factors on the concentration of CO2

micro/nanobubbles. (a), (b), (c), and (d) represent the bar charts of CO2 concentration in the
experimental environment with the change of ambient temperature, spraying pressure, ambient
humidity, and spraying amount, respectively.

Figure 15 shows that the ambient temperature, ambient humidity, spray pressure, and
spray amount have an impact on the release of CO2 micro/nanobubbles. Temperature had
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the highest influence on the release of CO2 micro/nanobubbles, and the CO2 concentration
increased with temperature. The influence of humidity and spray amount on the release
of CO2 was less than that of spray pressure. With an increase in spray pressure, the CO2
concentration increased in the environment; however, the increasing trend was not obvious.
These results are basically consistent with the results of the MIV algorithm. It indicates that
the evaluation method for the influencing factors of CO2 micro/nanobubble release based
on the MIV algorithm is reliable.

6. Conclusions

In this study, the factors affecting the release of CO2 from micro/nanobubble water
were investigated and a hybrid prediction model coupled with spatiotemporal characteris-
tics was proposed. The detailed experimental results are as follows:

(1) Considering the linear and nonlinear properties of the gas release process, a hybrid
prediction model based on the ARIMA-BPNN was constructed and compared to the
prediction results of both the ARIMA and BPNN models. The results show that the
fitting result based on the hybrid prediction model is the best, with R2 reaching 0.86.
The RMSE and MAE values are 17.48% and 9.31%, respectively. The ARIMA-BPNN
model has good prediction accuracy and could accurately fit the complex mapping
relationship between the influencing elements and CO2 micro/nanobubble release
concentration.

(2) Based on the constructed hybrid model, the MIV algorithm was used to quantitatively
analyze the influence weights of the input factors on the CO2 concentration. The
experimental results show that within the range of model input variables, ambient
temperature has the highest weight in the prediction model as a key factor affecting
the release of CO2 micro/nanobubbles, followed by spray pressure and spray amount.
The ambient humidity has the lowest weight with no significant effect.

In conclusion, the prediction model proposed in this paper provides guidance for
the use of CO2 micro/nanobubble water to enrich CO2 for crops and provides a new
research idea for the quantitative application of CO2 micro/nanobubble water in agriculture.
However, currently, the model has limitations in terms of the input influencing factors
or other possible physical factors that affect the release of bubbles in micro/nanobubble
water. Therefore, the influence of a higher release of CO2 micro/nanobubbles should
be explored in future research to further improve the prediction accuracy of the model.
Simultaneously, the model was only used to predict the release concentration of CO2
micro/nanobubbles and no relevant experiments were conducted on the applicability of
the release characteristics of other gas sources.
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