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Abstract: Genomic selection is widely used in dairy cattle breeding, but still, single-step models
are rarely used in national dairy cattle evaluations. New computing methods have allowed the
utilization of very large genomic data sets. However, an unsolved model problem is how to build
genomic- (G) and pedigree- (A22) relationship matrices that satisfy the theoretical assumptions
about the same scale and equal base populations. Incompatibility issues have also been observed
in the manner in which the genetic groups are included in the model. In this study, we compared
three approaches for accounting for missing pedigree information: (1) GT_H used the full Quaas
and Pollak (QP) transformation for the genetic groups, including both the pedigree-based and
the genomic-relationship matrices, (2) GT_A22 used the partial QP transformation that omitted
QP transformation in G−1, and (3) GT_MF used the metafounder approach. In addition to the
genomic models, (4) an official animal model with a unknown parent groups (UPG) from the QP
transformation and (5) an animal model with the metafounder approach were used for comparison.
These models were tested with Nordic Holstein test-day production data and models. The test-day
data included 8.5 million cows with a total of 173.7 million records and 10.9 million animals in the
pedigree, and there were 274,145 genotyped animals. All models used VanRaden method 1 in G and
had a 30% residual polygenic proportion (RPG). The G matrices in GT_H and GT_A22 were scaled
to have an average diagonal equal to that of A22. Comparisons between the models were based on
Mendelian sampling terms and forward prediction validation using linear regression with solutions
from the full- and reduced-data evaluations. Models GT_H and GT_A22 gave very similar results in
terms of overprediction. The MF approach showed the lowest bias.

Keywords: ssGBLUP; ssGTBLUP; genomic evaluation; single-step; Holstein; genetic groups; metafounder

1. Introduction

Meuwissen et al. [1] introduced the genome-wide marker-assisted prediction model
called genomic selection. Many alternative prediction models have been developed to use
genomic selection in dairy cattle breeding [2]. Theoretically, the best model is single-step
genomic BLUP (ssGBLUP) when phenotypes are available from both genotyped and non-
genotyped individuals. The single-step approach offers a unified method for the analysis of
all animals simultaneously [3,4]. Even though a decade has passed since the introduction
of ssGBLUP, it is still not widely implemented in national dairy cattle evaluations.

Practical implementation of ssGBLUP has encountered different computational and
modeling challenges. Some of the computational challenges related to very large genomic
data sets can be overcome by using an alternative expression of the inverse genomic-
relationship matrix or a model equivalent to ssGBLUP [1,5,6]. However, an unsolved
modeling problem is how to build genomic- (G) and pedigree- (A22) relationship matrices
that satisfy the theoretical assumptions about the same scale and equal base populations [7].
Several methods were proposed that make G and A22 compatible. For example, base-
population allele frequencies (AF) are used [8], and elements of G are scaled and centered
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to have, on average, the same diagonal and off-diagonal elements as in A22 [7,9]. Similar
incompatibility issues were observed when genetic groups were included in the model [10].

Genetic groups can be included in a model as regression coefficients when the group
proportions of an individual are traced to groups of unknown parents in the pedigree [11].
When the number of genetic groups is small, it is easy to explicitly include such groups
in the model. However, this may lead to significant memory and computational costs
especially in complicated models having many genetic groups [10]. A computationally
more efficient approach with such models is to re-express genetic groups as unknown
parent groups (UPG) resulting from the Quaas and Pollak (QP) transformation [12,13].
After the QP transformation, the genetic groups, by regression, are replaced by UPGs that
extend the inverse-relationship matrix of all animals A−1 in the mixed-model equations
(MME) of the pedigree-based animal model.

The ssGBLUP uses relationship matrix H, which includes both pedigree-based and
genomic-based relationship matrix information. UPGs can be accounted for in many ways
in the MME of ssGBLUP. If UPGs are included in A−1 but not accounted for in A22

−1 and
G−1, severe convergence problems may arise, suggesting an incorrect model [14]. In many
cases, this problem can be solved by properly accounting for genetic groups. The full
QP transformation as described in [14,15] includes UPGs in A−1, A22

−1, and G−1 in the
MMEs of the single-step models. However, there is an alternative approach where the
contributions of G−1 are ignored in the QP transformation, or the altered QP H inverse is
used [16–18]. Ignoring G−1 in the QP transformation can be justified by considering that
the G matrix contains all the information, whereas the pedigree information to build the A
matrix is incomplete and requires a UPG.

An alternative to the genetic groups is the use of metafounders (MF). The MF approach
proposed by Legarra et al. [19] attempts to make the A−1 and A22

−1 matrices compatible
with the G matrix. The MF approach is based on the idea of using an allele frequency
(AF) equal to 0.5 for all the markers when calculating the G matrix [7]. The unknown
parents are replaced by MF or pseudo-individuals with relationships and self-relationships
that augment the A matrix. The MFs are like UPGs but allow a related base- population
or populations with nonzero inbreeding coefficients, e.g., as in [19,20]. The relationships
within and between the MFs are modeled by a Γ matrix, which is used in forming the
pedigree-based relationship matrix (AΓ).

When MFs are defined as the same as the genetic groups, the large number of UPGs
that are common in the breeding-value prediction models of dairy cattle can make the
estimation of the Γ matrix challenging [21]. Because the estimation of the Γ matrix re-
quires the base-population AF, the large number of UPGs increases the chances that a
UPG is associated with some rare allele genotypes, which can make the base-population
AF estimate very uncertain. Thus, instead of estimating the base-population AF for all
UPGs, a well-estimated Γ submatrix can be extended to a full Γ matrix using a covariance
function, [22] as suggested by Kudinov et al. [23].

The aim of this study was to test different options to handle genetic groups in single-
step models with the Nordic Holstein test-day (TD) data. We applied three different single-
step TD models: (1) UPG by full QP transformation (GT_H), (2) UPGs in A−1 and A22

−1 or
partial QP (GT_A22), and (3) the MF approach (GT_MF). In addition to the genomic models,
(4) an official pedigree-based animal model with a UPG by QP transformation and (5) a
pedigree-based animal model with the metafounder approach were run for comparison.

2. Materials and Methods
2.1. Data

We used the official Nordic Holstein (HOL) milk production evaluation data obtained
from the Nordic Cattle Genetic Evaluation (NAV). The data included TD records of milk,
fat, and protein production from Denmark (DNK), Finland (FIN), and Sweden (SWE). The
TD data included 8.8 million cows with a total of 173.7 million test-day records and a total
of 447.5 million observations. The pedigree file had 10.9 million animals.
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There were 274,145 genotyped animals, of which 75,802 were genotyped bulls (also
including Holstein bulls from the EuroGenomics genotype exchange (EuroGenomics, 2020)
and young bull calves), and 198,343 genotyped cows and heifers. Until 2019, bulls were
genotyped using the BovineLD Bead Chip (Illumina, San Diego, CA, USA) (25% of all
genotyped) and cows with the Eurogenomics custom LD chip (51% of all genotyped). Since
2019, all animals have been genotyped using the Eurogenomics EG MD chip (24% of all
genotyped) [24]. After applying editing criteria for a minor allele frequency of 0.01 and
a locus average GenCall score of 0.60, a total of 46,342 SNP markers on the 29 bovine
autosomes were chosen for the analyses, and all the genotypes were imputed to this density.
Genotype imputation was carried out using a family-and-population-based approach
implemented in the FImpute program [25].

2.2. Models

Instead of the original ssGBLUP model using the H matrix, we used the ssGTBLUP
approach in the computations. The ssGTBLUP approach allows the key computations
involving the G−1 matrix to be replaced by efficient multiplications with a Woodbury
matrix identity [26]. Thus, a dense T matrix of size m by n is used instead of the dense
G−1 matrix of size n by n, where n is the number of genotyped animals and m is the
number of SNP markers. Three different single-step models named GT_H, GT_A22, and
MF were used in the comparisons. In all models, the genomic-relationship matrix was as in
VanRaden method 1 and included 30% residual polygenic proportion (RPG) and an AF of
0.5 for all markers. Earlier studies indicated that 30% RPG reduces the inflation of genomic
evaluations more than models with smaller or larger RPGs (unpublished data). In the GT_H
model, full QP transformation of genetic groups for A−1 and A22

−1 and G−1 was used.
The computations by ssGTBLUP were described in Koivula et al. [15]. In GT_A22, the QP
transformation was applied to A−1 and A22

−1. The QP part for A22 can be completed with
an equivalent sparse formulation by reading the pedigree and including UPGs in the A22 as
described in Koivula et al. [15]. In GT_MF, the metafounder approach was used. In addition
to the single-step models, an animal model with UPGs by QP transformation (EBV) and
an animal model with metafounders (EBV_MF) were used for comparison and to observe
the changes in predictions due to genomic information only. The pedigree inbreeding
coefficients were accounted for in A−1 and A22

−1, and in GT_MF, inbreeding coefficients
were accounted for in corresponding inverse matrices AΓ and A22

Γ. The G matrices in
GT_H and GT_A22 were scaled to have an average diagonal equal to the pedigree-based
relationship matrix of the genotyped animals (A22).

Genetic groups and MFs were defined by the same logic. First, we defined fewer
genetic groups than in the original NAV evaluation. The new groups were based on
4 breed groups (Holstein, red dairy cattle, Jersey, and ‘other breeds’) and 5 country-of-
origin groups within the Holstein group (HOLDNK, HOLSWE, HOLFIN, HOLother, and
HOLred). Second, each of these nine sources was further grouped by birth year decade
and by selection path when appropriate. Thus, the original 446 groups were reduced to
176. These groups were considered random UPGs with variances equal to the genetic
(co)variance in GT_H, GT _A22, and EBV. The 176 groups were used as metafounders in
GT_MF and EBV_MF.

The MF approach needs a covariance matrix for the metafounders, i.e., the Γ matrix.
The MF self-relationship matrix Γ was defined using a covariance function (CF) model [22].
The Γ0 matrix of nine base MFs used values from [21]. In the 176 groups, a breed-specific
linear time trend of a decade was assumed in the self-relationships, which were estimated
using the base Γ0 matrix in the CF model. The known regression coefficients and design
matrices in the CF model allow describing Γ matrices of any size, such as for our 176 groups,
Γ176 = Φ176KΦ176

′. We chose heuristic values for K based on expectations from numerous
descriptive analyses. For more formal analyses, see Kudinov et al. [23]. After solving
the Γ176-matrix, we computed the Γ-matrix-compliant inbreeding coefficients needed for
the computations involving the inverses AΓ and A22

Γ when solving MMEs. As the MF
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approach changes the relationship structure, Legarra et al. [19] derived a correction factor
to be used to change the unrelated base-population-variance components to related base-
population components. For our derived Γ matrix, the correction factor was close to one.
Therefore, the same genetic-variance components were used in all models.

The study used the Nordic multiple-trait, reduced-rank, random regression TD model
from the routine genetic evaluations for milk, fat, and protein in Finland, Sweden, and
Denmark (a detailed description of the model can be found in Lidauer et al. [27]). Pro-
duction records from the first three lactations are considered as nine different traits, with
each having its own lactation curve. Therefore, the model had 27 traits in total: 3 countries,
3 yield traits, and 3 lactations. In this-reduced rank random regression TD model, each
animal received 15 solutions to the random regression effects in the same way as in the
official NAV evaluations. The TD-model solutions of genetic random regression coefficients
were used to compile the total yields for milk, protein, and fat for the 305 d lactation [27]
where the first, second, and third lactations had weights of 0.3, 0.25, and 0.45, respectively.

Comparison of models was based on forward prediction validation with solutions
from the full- and the reduced-data evaluations. The reduced data were extracted from
the full data by removing the last four years of observations from the full data. The linear
regression validation (LR) method [28] was used for validation. The LR method compares
predictions based on reduced and full data, which results in estimates of accuracy and bias.
Candidate animals in the validation were selected according to their effective daughter
contributions (EDC). Danish, Finnish, and Swedish (DFS) Holstein bulls born between
the years 2010 and 2016 and having their EBV based on an EDC ≥ 3.0 (corresponding
to roughly 20 daughters) in the full-data set but an EDC of zero in the reduced-data set
were defined as candidate bulls. This resulted in 524 candidate bulls for validation. The
EDCs were calculated using the Interbull-EDC method tailored for the animal model by
the ApaX99-program [29] for all bulls in the pedigree using both the full and the reduced
data sets.

All MMEs of the TD models were solved by MiX99 software [30], which uses pre-
conditioned conjugate gradient (PCG) iteration. The main computational cost in every
iteration of the PCG method was due to the MME coefficient matrix times a vector product,
where the most time-consuming computations were due to genomic information. To save
memory and computing time, the inverse of the A22 matrix was not computed in advance,
but instead, the computations used the method by Strandén et al. [31], which is based on
sparse submatrices of A−1 by pedigree information. The PCG method was assumed to
be converged when Cr < 10−7, where Cr is defined as a Euclidean norm of the difference
between the right-hand side (RHS) of the MME and the one predicted by the current
solutions relative to the norm of RHS.

3. Results and Discussion

Average diagonal elements of the A22, A22
Γ176, and G by birth year of genotyped

animals are presented in Figure 1. The use of the Γ176 matrix lifted the diagonal elements
of the A22 matrix close to those of the G matrix. Average inbreeding coefficients in A22
and G were 0.05 and 0.34, respectively. The difference is close to those reported earlier by
VanRaden et al. [32] and Kudinov et al. [21]. The average inbreeding coefficient increased
to 0.29 in A22

Γ176.
Wall clock times for preprocessing and solving MMEs are given in Table 1. The

preprocessing, i.e., the computing time and the peak memory used in the construction
of the T matrix for the G−1 matrix computations, did not differ considerably between
the single-step models. For the MF model, there was an additional step of building the
self-relationship matrix Γ. However, this step only marginally increased the total time.
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Figure 1. Average diagonal elements of the pedigree-relationship matrix of the genotyped animals
(A22), the genomic-relationship matrix constructed assuming that all allele frequencies were 0.5 (G),
and the pedigree-relationship matrix of the genotyped animals augmented by Γ176 (A22

Γ176) presented
by the birth year of the animal.

The number of PCG iterations to solve (G)EBV was 1227 for the animal model (EBV)
and 1264 for the animal model with metafounders (EBV_MF). The total solving time to
calculate EBV_MF was longer than for the animal model with UPGs by the QP transfor-
mation. Of the single-step models, GT_H with full QP needed 1019 iteration rounds for
convergence, GT_A22 with QP only in A−1 and A22 needed 1051 iteration rounds, and
GT_MF with metafounders needed 1307 iteration rounds. Thus, the MF model required
more iterations. However, because the time per iteration round in the GT_MF model was
less than that in the GT_H and GT_A22 models, the total computing time by GT_MF was
lowest among the single-step models. Compared with the pedigree-based animal models,
the single-step models required about 40–50% more time to calculate the solutions using
the PCG iteration.

Table 1. Computing time (wall clock time in hours) and peak memory use (in GB) for an animal
model with UPGs (EBV), an animal model with metafounders (EBV_MF), and different single-step
models. The single-step models had unknown parent groups (UPG) with full QP (GT_H), UPGs with
partial QP (GT_A22), and metafounders (GT_MF). Convergence was assumed when Cr < 10−7 (the
norm of relative error in predicted RHS of MME).

EBV EBV_MF GT_H GT_A22 GT_MF

Building T matrix time (h) 23 20 20
Peak memory GB 208 207 207

Solving
Iterations 1227 1264 1019 1051 1307

Seconds/PCG round 101 125 173 178 125
Time (h) 34 44 49 52 45

Peak memory GB 14.9 15.0 114.5 114.3 114.5
Total computing time (h) 34 44 72 72 65

Table 2 illustrates the LR-validation results from the different models for 524 DFS
Holstein validation bulls. The level differences in the (G)EBV predictions were corrected
by standardizing the (G)EBV so that the mean (G)EBV for cows born in 2007 was the
same in all models. The b0 column in Table 1 shows the mean difference (in kg) between
the full- and reduced-data (G)EBV evaluations. This illustrates the realized bias. GT_MF
showed a slightly smaller difference than the UPG models. The regression coefficients (b1)
showed the same trend as b0. The largest b1, i.e., the smallest overdispersion, was observed
for GT_MF for all traits. Although there were no large differences in the coefficients of
correlation (R2) between the models, GT_MF had the highest R2 values. The R2 from
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the LR validation can be interpreted as a reciprocal of the increase in reliability from the
reduced-data evaluations to the full-data evaluations. Thus, the results indicate that, both
in terms of bias and reliability, the MF model was slightly better than the other models.
This conclusion is similar to that of other studies where the use of the MF model improved
the single-step evaluations, e.g., [17,18]. Similarly, the MF approach seems to give better
b1 and R2 values than the UPG model for the animal model without genomic information.
Our results indicate that when the QP transformation is used, GT_H is as practical an
alternative as GT_A22. This result is different from the results from other studies [16,18],
where GT_A22, which was called altered H-inverse, had better predictive abilities than the
full QP model GT_H.

Table 2. Bull linear regression validation (number of bulls = 524) results. Regression coefficients (b1)
and coefficients of correlation (R2) from the models. The b0 = mean (Full_(G)EBV—reduced_(G)EBV).
The different models are an animal model with UPGs (EBV), an animal model with metafounders
(EBV_MF), and different single-step models. The single-step models used UPGs with full QP (GT_H),
UPGs with partial QP (GT_A22), and metafounders (GT_MF).

Model b0 b1 R2

Milk

EBV −101.7 0.84 0.32
EBV_MF −141.36 0.89 0.35

GT_H −319.8 0.87 0.67
GT_A22 −315.2 0.87 0.67
GT_MF −272.3 0.89 0.68

Protein

EBV 0.80 0.74 0.24
EBV_MF 0.58 0.82 0.27

GT_H −11.10 0.81 0.63
GT_A22 −10.99 0.81 0.62
GT_MF −9.71 0.83 0.64

Fat

EBV −2.18 0.73 0.23
EBV_MF −2.24 0.80 0.26

GT_H −16.16 0.82 0.64
GT_A22 −15.61 0.81 0.63
GT_MF −14.67 0.85 0.65

In a genomic-selection program, the genomic pre-selection of bull calves [9,32] conflicts
with the usual assumptions in the pedigree-based evaluations, which do not use genomic
information. The pre-selected bulls are no longer a random sample of the progeny of their
parents. This leads to an inflated mean for Mendelian sampling (MS) terms for these bulls
and to a violation of normal assumptions in the pedigree-based animal model. Additionally,
the MS term for the genotyped animals is likely to be different from zero with selective
genotyping. In contrast, MS is expected to be zero when genotyping involves all young
animals or is random.

Genomic selection allows selecting animals with superior MS. Consequently, the mean
GEBV of all candidate animals is lower than for selected animals and their progeny [33]. The
selected animals with many genotyped progenies are also more likely to have MS greater
than zero [34]. The larger MS has an impact on genetic trends when animals are selected
based on genomic information, especially if the selection happens before phenotypes are
recorded [35].

Figure 2 shows the mean MS of genotyped bulls by birth year for protein using the
reduced-data GEBV. Means are for DFS bulls and include all genotyped young bulls, those
without daughters, and those that never entered AI service. In the reduced-data model, the
bulls born after 2011 only have genomic information. There were no significant differences
in the mean MS terms between the single-step models. The figure shows that for the
youngest age classes, the difference is about 4 kg for different single-step models, whereas
in both animal models, the MS term is zero, as expected. Before the start of genomic
selection, the mean MS terms were quite stable. The mean MS was presumably below zero
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because of the overprediction of bull dam EBVs. After genomic selection began to take
effect, the mean MS also started to increase. In animal models, both approaches seem to
give zero MS for the youngest age classes, but in the older bulls, the MS term in EBV_MF
was not as negative as in the other models.
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model with metafounders (EBV_MF), and three different single-step models by ssGTBLUP. The
single-step models had unknown parent groups (UPG) with full QP (GT_H), UPGs with partial QP
(GT_A22), and metafounders (GT_MF).

Figure 3 shows the genetic trend and yearly SD of protein (G)EBV for DFS Holstein
bulls. Solid lines are from the full-data runs and dashed lines from the reduced-data runs.
Except for the lower trend for animal-model EBVs, the trends from the single-step models
were quite similar. However, for the MF model in the reduced-data set, the trend was
slightly lower than in the other single-step models, indicating lower overprediction in the
MF model compared with the UPG models. The same can be observed in estimates of b0 in
Table 2. The genetic trends in the official animal model (EBV) and the animal model using
the MF approach (MF_EBV) were similar, as were their SD trends.

Based on all our comparisons, it seems that the traditional genetic group model and the
MF model are both feasible options for handling genetic groups in single-step evaluations.
The single-step MF model can be a more sophisticated way to combine pedigree and
genomic information than the traditional single-step model with UPGs because genomic
information affects both the genomic- and the pedigree-based relationship matrices in the
MF model. Moreover, it seems that the MF model does not increase the trend of young,
genotyped animals as much as the UPG-based single-step methods. The MF model also
gives marginally better validation results compared with the other models. However, the
current MF approach might still require some further development in building the Γ matrix.
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Both the traditional UPG models and the MF approach can be implemented effi-

ciently in single-step models with large genomic data sets. In our study, the MF approach 
had a lower bias than the UPG models. Moreover, when the QP transformation was used 
to arrive at a UPG model, the results from the full QP transformation were similar to the 
partial QP transformation in which the G−1 contributions were not included in the UPG 
computations. The mean MS by birth year was positive for the genotyped bulls during the 
last decade according to the single-step models but close to zero in the pedigree-based 
animal model. Selective genotyping can explain some of the positive mean MS values, but 
the most recent years need further investigation. 
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Figure 3. (A) Genetic trends for protein (G)EBV (kg) for the bulls presented by birth year averages.
(B) SD for protein (G)EBVs (kg) by birth year. The different models are animal model (EBV), animal
model with metafounders (EBV_MF), and three different single-step models by ssGTBLUP. The single-
step model had UPGs with full QP (GT_H), UPGs with partial QP (GT_A22), and metafounders
(GT_MF). Solid lines are means and SDs for full-data trends, and dashed lines are for reduced-
data trends.

4. Conclusions

Both the traditional UPG models and the MF approach can be implemented efficiently
in single-step models with large genomic data sets. In our study, the MF approach had
a lower bias than the UPG models. Moreover, when the QP transformation was used to
arrive at a UPG model, the results from the full QP transformation were similar to the
partial QP transformation in which the G−1 contributions were not included in the UPG
computations. The mean MS by birth year was positive for the genotyped bulls during
the last decade according to the single-step models but close to zero in the pedigree-based
animal model. Selective genotyping can explain some of the positive mean MS values, but
the most recent years need further investigation.
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