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Abstract: Smart farming uses advanced tools and technologies such as intelligent agricultural 

machines, high-precision sensors, navigation systems, and sophisticated computer systems to in-

crease the economic benefits of agriculture and reduce the associated human effort. With the in-

creasing demands of individualized farming operations, the internet of things is a crucial technique 

for acquiring, monitoring, processing, and managing the agricultural resource data of precision 

agriculture and ecological monitoring domains. Here, an internet of things-based system scheme 

integrating the most recent technologies for designing a management platform for agricultural 

machines equipped with automatic navigation systems is proposed. Various agricultural machin-

ery cyber-models and their corresponding sensor nodes were constructed in a pre-production 

phase. Three key enabling technologies—multi-optimization of agricultural machinery scheduling, 

development of physical architecture and software, and integration of the controller-area-network 

with a mobile network—were addressed to support the system scheme. A demonstrative proto-

type system was developed and a case study was used to validate the feasibility and effectiveness 

of the proposed approach. 

Keywords: smart farming; internet of things; intelligent agricultural machines; management plat-

form; agricultural machinery scheduling 

1. Introduction

The mass real-time demands of resource allocation as well as data processing in ag-

riculture are currently placing new requirements on precision agriculture [1,2]. Internet 

of things (IoT) and cloud computing involve the basic management tasks not only of 

farming processes, but also of visual data related to crop resources and growth envi-

ronments [3,4]. They are propelling the rapid development of smart farming. The farm 

management information system (FMIS), which includes the functions of data collection 

and analysis, decision making, and controlling variable rates, improves agricultural 

production and reduces negative impacts on the environment [5]. However, owing to the 

individual requirements of system construction, a customized operational system for 

each farm presents various characteristics [6], including differences in various crops, the 

constraints of field conditions, the diversity of machine capacities, and specificities of 

pathways. Therefore, how to connect the FMIS to real smart farming has become a major 

issue. 

In the main activity of arable farming, traditional agricultural equipment can only 

communicate with farmer operators, which brings many challenges to the development 
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of smart farming, such as the efficiency and stability of transmission [7], and the difficult 

integration between current communication technology (ICT) devices and farm enter-

prises. Even though a great many researchers have studied the problems of agricultural 

machinery management and resource allocation in FIMS, this information cannot di-

rectly contribute to agricultural machinery, which leads to the farmer having to pay ad-

ditional fees for the resources consumed in the process of distributing and operating op-

erational assignments for agricultural machinery throughout the farm work. Therefore, 

it is essential to develop a new system to bridge the communication gap between agri-

cultural machinery and FMIS, and maximize resource performance to help farmers dig-

itally transform the management of their farms and agricultural machinery [8]. 

Fundamental to this transformation is the rapid development of some technologies, 

including IoT, information technology and ICT, and agricultural autonomous driving 

techniques. In terms of IoT and ICT, they have played important roles in the connectivi-

ty of FMIS and have usually been used to collect real-time data on facilities and crops 

that are part of the farms. With regards to agricultural autonomous driving techniques, 

this is realized by transforming the chassis of traditional agricultural machinery and in-

stalling automatic navigation operational systems, which not only promote the emer-

gence of autonomous agricultural machinery (AAM), but also provide key support for 

the implementation of smart farming in China [9–11]. 

AAM includes automatic navigation operational tractors, unmanned aerial vehicles, 

agricultural robots, etc., which are used to conduct and support different services and 

tasks that are assigned by the farm managers, tractor operators, or researchers. Howev-

er, some new demands for these devices have been raised when used on farms. One is 

an urgent need to build an IoT-enabled management platform for these new machines to 

acquire the basic data of measurements taken in the field through simple-to-use meth-

ods [12,13]. Another is that the two key decision problems—dynamic work-planning 

and decision-making—should be addressed so that the emerging AAM can be con-

trolled and operated in the field in the most efficient manner [14,15]. 

To meet the above requirements, an IoT-enabled autonomous agricultural machin-

ery management platform (AAMMP) scheme was introduced to perceive the current 

position of the agricultural machinery and provide motion recommendations based on 

the physical environment. The aim was to unify an IoT-based system to exchange data 

from real-time operating AAMs through communication. In addition, a dynamic opti-

mization framework is proposed to decide when, where, and how the AAM should 

work to improve the work efficiency of the farm for a period of precise operation. 

Therefore, the main content for the AAMMP includes three steps. Firstly, this study will 

describe how the embedded system of AAM will be connected with the IoT-based plat-

form to perceive real-time information and execute low-latency motions. Moreover, a 

novel decoupling algorithm based on a multi-object scheduling model is proposed to 

providing decision-making on scheduling, operational allocation, and path planning of 

AAM. Finally, an individualized IoT-based platform for agricultural machinery man-

agement was developed and an illustrative operational procedure is discussed using a 

case study of practical AAM operations. 

The outline of this study is organized as follows. Section 2 is the literature review of 

related works and Section 3 describes the architecture and design logistics. Three key 

enabling technologies are illustrated in Section 4: multi-optimization and cloud compu-

ting, system development, and a communication and integration strategy. Section 5 

presents a case study on the implementation using an AAMMP system. Finally, the con-

clusions are provided in Section 6. 
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2. Related Works

2.1. IoT-Based System 

IoT technology has been widely used in FMIS to support the automation of data 

acquisition, monitoring, planning, decision making, and management of farm operations. 

Application scenarios for IoT using state-of-the-art sensors and devices have been inves-

tigated, such as monitoring climatic conditions to improve seed growth [16], controlling 

light intensity in greenhouse cultivation [17,18], planning water-resource irrigation and 

proper utilization of water resources [19], and assessing the freshness levels of fruit [20]. 

When it comes to agricultural machinery management, IoT-based solutions for applica-

tion are still in their early stages. Table 1 shows the sensors and networks, whether to 

integrate with the on-board motion controller of agricultural machinery, and the main 

functions of proposed system in previous studies. 

AGCO, the most famous agricultural machinery company in America, has pro-

posed a management system called the “connected farm service” for farm and agricul-

tural machinery [21]. IoT-based field operation monitoring systems have been effectively 

implemented in harvesting operations [22]. Zhang designed an agricultural machinery 

service management system by installing remote monitoring terminals on the agricul-

tural machinery to support low-cost and high-efficiency production for the company 

[23]. Li et al. used IoT technology to develop an agricultural machinery networking 

platform to achieve the provisions of regional agricultural operations monitoring and 

management, farmland status monitoring, and service functions [24]. Based on “internet 

+ BDS + GIS” (BDS, BeiDou Navigation Satellite System; GIS, Geographic Information

System) technology, an intelligent supervision system was proposed to monitor and

manage farm machinery [25]. John Deere has developed three integrated systems to help

manage the operation of agricultural machinery remotely, including the Machine Sync

system, AutoTrac Vision, and AutoTrac RowSense system [26].

Table 1. Comparison of proposed systems. 

Reference Sensors Networks 
Integration 

(Y/N) 
Functions 

Chaudhary et al. [21] GPS GPRS, Bluetooth N Monitoring and management 

Oksanen et al. [22] GPS 3G, CAN Y Remote monitoring 

Zhang et al. [23] GPS GPRS, Wi-Fi, 4G N Monitoring and management 

Li et al. [24] GPS CAN, RS232 Y Data acquisition and processing 

Wei Fu [25] BDS GPRS Y Monitoring and management 

Wan-Soo Kim [26] - - - Operation service 

Abbreviations: GPS, Global Positioning System; GPRS, General Packet Radio Service; CAN, Con-

troller-Area-Network; N, No; Y, Yes. 

From Table 1, the sensors of the proposed systems are GPS (Global Positioning 

System) and BDS, which can be used to acquire the location information of agricultural 

machinery. As for the networks, some of them install GPS sensors in the agricultural 

machinery to acquire location information. Others propose the development of a new 

embedded system integrated with the on-board motion controller of agricultural ma-

chinery; thus, the CAN-bus network is used to integrate with on-board motion control-

lers of agricultural machinery, and then data is packaged by ISO 11783 protocol. All of 

these data are sent to IoT-based systems by wireless networks, such as GPRS (General 

Packet Radio Service), 3G/4G, Wi-Fi, and Bluetooth. Moreover, the functions of the pro-

posed systems are mainly monitoring and management, while there are fewer reports 

on the result of integration and how to execute the operation optimization service. 

Therefore, this study will focus on constructing a unified AAMMP adapting to the vari-

ous needs of farming operations, such as real-time monitoring, machinery scheduling, 

and operational distribution. 
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2.2. Operations Assignment and Scheduling of Multiple Machines 

The operations assignment and scheduling of multiple machines are key elements of 

the AAMMP, and a reasonable work scheme can reduce the cost of the entire process and 

improve work efficiency. To maximize the total area operated by the sugarcane harvest-

er, Pitakaso et al. [27] presented an ALNS metaheuristics approach to solve large-scale 

problems such as harvester assignment and mechanical harvester routing problems. Cao 

et al. [28] studied the task assignment problem in multi-machine cooperative navigation 

and proposed the improved ant colony algorithm to operate multiple agricultural ma-

chines in a cooperative manner. A hybrid tabu search algorithm was proposed by He et 

al. [29] to optimize the wheat harvesting period and balance harvesting times among 

combine-harvesters. Zhang et al. [30] proposed an improved multi-parental genetic al-

gorithm to distribute multiple machines to execute multiple tasks sequentially in differ-

ent farmlands. Aiming at solve the scheduling and allocation problems of farm machin-

ery, a scheduling and allocating algorithm based on non-cooperative game theory was 

proposed to optimize the costs of economy and time. 

Although researchers have made great achievements in the assignment and sched-

uling of multi-machine problems, there are still many practical constraints that need to be 

taken into consideration during the actual operational process. First, when building 

mathematical models for this optimization problem, some other factors should be ad-

dressed, such as the matching of job execution, the operational cycle, and the real-work 

efficiency of the agricultural machinery [28]. In addition, a dynamic regulatory strategy 

should be used during the operation of the agricultural machinery, because there might 

be exceptions to normal processing such as machinery break downs and emergency tasks 

that need to be prioritized [31]. Finally, the route selection for field coverage planning is 

also a vital function of the AAMMP. This is also a constraint that affects the work effi-

ciency and make-span [32]. A route optimization algorithm can minimize the operating 

distance of a sugarcane harvester and maximize the sugarcane field harvest [27]. It can 

also improve field operations and reduce non-productive travel distance when applying 

liquid fertilizer [33]. Therefore, optimizing multiple agricultural machinery scheduling 

and pathways should be treated as a coupled optimization problem, and it is necessary to 

establish a proper method to accommodate both static allocation and dynamic adjust-

ment for multi-machine scheduling problems. 

This study used cooperative operations of agricultural machinery equipped with 

navigation systems as an implementation scenario and proposes an IoT-enabled man-

agement system. This system goes beyond offline task management and scheduling and 

allows either online monitoring or even dynamic optimization based on operational data 

acquired in real time. 

3. Methodology

3.1. Experimental Site 

The research was conducted at the Key Laboratory of the Ministry of Education for 

Key Technologies of Agricultural Machinery and Equipment in South China, South 

China Agricultural University (SCAU). The experimental site was located at the Zeng-

cheng Teaching and Research Bases. The agricultural machines were made by LOVOL 

(WeiFang City, Shandong Province, China), and the automatic navigation system was 

self-developed and used to control the devices’ motion and to acquire data from the ag-

ricultural machines. 

3.2. Design Method and System Architecture 

An AAMMP can be described as a set of automatic agricultural devices that are 

controlled and traced by predefined control instructions constrained by task diversity, 

varying environments, and different network connections. Here, we propose an 
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IoT-based design approach to manage cooperative operations for multiple agricultural 

machines on arable farming. 

As shown in Figure 1, when an operational task is assigned, its related demands 

(e.g., machinery assembly, path planning, control scheme, and work efficiency) are pa-

rameterized and sent to the cloud platform for further operational scheduling. The static 

execution solution is generated by the multiple optimization method executed through 

cloud computing. However, several emergency tasks may emerge due to unpredicted 

situations during the task processing, including bad weather and equipment malfunc-

tions. For example, a working tractor cooperating with other tractors may be transferred 

to another field to work, interrupting the previous operational plan and resulting in 

previous tasks being reconfigured. Therefore, these priorities need to be addressed by a 

dynamic result generated by coupling the optimization of the previous job and the next 

urgent task. Thus, the dynamic execution solution will be constrained by the static results 

because they can directly affect parameters and iterations of the coupling optimization 

method. After that, by pursuing the balance and stability of the static and dynamic 

scheduling plan, the control directions can be created and sent to the on-board system of 

the agriculture machinery through a mobile network. 

Because AAMMPs must address dynamic changes in operational tasks and loca-

tions, variation and changes in operations are conventionally associated with the sus-

tained improvement of dynamic execution schemes. Conventional solutions only focus 

on the scheduling of static tasks because of the instability or insufficiency of the infor-

mation communication, this makes it difficult to make real-time adjustments in assign-

ment during agricultural production. The proposed IoT-based design approach intended 

is to improve the capability of the dynamic replanning scheme for the AAMMP before 

the start of production, thereby making changes in machinery scheduling after opera-

tional implementation quicker and less costly. 

Figure 1. IoT-based design approach logic. 

The key part of the proposed AAMMP structure is the cloud layer, which is used to 

control various agricultural machines and decides all the functionalities of the system. 

Figure 2 shows the architectural diagram of the AAMMP, which can be classified into 

two entities: the physical item (or things) and software. The physical item consists of 

perception and network layers, including embedded devices, sensors, data transmission 

modules, routers, and gateways. Because all the machines have embedded computing 

and communication capabilities, they can perceive the environment through a navigation 
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or machine vision system and then interact with each other using direct or indirect 

communications to ensure high-quality cooperation. Direct communications can be im-

plemented by an ad hoc network such as mesh topology, whereas indirect communica-

tion can occur with a mobile gateway or base station through a star topology. For the 

software, business and service layers mainly concentrate on data management and 

business control separately. Between the two items, the cloud platform plays the key role 

of intelligent brain and manager, which can control the physical entities in the back-

ground businesses and also manage the upstream data and service applications. Finally, 

customers and users can monitor and manage agricultural machinery in the whole farm 

through visiting Web client service or App (Application) service. 

Figure 2. Horizontal integration of AAMMP elements. 

4. Key Enabling Technologies

4.1. Multi-Optimization and Cloud Computing 

There are a great many interrelated and inter-restricted problems at the farmland 

operational scale because of varieties of crops and their related operational processes. In 

this section, the typical coupling problems of farmland operations are presented, and the 

multiple objective optimization method is discussed and used to illustrate the function-

ality of the cloud platform. 

4.1.1. Modeling of AAM Scheduling Problem 

Actual agricultural scale production usually has strong timeliness, especially in the 

growing seasons, and a series of continuous operations must be completed in a relatively 

short period of time, such as plowing, seeding, fertilization, and irrigation. A great many 

agricultural machines participate in these operations and this becomes an AAM sched-

uling problem. Thus, it is necessary to make a rational plan for each machine in terms of 

location and function. However, there are also many factors that must be considered, in-

cluding task make-span, machinery work efficiency, and work path, because of field and 

task complexity and vehicle size. These typical problems are always coupled and the 

pursuit of a single optimization goal may lead to lost time and reduced efficiency. 
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The coupling relationship model of the multi-objective optimization problems at the 

farmland operational scale is shown in Figure 3. It mainly contains three optimization 

problems: task allocation for minimizing the make-span, vehicle scheduling for mini-

mizing distances between current locations and fields, and route planning for maximiz-

ing field coverage and minimizing operational distances. Two constrained relationships 

linked with these three problems are also presented, which are static configuration and 

dynamic regulation. The former involves making sure that all the tasks will be completed 

using the static optimization approach, and the latter is involved in guaranteeing that the 

system has a dynamic regulatory capability in case some emergency operations need to 

be performed preferentially. 

Real-time perception of 
working state of AAMs

Work grouping for 
multiple AAMs

Minimum distance and 
turns optimization

Multi - machine 
operation area division

Dividing task region 
under load balancing

Decision optimization 
for cluster job task

 Task allocation Vehicle scheduling Path planning

Static solution

Dynamic 
regulation

Task 
parameters

Machinery 
parameters

farmland 
parameters

Simulation and 
application for 

AAM scheduling

Figure 3. The modeling of the multi-objective optimization problem. 

In the AAMMP, task allocation refers to clustering operations at the production scale 

in accordance with the operation specifications, machinery, time, and other factors. A 

reasonable operational batch can be formulated by balancing the energy and time con-

sumption. Vehicle scheduling refers to a machinery grouping optimization to minimize 

the operational time according to the distances between the fields that need to be worked 

and vehicles capable of carrying out the desired tasks. Usually, the nearest distance 

method will be adopted to form the machinery team. Path planning involves how the 

chosen machinery team will work in each field, and the optimization goal is also the 

minimum time necessary based on the field area and efficiency of the machinery. 

Based on the characteristics of the multi-objective optimization problem at the 

farming scale, a model that takes the total operation time as the optimization goal is-

formulated; the variables used in the model are defined as Table 2 shows; and the de-

tails, including definitions, optimization object, related constraints, parameters, and de-

cision variables, are as follows: 

Objective function: 

𝑚𝑖𝑛 𝑇 = 𝑚𝑎𝑥{ 𝑇1, 𝑇2, . . . , 𝑇𝐼} (1) 

subject to: 

𝑇𝑖 ≥ ∑(𝑇𝑖𝑘 × 𝑧𝑖𝑗𝑘)

𝑗,𝑘

, ∀𝑖 = 1, . . . , 𝐼, ∀𝑗 = 1, . . . , 𝐽, ∀𝑘 = 1, . . . , 𝐾 (2) 

𝑇𝑖𝑘 ≥ 𝑡𝑟𝑎𝑛𝑠𝑇𝑖𝑘 + 𝑟𝑒𝑎𝑑𝑦𝑇𝑖𝑘 + 𝑤𝑜𝑟𝑘𝑇𝑖𝑘  (3)
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∑ 𝑈𝑖𝑗

𝑗

≥ 𝑌𝑖 , ∀𝑗 = 1, . . . , 𝐽 (4) 

𝑇𝑗𝑘
𝐸 ≤ 𝑇𝑖𝑘 ≤ 𝑇𝑗𝑘

𝐿 (5) 

𝑡𝑟𝑎𝑛𝑠𝑇𝑖𝑘 ≥ 𝑚𝑎𝑥( 𝑡𝑟𝑎𝑛𝑠𝑇𝑖𝑘1 × 𝑧𝑖𝑘1, 𝑡𝑟𝑎𝑛𝑠𝑇𝑖𝑘2 × 𝑧𝑖𝑘2, . . . , 𝑡𝑟𝑎𝑛𝑠𝑇𝑖𝑘𝐽 × 𝑧𝑖𝑘𝐽) (6) 

𝑤𝑜𝑟𝑘𝑇𝑖𝑘 ≥ (𝑆𝑖 − ∑(𝑡𝑟𝑎𝑛𝑠𝑇𝑖𝑘 − 𝐷𝑖𝑗 × 𝑧𝑖𝑗/𝐸𝑘) ×

𝑗

𝐸𝑘)/(∑ 𝑧𝑖𝑗𝑘

𝑗

× 𝐸𝑘) (7) 

𝑡𝑟𝑎𝑛𝑠𝑇𝑖𝑗𝑘 < 𝑤𝑜𝑟𝑘𝑇𝑖𝑘  (8) 

Table 2. The variables used in formulating the AAM scheduling problem. 

Notations Remarks 

i Indices for field, i = 1,…,I 

j Indices for machine, j = 1,…,J 

k Indices for task and its corresponding machine group, k = 1,…,K 

T Total operation time of completing all tasks 

Ti Total operation time of competing all tasks in field i 

Tik Operation time of competing task k in field i 

TransTik Traveling time between field i and machine group k 

readyTik Ready time of task k for machine group k in field i 

workTik Work time of task k for machine group k in field i 

TransTijk Traveling time between field i and machine j that can do task k 

Dij Distance between field i and machine j 

Ek Operating efficiency of completing task k 

Uij {
1 if field 𝑖 can be assigned to machine 𝑗

 0                                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
TjkE Earliest arrival time of machine j for task k 

TjkL Latest arrival time of machine j for task k 

Yi Task quantity of field i 

zijk {
1 if machine 𝑗 is traveling to field 𝑖 to execute task 𝑘
 0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

Si Area of field i 

Table 2 shows the meaning of these variables. In the above mathematical model, the 

objective function (1) was to minimize the total time of a scaled operational task, and this 

constraint equals the maximum operational time for completing all the tasks in each field. 

Constraint (2) indicates the operational time of completing each task k in field i, whereas 

Constraint (3) indicates that the total operational time of task k in field i contains three 

parts: the traveling time between field i and machine group k, the ready time of task k for 

machine group k in field i, and the work time of task k for machine group k in field i. 

Constraint (4) indicates that the quantity of machines traveling to field i is more than the 

task quantity of field i, which also means the quantity of machines that execute each task 

will be equal or greater than 1. Constraint (5) verifies that the arrival time of machine 

group k at field i lies within the field i time window, and also indicates that task k cannot 

be performed until task (k−1) is complete. Constraint (6) indicates that the travel time of 

machine group k equals the transfer time of the farthest machine j from field i. Constraint 

(7) indicates that the work time of task k equals the machine group k work in field i, and

although the arrival time of each machine j belonging to machine group k is different, the

completion time of task k will be set to be the same. In addition, Constraints (7) and (8)

indicate that if the travel time of machine j to field i is greater than the other machines

that have arrived and worked in field i, the machine j will not participate in the work

performed by machine group k.
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4.1.2. Decoupling Algorithm for Solving the Multi-Objective Optimization Problem 

Because of the high interdependence and inter-constraints among the three prob-

lems, a distributed optimization strategy was used after acquiring the first operational 

demands; this is shown in Figure 4. The static configuration scheme executes the decou-

pling algorithm. However, once some urgent tasks arise, these kinds of demands mix 

with the former uncompleted operations and require dynamic regulation by 

re-optimizing the problems. 

Operation demands

Conceptual design

Mathematical model

Decoupling & 
optimization

Task allocation

Path planning

Initialize the parameters 
and population

Calculate the fitness of 
each individual S  

Stopping criterion 

is met?

Stopping criterion 

is met?

Select parent individuals 
according to specified 

strategy

mutation according to 
the Probability (1-P)

Output the best 
Individual

No

Yes

Vehicle scheduling

Crossover according to 
the Probability P

Initialize the parameters 
of field and machineries 

Generate parallel line 
based on boundary 

Calculate  work area for 
each machinery under 

related constrains 

Divide workspace and 
generate path for each 
machinery based on 

heuristic rule 

Output the solution

Simulation & 
evaluation 

Result analysis

End

Emergency task?Emergency task?

No

Yes

Figure 4. Decoupling algorithm of multi-objective optimization problems. 

The proposed decoupling algorithm classifies the three problems into two optimi-

zation processes. The first one combines task allocation with vehicle scheduling as a joint 

optimization in which the model is built with reference to the job-shop scheduling prob-

lem. Unlike the job-shop scheduling problem, the migration cost of agricultural machin-

ery from current locations to target plots was also considered, as well as the operational 

preparation costs after reaching the destination. An improved genetic algorithm (IGA) is 

used to optimize the operational time and obtain the operational programs. The IGA is 

encoded with the field ID, and the order in which the ID appears represents the number 

of tasks in the current field. For example, an order completes the operational tasks of two 

fields, set as F1 and F2, and the corresponding task collection is described as {(1, 2), (2, 3)}. 
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If a chromosome of the IGA is [F1 F2 F1 F2], the order of operational tasks will become 

1-2-2-3. Then, the corresponding machine group for each task sequence will be sched-

uled, which is the vehicle scheduling problem. For this problem, we used the greedy

strategy based on the shortest distance between the current field and the machines able to

perform the desired task to select the number of agricultural machines. A nearby princi-

ple and the  Constraint (7) and (8) were used to decide if a machine was added to the

machine group to complete the current task.

For path planning, the goal was to decide what route the agricultural machinery 

will take in the field. After inputting the key parameters, such as the arrival time and 

equipment width of the machines, as well as the size and shape of the current field, a 

heuristic method is used to divide the workspace and generate the operational path for 

each machine. First, a set of parallel lines is generated according to the field boundary 

and the work width. Then, the work area is divided according to the arrival time of each 

machine, but the make-span time is set to be the same. In this step, the principle that the 

first arriving machine will operate in the farthest area is utilized to minimize the opera-

tional time. Finally, we generated a series of parallel lines and a full path for each ma-

chine under the constraints of their turn radius. 

The distributed optimization strategy shown by the decoupling algorithm is sepa-

rated from the path planning problem, even if the results of this problem affect the value 

of the fitness. After calculating the operational time according using the Constraint (2) for 

each field, the total operation time of completing all tasks T can be acquired and then 

fitness is estimated using Equations (1) and (9), which simplify the calculation and re-

duced the algorithm complexity. 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =  1/𝑇 (9) 

A scheduling result worked by four machines in different locations to complete 

specific assignments in some fields is shown in Figure 5. 

(a)
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(b) 

Figure 5. Illustrations of agricultural machinery allocation schemes: (a) the original operational 

plan for five fields (F1–F5) executed by four agricultural machines (M1–M4); (b) the dynamic ad-

justment plan when adding additional tasks in two other fields (F6,F7) after the 30th hour. 

In Figure 5, the colored column indicates the operating time in the fields and the 

white columns before each colored column indicate the total time, which includes the 

travel time from the field where the assignment was performed to the field to be worked, 

and the ready time before operation. The original operational plan for five fields is shown 

in Figure 5a. When all the machines have been working for 30 hours, some new tasks, 

such as the new tasks in fields 6 and 7, need to be performed using this agricultural ma-

chinery. Then, the original assignment is dynamically adjusted and the overall undone 

tasks are rescheduled, as shown in Figure 5b. 

4.2. System Development 

4.2.1. Physical Architecture 

As shown in Table 3, the hardware consists of a series of machine tools, including 

data transfer units (DTUs), embedded systems, and operational machines. 

Table 3. Hardware infrastructure of the AMMPS prototype. 

Type Function Protocol Devices Name Devices Details Photo 

Data Transfer Unit 

Data Transferring MQTT 4G DTU 
YeeCOM Q560 4G 

DTU 

Protocol Conversing ISO 11783/ Modbus 
Bidirectional 

Transducer 

ITEKON 

CAN232/485 

Embedded System 

Navigating ISO 11783/ Modbus 
Automatic Navi-

gation System 
Self-Developed 

Motion Controlling ISO 11783/ Modbus Motion controller 

SonnePower 

SPC-STW- 

2612CMS 

Operation Machinery Tillage/ Seeding Mixed Tractor LOVOL M1204-p 
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Spraying Mixed Sprayer LOVOL ARBOS 

Harvesting Mixed Harvester LOVOL RG50 

Abbreviations: MQTT, Message Queuing Telemetry Transport; DTU, Data Transfer Unit. 

The Data Transfer Unit is comprised of an ITEKON bidirectional transducer and a 

YeeCOM 4G DTU; the ISO 11783 data from the embedded devices is transferred to the 

former and translated to Modbus protocol data. It is then sent to the cloud platform by 

the chosen 4G DTU. The SonnePower motion controller is used to control all of the elec-

tronic control units (ECUs) installed in the machinery, such as the throttle position, en-

gine speed, wheel speed, and engine temperature sensors, and the self-developed auto-

matic navigation system enables each agricultural machine to operate in the field auto-

matically. The operational machinery mainly included tractors, sprayers, and harvesters, 

and all of these machines were produced by LOVOL, a well-known agricultural manu-

facturing company in China. Both motion controller and automatic navigation systems 

were installed in each type of machine. 

4.2.2. Software System 

Our research team has studied automatic driving technology in agricultural ma-

chinery for the past 10 years, and the team has designed a number of embedded systems 

for farm machinery automatic driving and unmanned field operations, including systems 

installed in tractors, rice transplanters, sprayers, and harvesters. The AAMMP was de-

veloped based on these embedded systems and an IoT-based service architecture. The 

development guideline, business processes, and programming languages are unified and 

they can be integrated and deployed onto a cloud platform. 

As shown in Figure 6, a demonstrative prototype AAMMP system was developed 

by integrating and communicating with the hardware devices. It contained a set of ap-

plication-oriented systems involving an app and a web, as well as a cloud platform 

management system. The first was developed using J2EE technology architecture and 

integrated with the proposed decoupling algorithm. The others were designed for system 

configuration and integration, and their functions include system deployment in the 

cloud server, database connection, communication protocol designation, and remote 

control of agricultural machinery. In addition, Aliyun, which is part of Alibaba Co., was 

selected as the server platform. 
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Figure 6. The demonstrative prototype AAMMP system. 

4.3. Network and Communication 

Because of its high reliability and low cost, the Controller-Area-Network (CAN) was 

used for communication in the chassis systems of the agricultural machines. The ISO 

11783 protocol, which includes the CAN 2.0 specifications, and the SAE J1939 protocol 

have been widely used to transmit data among the ECUs of such chassis systems [34]. To 

simplify the data processing, we used ISO 11783 based on the CAN bus application layer 

protocol to transmit data between AAMs and the AAMMP. In the J1939 protocol, the 

29-bit identifier of the CAN is physically defined, and the corresponding data definition

is formulated. This is implemented and encapsulated by the Protocol Data Unit (PDU).

The PDU contains seven sections: priority, retention bit, data page, PDU format, PDU

special field, source address, and data field. Thus, the PDU is mainly defined. An exam-

ple of a data package is present in Figure 7.

(a)
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(b) 

Figure 7. Sample of data package of the proposed protocol. (a) Control field. The PDU (Protocol 

Data Unit) contains seven sections: priority, retention bit (R), data page (DP), PDU format (PF), 

PDU special field (PS), source address (SA), and data field. (b) Data field. 

We divided all the data into three classes using the defined priority of data trans-

mission. The data with the highest priority include power take-off, start-stop, and mode 

switch, which are the steering instructions for the agricultural machine to control and 

execute relative motions. For example, an instruction of 1 will start the tractor running, 

whereas an instruction of 0 will stop the tractor. The second priority involves the path 

planning of AAMs, which is calculated in the cloud and then uploaded to the tractor 

through the proposed network and communication protocol. To ensure that these data 

are sent and received successfully, after receiving a data package, the receiver will send a 

feedback data package to the sender, and only when the sender receives the feedback 

data on a fixed frequency will the data be implemented. This rule ensures that key data is 

not lost during transmission. The lowest priority is the collection of basic data during 

AAM operation, including real-time longitude and latitude, altitude, pitch angle, roll 

angle, identification of satellite signal, operating speed, and total number of satellites. 

After the basic protocol between the AAM and agricultural machinery was estab-

lished, the network and communication link were built, as shown in Figure 8. The au-

tomatic navigation system was installed in the agricultural machinery, and it was used to 

control the automatic operation of the machinery by sending directional commands to 

the on-board motion controller. The CAN-Modbus translator translated the packaged 

J1939 protocol data to Modbus-style and then sent it to the 4G DTU. Afterwards, the data 

acquisition system collected the data package from the 4G DTU and translated it into 

decimal numbers, which were saved to a database. Then, the AAMMP system could edit 

and maintain these data using the web client or app. 
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Figure 8. The communication system of AAMMP. 

In order to validate the stability and efficiency of the network, a bidirectional com-

munication performance test was done; the details are interpreted as follows. At first, the 

package data were sent to the AAMMP from the automatic navigation system installed 

on the machinery terminal at a frequency of 1Hz. The experiment was carried out three 

times, each for one hour. The received data package numbers were 3586, 3590, and 3582, 

respectively. The average package loss rate was 0.4%, which means the integrity of up-

loaded data can be guaranteed. Besides, the data sent from the AAMMP to AAM end was 

about the job task and operational path, and it was usually sent before the job and cached 

in the navigation system. In our design, these data must be received by AAMs, and a 

verification strategy of data package loss and re-transmission was formulated to ensure 

the integrity of data transmission. Therefore, the demand for high real-time performance 

of the network may be not obvious. Nevertheless, the network latency rate was be tested 

informally and the result showed there was a certain degree of network delay sometimes, 

with a maximum delay of 3s, but the average delay was less than 1s, which meets the 

requirements of the system. 

5. Implementation of an AAMMP System

5.1. An Illustrative Operational Procedure 

The proposed IoT-based architecture was implemented by integrating the above key 

techniques, and it is currently being testing and evaluated by our research team. As 

shown in Figure 9, the implementation effort was conducted in three steps. 

The first step is operational planning. Initially, operational parameters for each in-

dividualized task were collected and classified into three types: basic information (e.g., 

field amount, time limitation, and job type), locational variables, and operational re-

quirements. The information was correlated into control parameters of AAMs, system 

configuration parameters, predefined models, and algorithms, generating a static execu-

tion scheme that corresponds with the agricultural machinery dispatching scheme and 

operational route for each task in each field. Once the planned path is verified using the 

virtual field model of the AAMMP, it can be fed into the corresponding physical AAM. 

The second step is operational monitoring. After deploying the plan to each agri-

cultural machine, the real-time data from the working machines was scanned and ana-

lyzed by the AAMMP, enabling the operators and farmers to know the real-time opera-

tional status. If something unexpected happens when the machine is operating, such as 

some emergency tasks that need to be preferentially completed or the breakdown of 

working machinery, then the scheme will be rebuilt and reallocated to the agricultural 
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machinery, as Figure 6 shows. By enabling peer-to-peer connections between smart ag-

ricultural devices and online virtual models at any time and any place, the AAMMP can 

monitor the operations of multiple machines at the same time. 

The last step involves dynamic analysis and adjustment based on an operational 

quality assessment. After completing an assignment in a field, an operational quality as-

sessment involving some operational results, including work area, real time velocity, 

positional deviation, and the estimated make-span, was calculated and an operational 

analysis report was generated. According to the operation efficiency and finish time of 

each machine, a new set of the most suitable schemes for the remaining tasks may be 

regulated dynamically and redistributed to the agricultural machinery. 

Figure 9. An illustrative AAMMP operational process. 

5.2. System Performance Analysis 

The AAMMP completed three kinds of service for farmers, namely, AAM schedul-

ing, operational route planning and real-time monitoring. These service resources pro-

vided by the AAMMP provided significant improvements in many aspects, such as op-

erational efficiency and AAM utilization. With regard to the former, after the farmers use 

the monitoring center of the AAMMP, all the real-time information on the entire opera-

tion process of the whole device can be obtained. Based on this, the decisions made by 

the operator of AAM in each link are more in line with the operational sites and pro-

cesses, improving the operational efficiency of all links and reducing operating costs. In 

terms of the increase of AAM utilization, taking the case of Figure 5 as an example, the 

number of original tasks is 17 in five fields and the make-span is 76.2 hours (Figure 5a); 

when the case is executed at 30 hours, seven new tasks in two fields are added. By re-

calculating with the proposed optimization algorithm, the completion time was reduced 

from 112.8 hours to 108.6 hours by allocating tasks more rationally, saving 4.2 hours. 

5.3. Discussion 

The application of the proposed key techniques and the implementation of the 

AAMMP result in three major benefits. First, engineers can quickly configure an 

AAMMP, equip the agricultural machines, and integrate the middleware devices because 

the clear cyber design eliminates many uncertainties. Additionally, using the proposed 

approach and communication protocol, the implementers can also develop systems and 
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inter-connections without the presence of professional agricultural machinery. Secondly, 

from the farmer’s perspective, the AAMMP is an appropriate tool to manage and arrange 

their agricultural machines’ operations automatically in accordance with the operational 

tasks, avoiding long-term decisions and reducing labor costs. Moreover, the proposed 

AAM scheduling model is relatively flexible, owing to the dynamic adjusting operational 

plan that assesses the real-time working conditions of the agricultural machinery, en-

suring that all the tasks can be completed on time. Finally, some operation data uploaded 

from the AAM to the system can be used for accessing operational quality and can also be 

combined into large datasets for building AAM data mining models, including fault 

warning and operational efficiency prediction models. 

Three challenges related to the AAMMP should not be ignored. The first is the ro-

bustness of the network [22,35]. Stable wireless communication is an important limitation 

because the harsh AAM working environment may be removed from 4G/5G signals and 

wireless infrastructure. The second is data security and privacy. Researchers and devel-

opers tend to concentrate on sensing, processing, controlling, and computing, with less 

effort going to handling security threats and privacy, which may lead to attacks on the 

smart devices and systems [36]. The third is how to improve the inflexibility and in-

teroperability of the IoT-based system. Interoperability is characterized by integrating 

frameworks, applications, services, and models to work in a combined and stable way 

[37]. However, sometimes, the large real-time interconnection between the IoT-based 

system and the agricultural machines may encounter some errors, which may result in a 

system crash or even machine failure. 

6. Conclusions

This paper used the smart farm as an implementation scenario and proposed an 

IoT-enabled cloud management platform to manage and control the operation of agri-

cultural machinery equipped with automatic navigation system. By analyzing configu-

ration parameters and system variables, as well as the logic and processes of how the 

system worked, a layered IoT-based architecture was used to realize the cooperative op-

eration of multiple agricultural machines in arable farming. The AAM scheduling model 

benefited from the idea of “iterative optimization between static execution solution and 

dynamic adjustment strategy”, which enhanced the practicability of the system in a real 

situation. Using a coupling algorithm as the core, the AAMMP was developed and im-

plemented by integrating physical entities and software modules. A CAN-Modbus pro-

tocol conversion strategy and a 4G-based network link were proposed to build the bridge 

between the AAM and the AAMMP, and the communication test proved the reasona-

bleness of these methods. As evidenced from a successful application to perform practi-

cal farming tasks, the proposed method provided an optimal guide and the system con-

trolled the agricultural machinery. 

The application of the AAMMP brings two kinds of benefits to a farm. On the one 

hand, farmers can flexibly match or release their agricultural machinery resources to and 

from practical production in response to dynamic operational demands, which essen-

tially reduces the investment risk and cost in the operation configuration. On the other 

hand, AAMMP allows farmers to manage their farm operations by acquiring real-time 

operation and optimized service solutions provided by both hardware devices and 

software management. Due to the expertise of the service, the farmers can obtain more 

refined and professional decision-making, which effectively improves management effi-

ciency and reduces the labor force in the production process. Future work will focus on 

incorporating big data analytics into the IoT-based digital model for the operation and 

maintenance of a smart farm management system. 
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