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Abstract: AquaCrop is a water-driven model that simulates the effect of environment and manage-

ment on crop production under deficit irrigation. The model was calibrated and validated using 

three databases and four irrigation treatments (i.e., 100%ET, 80%ET, 70%ET, and 50%ET). Model 

performance was evaluated by simulating canopy cover (CC), biomass accumulation, and water 

productivity (WP). Statistics of root mean square error (RMSE) and Willmott’s index of agreement 

(d) showed that model predictions are suitable for non-stressed and moderate stressed conditions. 

The results showed that the simulated biomass and yield were consistent with the measured values 

with a coefficient of determination (R2) of 0.976 and 0.950, respectively. RMSE and d-index values 

for canopy cover (CC) were 2.67% to 4.47% and 0.991% to 0.998% and for biomass were 0.088 to 

0.666 ton/ha and 0.991 to 0.999 ton/ha, respectively. Prediction of simulated and measured biomass 

and final yield was acceptable with deviation ˂10%. The overall value of R2 for WP in terms of yield 

was 0.943. Treatment with 80% ET consumed 20% less water than the treatment with 100%ET and 

resulted in high WP in terms of yield (0.6 kg/m3) and biomass (1.74 kg/m3), respectively. The devi-

ations were in the range of −2% to 11% in yield and −2% to 4% in biomass. It was concluded that 

AquaCrop is a useful tool in predicting the productivity of cotton under different irrigation scenar-

ios. 

Keywords: AquaCrop model; canopy and biomass simulation; stressed irrigation; water use effi-

ciencies; water production function 

 

1. Introduction 

The agriculture sector is integral to Pakistan’s economy. This sector contributes over 

21% of GDP, absorbing 45% of the country’s total labor [1]. Cotton is one of the commer-

cial cash crops of Punjab and Sindh in Pakistan [2]. The evaporative demand is high in 

semi-arid and arid areas of Indus Basin because of changing climatic conditions and 
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rainfall patterns, which results in limiting agricultural productivity in the entire basin, 

except for the areas which receives plenty of water for agriculture. AquaCrop simulates 

in rainfed, deficit and full irrigation water regimes and predicts the achievable yields of 

the major crops. With the help of water driven function, AquaCrop calculates and con-

verts the transpiration loss into biomass by using crop specific parameters [3,4]. AquCrop 

simulation using default cotton conservative parameters exhibited the best results [5].Wa-

ter productivity (WP) is a key element of agricultural water management in agricultural 

irrigated regions, and AquaCrop is a suitable tool to assess the water response to crop 

water productivity [6]. The maximum WP for wheat cultivar was found to be 1.54 kg/m3 

that was acquired from 60% deficit irrigation [7,8]. Water being a precious commodity, 

could be saved by adapting water-saving techniques, which is only possible with proper 

assessment of water response to crop production [9]. Previous studies have demonstrated 

that AquaCrop accurately simulates the aboveground biomass and canopy cover of the 

crops under regular and deficit irrigation regimes [10–13]. As the world population in-

creases, less water will be available for irrigation purposes in response t natural losses due 

to deep percolation, evaporation, and conveyance in furrow irrigation systems [14]. Drip 

irrigation uses less water than surface irrigation; thus, the irrigation water productivity is 

larger for drip systems in cotton production areas [15]. Rising water shortages[16,17] cor-

relates the burden on agricultural productivity and sustainable increase in food demand 

[18]. AquaCrop model of the United Nations is simple, user friendly, and is practical for 

ultimate users such as extension workers, water managers, and professionals of irrigation 

organizations for planning purposes[19]. To evaluate how agricultural productivity will 

be affected by future shifts in water availability due to climate change, water production 

functions can be linked with crop models [8]. All other crop models are complicated, de-

manding advanced skills of calibration and operation as well as need a large number of 

parameters [20]. AquaCrop calibration is least demanding as compared to other crop 

models and has a limited number of key parameters to be adjusted. The model was orig-

inated from the yield response to water data and evolved to normalized water productiv-

ity. It was used to simulate crop productivity in multiple scenarios. The model was al-

ready parameterized for Gossypiumhirsutum for full irrigation (100% ET) and stressed 

(40%, 60%, and 80% of full 100% ET) irrigation levels for the Mediterranean environment 

of northern Syria [19]. Several climatic and agricultural procedure settings determined the 

optimal level of irrigation water applied for cotton production in southern Spain [19]. The 

AquaCrop model needs input data related to climate, soil, crop, irrigation, and initial soil 

water conditions [20]. Jin et al. [21] suggested that the AquaCrop model successfully pre-

dicted the canopy cover, biomass, and grain yield of winter wheat with high accuracy 

under different planting dates and irrigation environments. By drawing the water pro-

duction function, the user can estimate the best water deficit level to obtain maximum 

yield. Keeping in view the water scarcity in the Pothwar area of Punjab, Pakistan, the Aq-

uaCrop model is planned to calibrate and revalidate for enhancing water productivity in 

the area. Thus, the main objective of the current study is to calibrate and validate the Aq-

uaCrop model (version 3.1) for full (100% ET) and stress or deficit (80%ET, 70% ET, and 

50%ET) irrigation treatments for the semi-arid subtropical climate of Chakwal, Pakistan 

to find out the best optimal deficit irrigation level for cotton crop. The main features of the 

study model are to simulate canopy cover and biomass simulation and to draw water 

production functions. 

2. Materials and Methods 

2.1. Research Area 

The experiments were conducted at Barani Agricultural Research Institute, Chakwal, 

Punjab laying at 32°55’ N, 72°43’ E with 575 m altitude. The climate in the region is mainly 

semi-arid subtropical, with annual average rainfall is 350–500 mm. High-intensity rain 
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showers are received during monsoon periods (July to September); the annual average 

rainfall for the period 1999–2017 was recorded as 235 mm. 

2.2. Weather and Soil Data 

The weather data for the last 18 years (1999–2017) were collected from the nearby 

weather observatory of Soil and Water Conservation Research Institute (SAWCRI), 

Chakwal. This data was comprised of daily precipitation, daily maximum, and minimum 

air temperatures (Figure 1). FAO driven ETo calculator (http://www.fao.org/nr/wa-

ter/eto.html) [22] was used to calculate daily reference evapotranspiration (ETo). The cal-

culator estimated the ETo from meteorological data of maximum, minimum temperature, 

solar radiation, wind speed and air humidity using FAO Penman-Monteith equation.  

Total rainfall of 291, 227, and 217 mm was received during the growing periods of 2015, 

2016, and 2017, respectively (Figure 1). Normally, the driest month of the year was May, 

with an average humidity of around 30% (1999–2017). Soil characteristics of the experi-

mental site were assessed by digging a pit (Figure 2) down to a depth of 1.2 m. The soil 

samples were collected from varying depths and analyzed in the laboratory, as given in 

Table 1. These soils were suitable for very distinct crops [23]. 

  

(a) (b) 

 
(c) 

Figure 1. Monthly growing season weather data of (a) minimum temperature, (b) maximum tem-

perature, and (c) rainfall (mm) (2015, 2016, and 2017). 
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(a) (b) 

Figure 2. (a) Soil pit to study soil properties from different depths of soil and (b) measurement of 

different depths. 

Table 1. Soil characteristics of experimental field. 

Depth Texture 
Bulk  

Density 
Ksat 

Organic  

Carbon 
Clay Silt Nitrogen FC 

pH in 

Water 

(m) - (g/cm3) (mm/day) (%) (%) (%) (%) m3 m−3 - 

0–0.3 Sandy loam 1.52 0.75 0.45 6 16 0.04 0.10 9.1 

0.3–0.6 Sandy loam 1.7 0.6 0.35 14 8 0.02 0.13 9.1 

0.6–0.9 Sandy loam 1.6 0.8 0.2 6 20 0.02 0.15 8.9 

0.9–1.2 Sandy loam 1.39 0.83 0.02 8 22 0.02 0.18 8.9 

Ksat: saturated hydraulic conductivity; FC: field capacity. 

The soil water contents were measured with the help of a neutron moisture meter 

monitored with 7 days interval. Installed access tubes of poly vinyl chloride (PVC) in the 

field down to the depth of 1.3 m. The neutron probe was calibrated gravimetrically and 

developed the following two equations from calibration curves. 

θv = 0.596 n − 0.122 For top-soil surface layer (R2 = 0.97)  

θv = 0.331 n − 0.124 For subsurface soil layers (R2 = 0.98)  

where θv = volumetric soil moisture content; n = count ratio, (observed counts/standard 

counts). Two calibration curves are required because the soil of the experimental area was 

sandy clay loam, the upper and deeper layer monitor the loss of neutron in surface and 

sub surface soil layers. 

2.3. Field Management and Crop Data 

The cotton (Gossypiumhirsutum) variety Desi was sown on 15May 2015, 21 May 2016, 

and 15 May 2017, respectively, by keeping plant spacing of 0.7 × 0.45 m. The experimental 

plots were laid out in randomized complete block design (RCBD) with three replications 

(Figure 3). Four moisture levels of 100%ET, 80% ET, 70% ET, and 50% ET were maintained. 

The plot size was kept as 12 × 13 m (156 m2). The control treatment was kept at full water 

requirement of the plant (100% irrigation) throughout the growing season. Recommended 
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doses of fertilizers were applied, i.e., nitrogen (114 kg/ha) in the form of urea (split doses 

giving a basal dose of 28 kg/ha at seed bed preparation while remaining quantity ferti-

gated at alternative irrigations). Phosphorus was applied as basal dressing in the form of 

Tri super phosphate (TSP, 46% P2O5) at the rate of 125 kg/ha and potassium 62 kg/ha. 

 

Figure 3. The experimental layout of the study with four subsurface irrigation treatments. 

Data regarding canopy cover and aboveground biomass were recorded throughout 

the cropping season. Canopy cover was determined using ImageJ (Version 1.71) software. 

ImageJ measures canopy cover by digital images of the crop[24]. Cotton canopy images 

were acquired with the help of a Sony DKC-IDI digital camera with a spatial resolution of 

786 × 561 pixels on a clear sunny day, when the sun was on peak (12:00–01:00 P.M) (Figure 

4). With 10 days interval from the date after sowing (DAS). Only the two central rows of 

each plot were picturized. The final yield was taken at harvest. Statistical analysis was 

performed by using COSTAT software (www.softwaresea.com/Windows/download-

CoStat-10243679.htm accessed on 15 May 2018) [25]. Treatment means of canopy cover, 

biomass, and yield were compared using DMR at a 5% significance level. 
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(a) 

  
(b) 

  
(c) 

  
(d) 

  
(e) 

Figure 4. Digital images of cotton plants. (a) Image of 20 DAS, (b) image of 40 DAS, (c) image of 50 

DAS, (d) image of 60 DAS, and (e) image of 70 DAS. 



Agriculture 2022, 12, 242 7 of 18 
 

 

Three plants of cotton were randomly selected from each plot with an interval of 20 

DAS and oven-dried at 105°C for 24 h to obtain the aboveground biomass. The final yield 

of cotton was calculated from three samples of 2 m2 selected randomly and harvested from 

each plot once the cotton reached maturity. 

2.4. Calibration of AquaCrop Model 

AquaCrop was calibrated by using data of 2015, initially comparing the performance 

of 100%ET (full irrigation) for canopy cover (%) and biomass (ton/ha). The variables re-

quired for model calibration were explained specifically by the authors of [26,27] (Table 

2) for each day of the simulation period. 

Table 2. Main phenologic growth stages in days after sowing (DAS) and seasonal water applied for 

different treatments. 

Agronomic Details 
Growing Seasons 

2015 2016 2017 

Plant population 

(plants/ha) 
29,240 27,240 27,533 

Date of sowing (DAS) 15-May 21-May 15-May 

Emergence (DAS) 7 9 8 

Flowering (DAS) 55 57 60 

Senescence (DAS) 121 133 135 

Maturity (DAS) 160 175 165 

Maximum rooting 

depth (cm) 
102 104 102 

Amount of irrigation water applied (m3/ha) 

100%ET 5500 5070 5340 

80%ET 4400 4230 4270 

70%ET 3850 3810 3740 

50%ET 2750 2970 2670 

2.5. Model Evaluation 

To evaluate the performance of AquaCrop, a straight line R2 value was calculated by 

plotting regression between the measured and simulated values of canopy cover (%), bi-

omass (ton/ha), and yield (ton/ha), and correlation coefficients were determined. The sub-

sequent statistics explicitly considered checking model goodness of fit: RMSE (root mean 

square error) and index of agreement (d) statistics [28]. The overall deviation in simulated 

and observed values are measured with the help of RMSE [29]. Index of agreement (d) is 

a measure of relative error in model estimates; it represents the degree to which simulated 

and observed values show similar deviations from the measured means [30]. When the 

value of RMSE approaches 0 and the value of d approaches 1, then the model shows per-

fect agreement. 

𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑(𝑂𝑖 − 𝑆𝑖)2

𝑁

𝑖=1

 (1) 

where Oi = observed value; Si = simulated value; and N = no. of observations. 

𝑑 = 1 −
∑ (𝑃𝑖 − 𝑂𝑖)2𝑛

𝑖=1

∑ (|𝑃𝑖′| + |𝑂𝑖′)2𝑛
𝑖=1

 (2) 

where d = Willmott’s index of agreement, P’’= Pi − P; Pi = measured value; P = mean of 

measured value; O’= Oi− O; Oi = simulated value; and O = mean of simulated value. 
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3. Results 

3.1. Model Calibration 

AquaCrop was calibrated using the data set of 2015 (Table 2). The calibrated results 

revealed that the model was able to simulate canopy cover (CC) at different stages of crop 

growth (Figure 5). The values of RMSE were low and were considered suitable for model 

calibration. 

  

(a) 2015 (100% ET) (b) 2015 (80% ET) 

  
(c) 2015 (70% ET) (d) 2015 (50% ET) 

Figure 5. Measured and simulated canopy cover under various irrigation treatments;(a)100% ET, 

(b) 80% ET, (c) 70%ET, and (d) 50%ET. 

The model showed an underestimation of the CC in the 100%ET irrigation treatment. 

The simulated maximum CC (%) was somewhat lower than the measured values (4% de-

viation). It could be possible due to the differentiation in initial moisture content between 

the simulated and measured values in deficit irrigation treatments. Strong agreement ex-

isted between measured and simulated canopy cover (Figure 5) for all the treatments. 

RMSE ranged from 2.670% to 4.082% and values of d-index from 0.996 to 0.998, respec-

tively. Moreover, the results of low d-index value and high RMSE value in 70%ET. The 

values of the d-index clearly showed that the model predicted canopy cover very well in 

all irrigation treatments. The assessment of the model showed that the canopy cover of 

cotton simulated very well. 

Figure 6 and Table 3 shows that AquaCrop simulated the aboveground biomass ac-

curately for all irrigation treatments. Generally, there is a suitable fit between simulated 

and observed values of biomass by low RMSE and high d-index value (Figure 6). Aqua-

Crop reasonably simulated the aboveground biomass for deficit treatments 80%ET and 

70%ET (Table 3), as reflected by the statistical parameters. The highest value of RMSE was 
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recorded in 50%ET treatment; the model showed an overestimation of biomass with a 4% 

deviation (Table 3). This treatment was observed to experience more water stress, an onset 

that began during the vegetative growth stage. As water stress increases, model robust-

ness decreases. In the calibration process, canopy cover was underestimated, and biomass 

overestimated in 50%ET treatment. The overall model overestimates the biomass except 

for 80% ET treatment with 0 deviations (Table 3). The observed values of biomass were 

9.837,9.750, 8.785, and 7.201 ton/ha, while simulated values were 10.002, 9.729, 8.830, and 

7.328 ton/ha for 100%ET, 80%ET, 70%ET, and 50% ET treatments, respectively (Table 3, 

Figure 7). 

  

(a) 2015 (100% ET) (b) 2015 (80% ET) 

  
(c) 2015 (70% ET) (d) 

Figure 6. Measured and simulated biomass ton/ha under various irrigation treatments (a) 100% ET, 

(b) 80% ET, (c) 70% ET, and (d) 50% ET for the year 2015. 

Table 3. Calibration results of biomass and lint yield for all four irrigation treatments for the year 

2015. 

Treatments Variables Measured Simulated Deviation (%) 

100%ET 
Biomass (ton/ha) 9.837 10.002 2 

Yield (ton/ha) 3.521 3.6 2 

80%ET 
Biomass (ton/ha) 9.75 9.729 0 

Yield (ton/ha) 3.46 3.503 1 

70%ET 
Biomass (ton/ha) 8.785 8.83 1 

Yield (ton/ha) 3.11 3.179 2 

50%ET 
Biomass (ton/ha) 7.201 7.328 2 

Yield (ton/ha) 2.55 2.654 4 
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(a) (b) 

Figure 7. Relationship between measured and simulated (a) lint yield and (b) biomass for the cali-

bration (square) and validation databases (cross). 

3.2. Model Validation 

The calibrated parameters were used to validate AquaCrop for the years 2016 and 

2017.The model favorably simulated the canopy cover development in 2016 and 2017 for 

all irrigation treatments. However, 50%ET in 2016 showed an overestimation of canopy 

cover (Figure 8d) with RMSE 4.472% and d-index value 0.992, but in 2017, 50%ET showed 

underestimation of canopy cover (Figure 8h) with RMSE 3.342%. The validation results of 

biomass are shown in Figure 9; accurate predictions of biomass were achieved for the 

years 2016 and 2017. The model over predicts the biomass, except for 50%ETwith RMSE 

= 0.335 to 0.179 % and d-index 0.995 to 0.998 for 2016 and 2017, respectively (Figure 9d,h). 

The results showed that performance of model was preferable (RMSE = 0.204% to 0.410%, 

d-index = 0.995 to 0.999) in 2017 as compared to 2016 (RMSE = 0.666% to 0.335%, d-index 

= 0.996 to 0.991) as depicted in Figure 9. AquaCrop predicted well aboveground biomass 

in 80%ET as compared to 100%ET in 2016 (Figure 9a, b) with RMSE= 0.413% and d-index 

= 0.996. Deficit irrigation treatments provided a suitable prediction of aboveground bio-

mass for both years. RMSE values in 2017 were lower than all years because the model 

under predicted canopy cover in 2017. 
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(c) 2016 (70% ET) (d) 2016 (50% ET) 

  
(e) 2017 (100% ET) (f) 2017 (80% ET) 

  
(g) 2017 (70% ET) (h) 2017 (50% ET) 

Figure 8. Validating results showing the comparison between measured and simulated values of 

canopy cover for the years 2016 (a–d) and 2017 (e–h). 

For 2017 the observed values of biomass ranged from 7.308 to 9.271 ton/ha, while 

simulation values ranged from 7.413 to 9.556 ton/ha (Table 4). The deviations ranged from 

–6% to 4% between simulated and observed values for the cropping seasons of 2016 and 

2017.An overall R2 value of 0.968 (validation database) was observed for the analysis of 

simulated and observed biomass for both years 2016 and 2017, Figure (7b), biomass was 

predicted with higher R2 value. 
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Table 4. Validation results of biomass and lint yield for all four irrigation treatments for the year 

2016 and 2017. 

Treatments Variables 
2016 2017 

Measured Simulated Deviation (%) Measured Simulated Deviation (%) 

100% ET 

Biomass 

(ton/ha) 
8.78 9.136 4 9.271 9.556 3 

Yield 

(ton/ha) 
3.116 3.24 4 3.282 3.441 5 

80% ET 

Biomass 

(ton/ha) 
8.534 8.551 0 9.046 9.126 1 

Yield 

(ton/ha) 
3.055 3.046 0 3.203 3.347 4 

70% ET 

Biomass 

(ton/ha) 
7.963 8.007 1 8.102 8.358 3 

Yield 

(ton/ha) 
2.82 2.985 6 2.900 3.177 10 

50% ET 

Biomass 

(ton/ha) 
6.685 6.298 −6 7.308 7.413 1 

Yield 

(ton/ha) 
2.367 2.493 5 2.593 2.863 10 

Lint yield measured for the year 2016 and 2017 were ranged from 2.367 to 3.116 

ton/ha and 2.593 to 3.282 ton/ha, while simulated values were ranged from 2.493 to 3.24 

ton/ha and 2.863 to 3.441 ton/ha, respectively, among treatments (Table 4). The difference 

in yield between 100%ET and 80%ET was small (no significant difference in yield) in 2015, 

2016, and 2017 (Tables 3 and 4). However, there was a significant difference in yield in 

70%ET and 50%ET treatments. The model accuracy for yield prediction is shown in Figure 

7a. The R2 value for yield was 0.895 between measured and simulated values using vali-

dation data bases, which verify that the model presents high accuracy in predicting yield. 
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Figure 9. Validating results showing the comparison between measured and simulated values of 

biomass for the year 2016 (a-d) and for the year 2017 (e-h). 

3.3. Water Productivity 

The differences in the yield water productivity (YiWP) and biomass water produc-

tivity (BiWP) between measured and simulated values are shown in Table 5. Yield water 

productivity (YiWP) and biomass water productivity (BiWP) decreased with the increase 

in stress of water except 80%ET during all three years Figure 7a,b. In the present study, 

YiWP ranged from 0.43 to 0.63 kg/m3 reaching its maximum value of 0.63 kg/m3 in 2016 in 

100% and 80% ET. Similarly, the value of BWP ranged from 1.44 to 1.79 kg/m3 reaching its 

maximum value of 1.79 kg/m3 in 2015 in 100% ET treatment. AquaCrop consistently over-

estimates the water use efficiencies, and due to water stress the deviations increased. The 

deviations were in the range of ₋2% to 11% in YiWP and ₋2% to 4% in BWP. The deviations 

were higher in YiWP as compared to BiWP; this is because the model also showed maxi-

mum deviation in the simulation of yield (Table 4). Maximum deviation was observed in 

YiWP of 50%ET treatment (10%, 9%, and 11% in 2015, 2016, and 2017, respectively). How-

ever, YiWP and BiWP were better in 80%ET both for calibration and validation databases 
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(Table 5), indicating a potential for water saving. No significant difference was found in 

yield and biomass from 80%ET; thus, this treatment could be the best alternative 

to100%ET. The overall prediction of biomass water use efficiency in 2016 is better than 

that of 2015 and 2017. The linear regression between simulated and observed yield water 

productivity has the R2 value of 0.943 (Figure 10), suggesting that model prediction is fair. 

Table 5. Comparison between measured and simulated water use efficiencies of three cropping sea-

sons (2015, 2016, and 2017). 

Treatments 
Yield Water Productivity (YiWP)(kg/m3) Biomass Water Productivity (BiWP)(kg/m3) 

Measured  Simulated Deviation (%) Measured  Simulated Deviation (%) 

2015 

100%ET 0.57 0.59 4 1.79 1.8 1 

80%ET 0.58 0.59 2 1.78 1.83 3 

70%ET 0.51 0.55 8 1.72 1.78 4 

50%ET 0.46 0.51 10 1.58 1.65 5 

2016 

100%ET 0.63 0.65 3 1.75 1.79 2 

80%ET 0.63 0.63 0 1.75 1.77 1 

70%ET 0.53 0.58 9 1.67 1.72 3 

50%ET 0.50 0.54 9 1.53 1.59 4 

2017 

100%ET 0.58 0.57 ₋2 1.68 1.7 1 

80%ET 0.59 0.6 3 1.69 1.65 ₋2 

70%ET 0.50 0.53 6 1.57 1.63 4 

50%ET 0.43 0.48 11 1.44 1.5 4 

4. Discussion 

AquaCrop uses conservative parameters such as canopy cover, biomass, harvest in-

dex for simulation purposes. In the present study, AquaCrop simulated the canopy cover 

development and biomass accumulation of cotton for four irrigation treatments (100%ET, 

80%ET, 70%ET, and 50% ET) and three databases (2015, 2016, and 2017). AquaCrop suc-

cessfully predicted the canopy cover, biomass, and cotton lint yield. Suitable relationships 

were obtained among simulated canopy cover, biomass, yield, and water productivities 

(YiWP and BiWP) across three years under four treatments (Figures 5–11, Tables 3–5). 

These results are in concurrence with that of the works of [11,31]. 

 

Figure 10. Comparison between measured and simulated yield water productivity for three crop-

ping seasons (2015, 2016, and 2017) under different water treatments. 
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The model successfully predicted the lint yield of cotton with small deviations of 1% 

to 2%. Coefficient of variation R2 value of 0.943 and 0.935 (using calibration data set) were 

observed for the analysis of simulated and measured yield and biomass, respectively, in-

dicating that model predicted yield and biomass very perfectly. However, there was a 

tendency to overestimate biomass in 2015. Figure 7a shows the accuracy of the model in 

predicting lint yield. A strong correlation was observed between the simulated and the 

measured values for the calibrated database (R2 = 0.943 and R2 = 0.935 for lint yield and 

biomass, respectively). The reduction in cotton yield mainly occurs when stress occurs in 

the reproductive stage of the crop. The most severely stressed treatment, 70% ET, and 

50%ET in 2016, showed maximum deviation (10%) in yield between simulated and ob-

served values. Simulated yield within 5% deviation shows the accuracy of AquaCrop in 

predicting yields, while the deviation values of 10% indicate that model accuracy declines 

in conditions of stressed water conditions. The same situations were reported by [32]. 

All irrigation treatments validated well the biomass (ton/ha) and canopy cover (%). 

The different climatic conditions in 2016 and 2017 lowered the yield; the reason might be 

the lower water productivity. AquaCrop provided suitable and adequate results of the 

biomass and canopy cover. The measured and simulated canopy cover used for validation 

AquaCrop model is shown in Figure 8 for the years 2016 and 2017, respectively. In general, 

simulation of canopy cover for the year 2017 showed the strongest agreement between 

simulated and observed values of canopy cover with lower RMSE (3.055% to 3.674%) and 

higher d-index values (0.991 to 0.998). The canopy cover simulation results were per-

formed better in treatment of 80%ET (RMSE=3.05%, d-index = 0.998 to 0.997) as compared 

to 100%ET (RMSE=3.535% to 3.082%, d-index= 0.997 to 0.998) for both year 2016 and 2017 

(Figure 8). It was concluded that to simulate canopy cover, biomass, and yield of cotton, 

AquaCrop model can be used. This research, as reported by the work of [12], suggested 

that climatic conditions, variety of crop, and irrigation practices can influence the perfor-

mance of the AquaCrop model. The results showed that performance of model was better 

(RMSE = 0.204% to 0.410%, d-index = 0.995 to 0.999) in 2017 as compared to 2016 (RMSE = 

0.666% to 0.335%, d-index = 0.996 to 0.991) which also depicted in Figure 9. AquaCrop 

predicted well aboveground biomass in 80%ET as compared to 100%ET in 2016 (Figure 

9a, b) with RMSE= 0.413% and d-index = 0.996. The overview of some researchers is that 

AquaCrop model overestimates and underestimates the biomass and canopy cover, re-

spectively, in the middle of the crop growth stage [33,34]. Similar results were obtained in 

the present study for all irrigation treatments. This could be possible due to the reason 

that AquaCrop clarifies the process of canopy cover decrease at crop senescence [35]. Bi-

omass and yield water productivity decreases by the increase in transpiration amount in 

all four treatments. In the present study, the values of biomass water productivities were 

ranged from 1.44 to 1.79 kg/m3 in all growing seasons, and yield water productivity 

ranged from 0.43 to 0.63 kg/m3. These results are in agreement with the results reported 

in [36]. 

The model simulated canopy cover and biomass under different weather conditions 

with varying performance degrees. The year 2015 was the driest year, giving the lowest 

agreement between simulated and measured data. Severe water stress was observed dur-

ing the early growth period of cotton in 2015 because the temperature was higher, and 

rainfall was less. Katerji et al.[37]reported that the level of plant water stress affected the 

model performance. 

For quantification of the economic benefit of irrigations on average yield, it was re-

quired to calculate the estimated increase in yield as a function of increasing amounts of 

water delivered by the irrigation system. AquaCrop was run by changing the applied wa-

ter values including water application at 150%ET, 120%ET, 100%ET, 80%ET, 70%ET, and 

50%ET to verify the effect of increased and decreased irrigation water on the yield of cot-

ton and keeping all the factors and data set constants. The simulated yield of cotton varied 

by changing applied water in three years (2015, 2016, and 2017). The plot showed that at 
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a certain level, as depicted in Figure 11, yield decreased by increasing water applied for 

cotton. 

 

Figure 11. Simulated cotton yield water functions obtained by varying the seasonal applied irriga-

tion water. 

There is a parabolic shape pattern achieved for water applied and simulated yield, 

which showed that cotton yield will be affected if water application increases from a cer-

tain safe level (Figure 11). The curve starts from a high slope, demonstrating that the pro-

duction function is using water efficiently at low levels of irrigation. As the application of 

water level increases by 20%, the slope decreases. The slope of the parabolic line goes to 

zero as the water function attains maximum yield. AquaCrop works well for deficit irri-

gation, and if we increase water beyond 100%, then it will not change yield until and un-

less all crop parameters should be measured at that irrigation. Yield became stagnant after 

100% ET, though we increased the amount of applied water (mm), 120%ET, and 150%ET, 

the last two points in three curves in Figure 8. The water production functions are curved 

lines, which change among climate scenarios. Using the quadratic formula, the best fit was 

observed; yield deficit and square of the available water deficit were varied proportion-

ately. The regression lines fit very well with R2 ≥0.97 for the three functions. So, it indicated 

that AquaCrop worked well in water limiting conditions rather than in saturation. It pre-

dicts the impact of water stress on yield. In 2015 and 2017, yield versus water simulations, 

80%ET showed better results, and there were no significant differences in yield in 100%ET 

and 80%ET treatments, but in 2016 there was a significant difference in yield in both treat-

ments (100%ET and 80%ET). AquaCrop is stable and useful for different crops and envi-

ronmental conditions. This study was conducted on cotton crops; however, other crops 

can also be studied. 

5. Conclusions 

Canopy cover, above ground biomass, lint yield and water productivity terms of 

grain yield and biomass of cotton were calibrated and validated by using AquaCrop 

model under four irrigation treatments. From the results of the present study, it was con-

cluded that AquaCrop demonstrated its capability in simulating canopy cover, grain, and 

biomass yield to the reasonably suitable accuracy (d = 0.997 and 0.998, RMSE = 0.397% and 

3.266%, for canopy cover and biomass, respectively). RMSE and d-index statistics were 

used for canopy cover (CC) for validation database were 2.67% to 4.47% and 0.991% to 

0.998%, and for biomass were 0.088% to 0.666% and 0.991% to 0.999% for 2016 and 2017, 

respectively. Yield and biomass water productivity was found maximum in 80%ET, and 
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there was no significant difference of yield in 100%ET and 80%ET, which indicated that 

the regions with a low delta of water will have yield loss. Model accuracy correlated (R2 = 

0.95 and 0.97) between final measured and simulated yield and biomass, respectively. 

Thus, it is concluded that this model can be used as a decision-making tool for effective 

irrigation management practices. 
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