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Abstract: Maize is one of the essential crops for food supply. Accurate sorting of seeds is critical for 
cultivation and marketing purposes, while the traditional methods of variety identification are time-
consuming, inefficient, and easily damaged. This study proposes a rapid classification method for 
maize seeds using a combination of machine vision and deep learning. 8080 maize seeds of five 
varieties were collected, and then the sample images were classified into training and validation 
sets in the proportion of 8:2, and the data were enhanced. The proposed improved network archi-
tecture, namely P-ResNet, was fine-tuned for transfer learning to recognize and categorize maize 
seeds, and then it compares the performance of the models. The results show that the overall classi-
fication accuracy was determined as 97.91, 96.44, 99.70, 97.84, 98.58, 97.13, 96.59, and 98.28% for 
AlexNet, VGGNet, P-ResNet, GoogLeNet, MobileNet, DenseNet, ShuffleNet, and EfficientNet, re-
spectively. The highest classification accuracy result was obtained with P-ResNet, and the model 
loss remained at around 0.01. This model obtained the accuracy of classifications for BaoQiu, 
ShanCu, XinNuo, LiaoGe, and KouXian varieties, which reached 99.74, 99.68, 99.68, 99.61, and 
99.80%, respectively. The experimental results demonstrated that the convolutional neural network 
model proposed enables the effective classification of maize seeds. It can provide a reference for 
identifying seeds of other crops and be applied to consumer use and the food industry. 
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1. Introduction 
Maize (Zea mays L.) is a significant fundamental agricultural product for the econo-

mies and markets of countries. With the development of society, the widespread use of 
biotechnology has improved maize breeding technologies and accelerated the renewal 
and iteration of varieties. However, the increasing number of varieties of maize seed and 
their color characteristics overlap to make it more challenging to classify seeds after har-
vest [1]. In addition, the phenomenon of seeds being mixed may occur during production 
activities such as planting, harvesting, transportation, and storage [2]. Therefore, variety 
identification plays a crucial role in the production, processing, and marketing of seeds. 
It will provide markets and consumers with pure seeds that will ensure yields and stabi-
lize their market value. 

Traditionally, there are many methods for variety identification [3]. Morphological 
identification is limited by the range of morphological characteristics, the interference of 
human and environmental factors, and the impact of testing period or cost, which will 
decrease the accuracy of identification. Biochemical identification enables the recognition 
of seeds with different genetic characteristics, but it is difficult to identify closely related 
varieties. Molecular identification through DNA markers has the advantage of genetic 
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stability and is independent of environmental conditions. But the cost of primer design is 
high, and the identification process can damage the sample [4]. In summary, these detec-
tion methods are difficult to adapt to be online detection in the seed processing industry 
[5] and cannot complete the sorting of samples during processing. Therefore, it is neces-
sary to develop non-destructive, rapid, and efficient methods for the variety identification 
and classification of maize seeds. 

Machine vision is the method of image processing adapted to multi-classification, 
which has been successfully applied in several fields. As for seed classification, the non-
destructive nature hereof is undoubtedly a better choice than traditional detection meth-
ods. This method extracts color, texture, and shape features from seed images for classifi-
cation. In [6], 12 color features were extracted to distinguish between the different types 
of damage in maize, with an accuracy of 74.76% for classifying normal and six damaged 
maize. In [7], 16 morphological features were extracted to classify dry beans, and the over-
all correct classification rate of SVM was 93.13%. In [8], developed a machine that auto-
matically extracts shape, color, and texture feature data of cabbage seeds and uses them 
to classify the quality of seeds. The research of maize seeds has focused on bioactivity 
screening and quality inspection. However, an additional issue that demands considera-
tion is the classification of maize seeds of different varieties [9]. 

Deep learning techniques have developed rapidly. The convolutional neural network 
(CNN) is a part of them, which has strong self-learning ability, adaptability, and general-
ization [2,10,11]. It has achieved considerable success in image classification, object detec-
tion, and face recognition [12]. CNN is a deep feedforward network inspired by the recep-
tive field mechanism, which has the properties of local-connectivity, weight sharing, and 
aggregation in structure [13,14]. The network was composed of an input layer, convolu-
tion layers, pooling layers, fully connected layers, and an output layer [15]. CNN models 
have emerged since 2012, such as AlexNet [16], GoogLeNet [17], VGGNet [18], ResNet 
[19], DenseNet [20], MobileNet [21], ShuffleNet [22], EfficientNet [23], and more. 

Machine vision has also been combined with deep learning to classify seeds [2,24]. In 
[15], used a CNN to automatically identify haploid and diploid maize seeds through a 
transfer learning approach. The experiment showed that the CNN model achieved good 
results, significantly outperforming machine learning-based methods and traditional 
manual selection. In [25], a wheat recognition system was developed based on VGG16, 
and the classification accuracy was 98.19%, which could adequately distinguish between 
different types of wheat grains. In [26], they used their self-designed CNN and ResNet 
models to identify seven cotton seed varieties, and it achieved good results, with 80% ac-
curacy of the model identification. Reference [27] determined HSI images of 10 representa-
tive high-quality rice varieties in China and established a rice variety determination model 
using the PCANet, with a classification accuracy of 98.66%. In [24], used the CNN-ANN 
model to classify maize seeds, completing a test of 2250 instances in 26.8 s, with a classifi-
cation accuracy of 98.1%. 

Many studies have combined deep learning with machine vision because of its high 
accuracy, speed, and reliability. However, the increasing number of seed varieties and 
consumption are placing new demands on these studies, and the applicability of previous 
research methods has diminished. Therefore, inspired by the successful classification of 
agricultural products by deep CNNs, this paper studied the classification of maize seeds 
of different varieties. It is an in-depth exploration from another perspective based on the 
reference [9]. Specifically, this research used maize seed images from [9] and increased the 
number of samples by data augmentation. The proposed CNN network and transfer 
learning were used to study this classification task to obtain the best classification perfor-
mance. This study not only extends [9], but its distinction lies in the attempt to automati-
cally obtain deeper features from the data to achieve end-to-end problem-solving. 

In summary, the objective of this study was to propose a non-destructive method for 
the automatic identification and classification of different varieties of maize seeds from 
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images, thus overcoming the time-consuming and inefficient problems of traditional iden-
tification methods. We would pursue this study objective by: (1) implementing machine 
vision combined with deep learning by applying a CNN network with P-ResNet architec-
ture for varietal detection; (2) establishing a seed dataset and dividing it into training and 
validation sets in the ratio of 8:2 for experiments; as well as (3) evaluating and comparing 
the classification performance of the models and using visualization to validate the results. 
In addition, we address the following specific hypotheses: (1) transfer learning can acquire 
knowledge learned in other Settings and be used to complete similar tasks in deep learn-
ing, thus helping to save the training time of the model; and (2) compared with manual 
feature extraction methods, the CNN model can be used to automatically extract more 
depth features from images, thus improving the classification performance. 

2. Materials and Methods 
2.1. Sample Preparation 

In this study, 8080 maize seeds of five common varieties in China were used as a 
dataset to train the deep learning model for image classification. These maize seeds were 
provided by the National Seed Breeding Base in Hainan (Longitude 109.17° E, Latitude 
18.35° N). These seeds were selected and certified by experts and have manually been 
cleaned for impurities and dust [9]. The selected for the experiment were of excellent qual-
ity, without noticeable defects or damage. The image in the dataset included 1710 BaoQiu, 
1800 KouXian, 570 LiaoGe, 2000 ShanCu, and 2000 XinNuo. Figure 1 shows RGB images 
of five varieties of maize seeds. 

     
(a) (b) (c) (d) (e) 

Figure 1. RGB images of maize seed grains. (a) BaoQiu. (b) KouXian. (c) LiaoGe. (d) ShanCu. (e) 
XinNuo. 

These seeds were placed individually on a black background for image acquisition. 
The influence of the seed storage situation in the National Seed Breeding Base in Hainan 
results in different quantities of seeds for each variety. However, the situation does not 
complicate the assessment of the accuracy of the different varieties, as there was no reuse 
of maize seeds. In addition, there were different shapes and sizes of the five maize seeds 
in the images, which provided some assistance in the classification of this study. In this 
work, all of the seeds were randomly divided into a training set (80%) and a validation set 
(20%), then stored in their respective subdirectories. Finally, the training and validation 
sets contained 6464 and 1616 maize seeds, respectively. To establish the classification 
model, BaoQiu, KouXian, LiaoGe, ShanCu, and XinNuo samples were collected in 2020, 
as shown in Table 1. 

Table 1. Data for training and validation. 

No. Cultivar Name 
Seeds 

Training Set Validation Set Number 
1 BaoQiu 1368 342 1710 
2 KouXian 1440 360 1800 
3 LiaoGe 456 114 570 
4 ShanCu 1600 400 2000 
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5 XinNuo 1600 400 2000 
Total 6464 1616 8080 

2.2. Image Acquisition and Segmentation 
In the machine vision part, an image acquisition system was built for capturing maize 

seeds. The system has cameras mounted on top and light sources on either side to provide 
illumination. It is impractical to capture a single seed in a stretch during image acquisition. 
Therefore, hundreds of seeds were photographed in an area of 12 cm × 12 cm, with them 
not touching each other. All of the photos were taken in the same environment, with a 
camera distance of 16 cm. The resolution of the acquired image was 3384 × 2708 pixels, 
which contained multiple single seeds that cannot be directly included as input in the 
CNN model. Therefore, the image was segmented into 350 × 350 pixels size and saved in 
PNG format for use. 

2.3. Image Preprocessing and Data Augmentation 
Large amounts of training data can avoid over-fitting and improve the accuracy of 

CNN, so data augmentation operation is often used to extend the dataset [28]. The training 
images were randomly rotated [29], flipped horizontally and vertically [30], and normal-
ized, considering the uncertainty of the state of the detected seeds in the actual situations. 
The enhanced image was trained together with the sample image to improve the classifi-
cation precision and robustness of the model and further improve its applicability. De-
tailed information is shown in Figure 2. 

(a) 

     

(b) 

     

(c) 

     

(d) 

     
Figure 2. Data enhancement: (a) Original images; (b) Randomly rotated; (c) Flipped horizontally; 
(d) Flipped vertically. 

2.4. Convolutional Neural Network 
Deep learning is an emerging algorithm in machine learning, which has attracted 

extensive attention from researchers because of its remarkable effect on learning image 
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features. Deep learning extracts higher-dimensional and abstract features by autonomic 
learning from training samples through neural networks [10]. This research proposed a 
new model (P-ResNet) based on an improvement of ResNet, which provides a method to 
classify maize seeds. The network architecture of P-ResNet consists of six parts, five of 
which are the convolution layer, and the last one is a fully connected layer. The convolu-
tion operation is followed by batch normalization, and then ReLU is applied as the acti-
vation function to complete the output of the convolution layer. In addition, to avoid over-
fitting and reduce the number of parameters and computation in the network, which 
adopted a strategy of max pooling and average pooling. The input image was resized to 
224 × 224 × 3. According to the prepared dataset, the output of the fully connected layer 
was fed into softmax to generate a probability distribution to predict the varieties of 5 
maize seeds. Table 2 provides a detailed description of the P-ResNet network. 

Table 2. Network architecture for P-ResNet. 

Layer Name Output Shape The Network Layer Stride 
Input (224 × 224 RGB image) 

Convolution layer 1 112 × 112 7 × 7, 64 2 
Max pooling 

56 × 56 

3 × 3, 64 2 

Convolution layer 2 3
64,33
64,33

×







×
×

 1, 1, 1 

Convolution layer 3 28 × 28 3
128,33
128,33

×







×
×

 2, 1, 1 

Convolution layer 4 14 × 14 3
256,33
256,33

×







×
×

 2, 1, 1 

Convolution layer 5 7 × 7 3
512,33
512,33

×







×
×

 2, 1, 1 

Classification 1 × 1 average pooling, 5-d fully-connected, soft-
max 1 

As can be seen from Table 2, the convolutional layer 1 of the P-ResNet network goes 
through a 7 × 7 convolution. The receptive field is large enough to be used for the feature 
extraction of images in this database. In order to classify maize seeds more accurately, 
more subtle features need to be extracted. Furthermore, a suitable network depth was 
required to be designed and to reduce the size of the presented model. Therefore, the con-
volution layer of layers 2–5 was improved in the architecture of the network to make it 
more suitable for the model classification task. The design of this study used twenty-four 
3 × 3 stacked convolution layers for learning, with more nonlinear activation functions to 
make the decision function more accurate; on the other hand, it can effectively decrease 
the number of parameters in calculation. Furthermore, in online inspection in the seed 
processing industry, the objective region occupies a small area of the whole image, and 
the proportion of information obtained is weak. In order to avoid redundant and useless 
information, this study adds a pooling layer to integrate spatial information before the 
convolution kernel of the residual module does down-sampling. 

2.5. Transfer Learning 
The RGB images with labeled data were input into the improved network P-ResNet. 

In the experiment, 6464 images were utilized for training and 1616 images for validation. 
Transfer learning [31] was performed for 5 varieties: BaoQiu, ShanCu, XinNuo, LiaoGe, 
and KouXian. After training the model, its performance was evaluated and compared 
through the training and validation sets. The models were developed using the open-
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source software framework of PyTorch 1.9.0, the programming language of Python 3.8.10, 
and the Integrated Development Environment of PyCharm 1.3. The classification model 
was trained on a server equipped with one NVIDIA GeForce GTX 1660 SUPER GPU and 
16 GB GDDR4 on-board memory. 

In this study, as shown in Table 3, some classical CNN models have been used to 
compare with P-ResNet. The acquired data were fed into a pre-trained network, storing 
the activation values of each layer as features. The cross-dataset fine-tuning method was 
used for training. According to the new task, the weights of the presented model were 
updated and back-propagated through the network. This approach can transfer weights 
from the pre-trained model to the one we want to train. Details of the hyper-parameters 
applied during the fine-tuning procedure are listed in Table 4. Using these enables trans-
ferring the knowledge gained from the large dataset to the classification problem of maize 
seeds. For the purpose of this study, the convolution layer was used as a fixed feature 
extractor. Then a fully connected layer with merely five neurons was constructed. Finally, 
the categorization results were obtained with the prediction layer. 

Table 3. Compare the properties of CNN models. 

Network Name Depth Image Input Size Parameters (Millions) FLOPs (G) Total Memory (MB) 
AlexNet 8 224-by-224 16.63 0.31 2.77 
VGGNet 16 224-by-224 138.36 15.50 109.29 
P-ResNet 26 224-by-224 17.96 2.75 32.83 

GoogLeNet 22 224-by-224 6.99 1.59 30.03 
MobileNet 19 224-by-224 3.50 0.32 74.26 
DenseNet 121 224-by-224 7.98 2.88 147.10 
ShuffleNet 19 224-by-224 1.37 0.04 11.24 

EfficientNet 18 224-by-224 21.46 2.87 144.98 

Table 4. Hyper-parameters were applied to the fine-tuning procedure. 

Parameter Value 
Epochs 30 

Batch size 32 
Learn rate 0.001 

Momentum 0.9 
Learn rate weight coefficient 15 

Learn rate bias coefficient 15 
Learn rate schedule Exponential 

Weight decay 0.005 
Decay period 10 

The whole network has 17,960,232 parameters. The proposed CNN model uses 
Adam [32] as the optimizer to train with an initial learning rate value of 0.001, and the loss 
function of the network was declined by updating the weight parameters. Batch Normal-
ization was used between each convolution and ReLU layer during network training, in-
stead of the traditional dropout to improve training and reduce over-fitting. Epoch is the 
complete training cycle of the entire dataset with maize seeds, and its maximum value 
corresponds to the limit value of the minimum loss function. The maximum training 
epoch was set to 30, and the minimum batch size was set to 32. These parameters achieved 
better results in the optimizer. The process of transfer learning and classification of maize 
seeds in the network involved in the experiment was given in Figure 3. 
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Figure 3. Process of transfer learning and classification of maize seeds. 

2.6. Performance Evaluation 
In this paper, the confusion matrix was used to visualize the performance of the CNN 

model. This data on the confusion matrix represents the actual class in the samples and 
the class predicted by the CNN classifier. The four metrics typically included true posi-
tives (TP), true negatives (TN), false positives (FP), and false negatives (FN) [24]. In this 
work, TP and TN correspond to the correct identification of maize seeds, while FP and FN 
correspond to false identification of it. The performance of models was evaluated based 
on some statistical parameters of the confusion matrix, such as accuracy, sensitivity, spec-
ificity, precision, and F1-score, which can be obtained from them [33]. The performance 
evaluation was performed using images from the validation set and their respective labels, 
which were not used for training. Table 5 represents the formulae for performance evalu-
ation and their evaluation focus. 

Table 5. Performance evaluation to measure the performance of the CNN models. 

Metrics Formula Evaluation Focus 

Accuracy 
TNFNFPTP

TNTP
+++

+  It is the sum of correct predictions divided by all the predictions. 

Specificity 
FPTN

TN
+

 It reflects the ability of the classifier to exclude misclassification images. 

Sensitivity 
FNTP

TP
+

 It reflects the ability of the model to detect instances of certain classes. 

Precision 
FPTP

TP
+

 Its high value indicates the low number of false positives hence better classification. 

F1-score 
2

2
TP

TP FP FN∗
∗

+ +
 Its high value means the model classifies well. 
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3. Results 
The parameters given in Table 4 were selected for transfer learning. The prepared 

dataset was trained using AlexNet, VGGNet, P-ResNet, GoogLeNet, MobileNet, Dense-
Net, ShuffleNet, and EfficientNet. The optimal parameters in Table 4 were used to prevent 
over-fitting during training and avoid spending more time. All networks have been 
trained for 30 epochs. The accuracy and loss of the training and validation data for each 
epoch are shown in Figure 4. In the initial phase (1–10 epochs), the loss values declined 
sharply, but the accuracy improved dramatically. Finally, the CNN models reached an 
accuracy of over 92% in the training phase, and the loss of models was steady below 0.15, 
indicating that these are very robust and dependable. Also, the model achieved the con-
vergence procedure in approximately 15 epochs. As can be depicted in Figure 4, after this 
period, the validation accuracy and loss curves smoothed out, and the difference between 
the accuracy and loss values of the validation and training data decreased. There, for the 
fact, was some fluctuation with accuracy and loss for GoogLeNet. This condition suggests 
that the model is not stable until the 25 epochs, possibly because some of the varieties 
were easily confounded. There are gaps in GoogLeNet’s handling of the dataset for this 
study compared to other models. Nevertheless, even in the worst case, the metrics were 
above 90% or below 0.2. This result indicates that the classifier’s performance is satisfac-
tory and did not prevent it from achieving its final classification purpose. 

  
(a) (b) 

  
(c) (d) 

Figure 4. Each epoch of the CNN model: (a) Training accuracy, (b) Training loss, (c) Validation 
accuracy, (d) Validation loss. 

After the training, a confusion matrix was created for each classification algorithm, 
and performance evaluation was visualized using the values on the confusion matrix (TP, 
TN, FP, FN). The confusion matrices for the validation set of the CNN model are depicted 
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in Figure 5. In addition, the performance metrics depicted from the confusion matrix are 
presented in Table 6, including their mean values for precision, specificity, sensitivity, ac-
curacy, and f1 scoring. In this experiment, all CNN models can identify five classes of 
maize seeds, and all had an accuracy rate of over 92%. The highest accuracy was obtained 
by P-ResNet (99.70%), followed by AlexNet (97.91%), VGGNet (96.44%), GoogLeNet 
(97.84%), MobileNet (98.58%), DenseNet (97.13%), ShuffleNet (96.59%), and EfficientNet 
(98.28%). Even though these models were trained with images from self-made datasets, 
fine-tuning these models can achieve similar results to using the end-to-end models in 
datasets with limited samples. This situation will make image acquisition more conven-
ient and fast, will save effort and time, and will thus improve efficiency. Besides, the con-
fusion matrix and classification results also prove that P-ResNet has excellent perfor-
mance. This result also illustrates that the presented network can catch the detailed infor-
mation of the samples. These can provide relatively high accuracy classification under 
complex datasets, which is beneficial for transferring it to similar classification tasks. The 
experimental results also demonstrate that enhancing the data used for training has a pos-
itive impact on the performance of the presented model on datasets with a small number 
of samples. In particular, these include datasets with low sample sizes. At the same time, 
the deep learning-based feature extraction method can effectively preserve information 
about the maize seeds, reduce the loss of information due to manual feature extraction. 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Predict
Acc=0.9728; Error=0.0272

BaoQiu 331 0 7 0 4

Actual

KouXian 0 358 0 1 1

LiaoGe 14 0 92 7 1

ShanCu 0 4 0 395 1

XinNuo 0 4 0 0 396

BaoQiu KouXian LiaoGe ShanCu XinNuo

Predict
Acc=0.9616; Error=0.0384

BaoQiu 331 0 7 1 3

Actual

KouXian 0 355 0 3 2

LiaoGe 4 0 100 10 0

ShanCu 0 0 5 394 1

XinNuo 14 5 7 1 374

BaoQiu KouXian LiaoGe ShanCu XinNuo

Predict
Acc=0.9975; Error=0.0025

BaoQiu 342 0 0 0 0

Actual

KouXian 0 360 0 0 0

LiaoGe 1 0 112 1 0

ShanCu 0 2 0 398 0

XinNuo 0 0 0 0 400

BaoQiu KouXian LiaoGe ShanCu XinNuo

Predict
Acc=0.9709; Error=0.0291

BaoQiu 342 0 0 0 0

Actual

KouXian 0 341 0 10 9

LiaoGe 17 0 95 2 0

ShanCu 2 0 7 391 0

XinNuo 0 0 0 0 400

BaoQiu KouXian LiaoGe ShanCu XinNuo

Predict
Acc=0.9895; Error=0.0105

BaoQiu 341 0 1 0 0

Actual

KouXian 0 358 0 2 0

LiaoGe 7 0 107 0 0

ShanCu 0 0 0 400 0

XinNuo 7 0 0 0 393

BaoQiu KouXian LiaoGe ShanCu XinNuo

Predict
Acc=0.9783; Error=0.0217

BaoQiu 332 0 7 0 3

Actual

KouXian 0 360 0 0 0

LiaoGe 25 0 89 0 0

ShanCu 0 0 0 400 0

XinNuo 0 0 0 0 400

BaoQiu KouXian LiaoGe ShanCu XinNuo
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Figure 5. Confusion Matrix: (a) AlexNet; (b) VGGNet; (c) P-ResNet; (d) GoogLeNet; (e) MobileNet; 
(f) DenseNet; (g) ShuffleNet; and (h) EfficientNet. 

The experimental analysis showed that the deep learning architecture with updated 
weights and fine-tuning had good generalization capability in the maize seed dataset. 
Compared with the networks in the literature, the proposed P-ResNet has relatively better 
performance and higher accuracy. It also found that the value of the maximum difference 
in classification accuracy between all models was no more than 3%. Although there were 
differences between them, they performed similarly for multi-classification. Therefore, an 
improved ResNet-based network has been used for transfer learning in the study. Due to 
its better classification results, it confirms that the idea of balancing its depth and width 
when designing the network is feasible. It would also increase the complexity of the model 
and consume more computation time. As can be observed in Table 3, the P-ResNet pro-
posed generates a relatively small number of parameters (17.96 Million) and memory 
(32.83 MB). VGGNet has 7.6 times as many parameters as it does, while the memory foot-
print is close to GoogLeNet. The FLOPs value (2.75 G) is approximately the same as that 
of DenseNet and EfficientNet, indicating the low complexity of the model. It also demon-
strates the potential for the network to be lightweight and mobile. With the continuous 
improvement of the model, a version more suitable for mobile and embedded devices can 
be achieved. 

Table 6. Classification results of CNN models. 

Name Accuracy (%) Specificity (%) Sensitivity (%) Precision (%) F1-Score (%) 
AlexNet 97.91 98.31 93.94 95.59 94.80 
VGGNet 96.44 97.04 92.98 92.45 92.83 
P-ResNet 99.70 99.94 99.55 99.78 99.71 

GoogLeNet 97.84 98.26 94.16 95.54 94.99 
MobileNet 98.58 98.73 97.25 97.93 97.57 
DenseNet 97.13 97.46 93.03 94.99 93.88 
ShuffleNet 96.59 97.13 91.54 94.84 92.76 

EfficientNet 98.28 99.58 97.86 96.69 97.28 

Figure 6 shows a comparison of the performance of the CNN models tested, from 
which it can be seen that the training time of the proposed network is comparable to that 
of the lightweight networks (MobileNet and ShuffleNet). AlexNet had the shortest train-
ing time (14 min) and VGGNet the longest (62 min). It is important to note that the time 
required for training the network depends on the hardware resources. The use of ad-
vanced GPU can reduce the training time of CNN. However, when time and model com-
plexity were considered, P-ResNet’s training time was only 4 min slower than AlexNet, 
and the values for Parameters, FLOPs, and total memory were relatively better. This situ-
ation is because of the use of Adam optimizer in the proposed model, which minimizes 
error loss, and transforms the training and validation data for each epoch. In this work, 

Predict
Acc=0.9647; Error=0.0353

BaoQiu 333 0 9 0 0

Actual

KouXian 0 358 0 1 1

LiaoGe 40 0 70 3 1

ShanCu 0 0 1 399 0

XinNuo 0 0 1 0 399

BaoQiu KouXian LiaoGe ShanCu XinNuo

Predict
Acc=0.9821; Error=0.0179

BaoQiu 320 0 17 0 5

Actual

KouXian 0 360 0 0 0

LiaoGe 2 0 110 1 1

ShanCu 0 3 0 397 0

XinNuo 0 0 0 0 400

BaoQiu KouXian LiaoGe ShanCu XinNuo
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when the region of interest of seeds was extracted from the image and applied to the deep 
learning model, the processing time of training can be reduced. 

 
Figure 6. Consumed time for training. 

The classification results for all varieties of maize seeds in the different models were 
shown in Table 7, and this statistic clearly shows how the model performance stays in 
general and as a whole. As can be seen from Figure 7, the classification accuracy of 8 dif-
ferent models for five maize seeds was over 90%. The P-ResNet network had the best 
classification performance, with 99.74, 99.68, 99.68, 99.61, and 99.80% accuracy for the 
BaoQiu, KouXian, LiaoGe, ShanCu, and XinNuo, respectively. However, BaoQiu and 
LiaoGe had lesser classification performance among all models, and the lowest values 
were 94.97 and 94.60%, respectively. These results indicated that VGGNet, DenseNet, and 
ShuffleNet models were not the best adapted for these two varieties. It also revealed that 
there probably is overlap in features between BaoQiu and LiaoGe and the other three va-
rieties, resulting in poor distinction. In addition, the low number of LiaoGe in the dataset 
may also have contributed to this situation. Through, their classification results were still 
very encouraging. 

Table 7. Statistics of classification results for all maize varieties. 

Model 
Classification Accuracy (%) 

BaoQiu KouXian LiaoGe ShanCu XinNuo 
AlexNet 97.45 98.38 97.21 98.20 98.32 
VGGNet 96.21 97.38 95.96 96.70 95.96 
P-ResNet 99.74 99.68 99.68 99.61 99.80 

GoogleNet 97.82 97.82 97.39 97.70 98.44 
MobileNet 98.07 98.88 98.50 98.88 98.57 
DenseNet 95.83 98.00 96.02 98.00 97.81 
ShuffleNet 94.97 97.88 94.60 97.69 97.81 

EfficientNet 97.51 98.81 97.70 98.75 98.63 
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Figure 7. Classification results for maize seeds. The error bars are standard deviations of means. 

In this experiment, given the different methods, datasets, and classification criteria 
employed, relevant studies cannot be compared in detail. Nevertheless, it compared some 
applications in agricultural classification tasks, and the results are shown in Table 8. These 
comparisons considered several criteria, such as dataset size, application, the method 
used, and accuracy. The results showed that the accuracy for the different classification 
tasks was above 95%, which indicated that the CNN model proposed in this paper and 
the pre-training method using transfer learning were feasible. It can provide a reference 
for the classification of agricultural products. The five types of maize seeds utilized in the 
research are relatively common in China, with a wide distribution of planting areas. In 
this situation, the credibility of this study has been enhanced. Although the P-ResNet 
model achieved good results, maize seeds may vary depending on storage time and cul-
tivation conditions (soil or climate). These conditions lead to changes in the dataset, which 
may influence its accuracy in distinguishing the target varieties. Therefore, it will be nec-
essary to update the algorithm in the future, and the aim is to retain the classification 
precision and robustness of the model. 

Table 8. Comparison of the proposed model and related studies (maize seeds). 

Imaging Method Dataset Size Application Approach Result References 
Hyperspectral imaging 1632 Variety identification LDA 99.13% [1] 

Digital camera 700 Quality detection Maximum likelihood 96.67% [6] 
Near-infrared spectroscopy 760 Variety identification PLS-DA 99.19% [3] 

Digital camera 5400 Variety identification ANN 98.10% [24] 
Near-infrared spectroscopy 2250 Variety identification LSTM 95.22% [34] 

Digital camera 8080 Variety identification SVM 96.46% [9] 
Digital camera 1600 Quality detection VGG16 98.00% [2] 
Digital camera 8080 Variety classification P-ResNet 99.70% Our work 

These results were obtained using the Gradient-weighted Class Activation Mapping 
(Grad-CAM) technique to visualize the used regions of a random input image to extract 
features for image classification prediction [35]. The gradient of any target feature through 
the last convolution layer produces a roughly local feature map, highlighting the regions 
of the image that are important for it. Figure 8 shows the achieved results of the imple-
mentation of this method on maize seed images. It can be shown that the image locations 
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for seeds were accurately calculated, with the class activation heat map indicating the im-
portance rank and similarity of the location relative to the particular variety. 

(a) 

     

(b) 

     

(c) 

     

(d) 

     

(e) 

     

(f) 

     

(g) 

     
Figure 8. (a) Original images; (b) Grad-CAM visualization; (c) Guided Grad-CAM visualization; (d) 
Grad-CAM++ visualization; (e) Guided backpropagation visualization; (f) HeatMap visualization; 
(g) HeatMap++ visualization. 

4. Discussion 
There are two primary methods for training CNN models using sample data: (1) 

starting from zero; and (2) transfer learning. In practice, while training a CNN model from 
the ground up gives us the best active control concerning the network, it may not have 
enough data and time to train in some cases, or the data to create the markers may be 
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difficult to obtain. Moreover, over-fitting and convergence states are also potential prob-
lems. In such cases, transfer learning can be applied to gain knowledge gained in other 
settings. It is a convenient and effective method of knowledge adaptation [31], which is 
usually more efficient than training a new neural network since all parameter values are 
not required to start from zero. In higher-layers networks, some features are more appli-
cable to a specific task. However, there are many similar features like color and texture 
for the lower layers of the network. These can be transferred to other tasks and are very 
helpful for performing similar tasks in deep learning. 

P-ResNet was designed based on the principle of balancing the width and depth of 
the network according to the specific task, which has a better architecture than GoogLeNet, 
DenseNet, and EfficientNet. It can reduce parameters for computation and avoid gradient 
disappearance and gradient explosion during training. Meanwhile, it does not need to 
crop or scale the input image like AlexNet and VGGNet, which can maximally protect the 
information integrity. In addition, the underlying implementation of this network was 
simplified to make it more lightweight as possible as MobileNet and ShuffleNet. Since 
only images are required, which can be produced by low-cost digital cameras, this ap-
proach can be widely deployed and disseminated in intelligent agriculture. Machine vi-
sion can only obtain phenotypic information of seeds, while spectral information can re-
flect the internal quality of seeds. The combination of CNN-based machine vision and 
spectroscopic techniques for seed classification and detection was considered in the fol-
low-up work. 

The proposed method has been compared with related work based on the unification 
of the research objectives (classification or identification) and the object of study (maize 
seeds). In Table 7, it can be seen that automatic extraction of image features for recognition 
using CNN is better than manual extraction, and these results illustrate that deep learning 
is more effective than traditional machine learning methods in cultivar classification. 
However, the variety and number of samples collected in this study are limited and can-
not represent all maize seeds within China. Therefore, the number of samples should be 
increased to improve its applicability to the model. Moreover, this experiment only con-
sidered the classification effects of seed samples from the same year, so the impact of dif-
ferent planting years, growing regions, and climatic conditions on the classification of 
seeds of the same variety can be compared in subsequent studies. 

5. Conclusions 
In this work, a combination of deep learning algorithms and machine vision has been 

used to automatically classify five varieties of maize seeds using a CNN model. In terms 
of classification, the model architecture developed can be applied to different regions and 
types of seeds to ensure the provision of high-quality seeds for agricultural production. 
Also, the method has application potential in identifying varieties of seeds, and the devel-
oped variety classification model can be applied to seed sorting machinery to provide an 
idea and reference for real-time industrial detection. This study proposes an improved 
model, P-ResNet, and compares it with AlexNet, VGGNet, GoogLeNet, MobileNet, 
DenseNet, ShuffleNet, and EfficientNet models. The results showed that the P-ResNet 
model achieved the best accuracy to classify maize seeds in a non-destructive, fast, and 
efficient manner. These results highlight the advantages of transfer learning and its po-
tential to work with deep learning using a few quantities of training samples. In addition, 
the Grad-CAM has been used to visualize the regions of use of the input seed images, 
making this work more efficient and productive. This machine vision technology based 
on CNN with high accuracy and reliability can also be applied in other intelligent agricul-
tural equipment to facilitate the analysis of seeds or other crops to save cost, labor, and 
time. 

Based on the work presented in this paper, further studies on more varieties of maize 
seeds and the environment in which they are grown would be appropriate, and it is in 
order to optimize the stability of the proposed model. Considering that each seed in maize 
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has its genetic characteristics, grouping seeds of selected varieties might avoid natural 
variability in seedlings. Given the real-time nature of the data, that helps to develop an 
integrated and intelligent automated seed sorting system for the food industry and 
smartphone-based applications used by consumers. 
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