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Abstract: Phytoremediation is an effective and ecological method used to control soil secondary
salinization in greenhouses. However, the plant–soil interactions for phytoremediation have not
been studied sufficiently. In this study, three crop species (Astragalus sinicus (CM), Spinacea oleracea
(SP) and Lolium perenne (RY)) were compared in a greenhouse experiment. The results showed that
all three crops increased the soil microbial biomass, the abundance of beneficial microorganisms,
available phosphorus and soil pH, and reduced the soil salt content. The crop nutrient accumu-
lation was positively correlated with the relative abundance of bacterial 16S rRNA sequences in
the soil. CM and RY respectively increased the relative abundances of norank_f_Gemmatimonadaceae
and norank_f_Anaerolineaceae within the soil bacterial community, while SP increased the relative
abundances of Gibellulopsis within the fungal community. Correlation analysis revealed that pH
and total dissolved salts were the vital factors affecting soil microbial communities in the secondary
salinized soil. Our results suggest that phytoremediation could effectively alleviate secondary salin-
ization by regulating the balance of soil microbial community composition and promoting crop
nutrient accumulation.

Keywords: phytoremediation; secondary salinization; salt tolerance; microbial diversity; nutrient ac-
cumulation

1. Introduction

Secondary soil salinization, which is mainly caused by intensified anthropogenic
agricultural production, has been recognized as an extensive form of land degradation [1–3].
High inputs of agrochemicals, high evaporation, and mineral leaching in the intensified
production system significantly intensify secondary soil salinization, as well as high Na+

accumulation in surface soil, which restricts agricultural productivity worldwide [4,5]. The
salinization causes soil compaction and an imbalance in nutrient supply, which directly
harms the normal growth of crops. Furthermore, the salinization alters the status of soil
microorganisms, thereby indirectly affecting the entire ecological environment, and thus
hindering the sustainable development of agricultural production [6].

Phytoremediation can alleviate secondary salinization in facility cultivation soils and
reduce the dependence on mineral fertilizers [7]. In previous studies, it has been suggested
that soil microbes are susceptible to farming practices, and that selecting an effective crop
has positive effects on microbial communities and functions [8]. For example, applying a
green manure crop has been shown to significantly change the soil microbial community
composition and function [9]. Fungi, bacteria, and actinomycetes have been found to be
active in the rhizosphere of Italian ryegrass [10]. The symbioses of these microorganisms
accelerated nutrient cycling processes [11]. Therefore, understanding the structure of the
soil microbial community and its responses to applications of different types of crops is
necessary to elucidate the effects of microbes on secondary salinization.
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In this study, it was hypothesized that the saline soil biochemical properties and
microbial communities would change consistently with the type of crop species planted.
Further, it was postulated that there would be considerable linkage between crop nutrient
accumulation, soil salinization indicators and soil biochemical properties during the process
of phytoremediation. The objectives of this study were to clarify the impact of different crop
species on soil biochemical properties and microbial communities in cultivation facility
soil, and to explore the linkage between crop nutrient accumulation and the composition of
soil microbial communities.

2. Materials and Methods
2.1. Field Site Setup, Management and Sampling

A greenhouse experiment was performed at the Zhuanghang Comprehensive Exper-
imental Station of the Shanghai Academy of Agricultural Sciences, Fengxian, Shanghai,
China (30◦53′20.0′ ′ N, 121◦23′06.4′ ′ E). The study site was flat and the soil type was calcare-
ous alluvium. Three replicates of four treatments were arranged in a randomized block
design using 30 m × 2 m plots constructed in January 2015 (Figure 1). Nylon screen fabric
was erected around every plot to avoid runoff effects, and it was buried beneath the soil
surface with a height of 40 cm. Four treatments were set up, including the fallow control
(CK), Chinese milk vetch (Astragalus sinicus L., CM), Spinach (Spinacia oleracea L., SP) and
Ryegrass (Lolium perenne L., RY). CM, SP and RY were selected because they are the major
native winter cover crop species that are easily accessible and widely applied to ameliorate
soil salinization. Seeds of CM, SP and RY were obtained from Shanghai Nongle Planting Co.
Ltd. (Shanghai, China). After 3 years of continuous planting, soil samples were collected on
30 January, 2018. In each separated plot, soil samples from the 0−20 cm surface layer were
collected from 8 points to form a mixed composite soil sample, which was then divided
into two parts, with one part air dried prior to the determination of basic physicochemical
properties, and the other stored at −80 ◦C prior to the DNA extraction.

Figure 1. The schematic for field site setup, management and sampling. CK, control; CM, Astragalus
sinicus; SP, Spinacia oleracea; RY, Lolium perenne.

2.2. Crop Yield and Nutrient Accumulation

The experimental crops were planted by sowing the equivalent of 75 kg ha−1 of seed
per plot in early October, and the crops were grown and harvested until the end of January
annually. Equal amounts of irrigation water were supplied to each plot and no fertilization
was used during the period of phytoremediation. The former crop for all treatments
was pakchoi (Brassica chinensis L.), and urea (N 46%); compound fertilizer (17-17-17) and
potassium sulphate (K2O 52%) were applied as the N, P and K fertilizer, with application
rates of N 120 kg ha−1, P2O5 45 kg ha−1 and K2O 90 kg ha−1. Crops were harvested at the
same time as the soil samples were taken. The selected uniformly growing plants were
taken to the laboratory immediately and were dried to a constant weight in preparation for
nutrient determination. The total nitrogen (N), phosphorus (P) and potassium (K) contents
of the dry matter were quantified using the Kjeldahl nitrogen determination method, the
vanadium-molybdenum-yellow photometric method, and the flame photometry approach,
respectively [12].
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2.3. Determination of Soil Physicochemical Properties

Soil chemical properties, including the pH, total N, soil organic matter (SOM), alkali-
hydrolyzable nitrogen (AMN), available P (AP), available K (AK), and total dissolved salts
(TDS), were tested according to the methods of Bao (2000). The soil pH was tested using a
soil-to-water ratio of 1:2.5. The soil total N was determined via the Kjeldahl method and
SOM was determined via the potassium dichromate oxidation method. The soil AMN
content was measured using the alkaline hydrolysis diffusion method. The AP and AK
were measured using the molybdenum blue colorimetric method and the flame photometry
method, respectively. The TDS in the soil were determined using the gravimetric method.
The soil microbial biomass C (MBC) and N (MBN) were measured using the chloroform
fumigation method [13].

2.4. Soil DNA Extraction and Microbial Community Analysis

Bacterial and fungal DNA were extracted as three replicates from each soil sample
using a FastDNA Spin Kit for Soil and were stored at −80 ◦C. The bacterial V3–V4 region
of the 16S rRNA gene was amplified using the primers 338F and 806R [6]. The internal
transcribed spacer (ITS) region of the fungal rRNA gene was amplified using ITS1F and
ITS2R [14]. All PCR reactions were performed according to the methods described by Cai
et al. [15]. Pyrosequencing was carried out by Majorbio Bio-Pharm Biotechnology Co.,
Ltd., Shanghai, China, using the Illumina Miseq PE250 platform. After high-throughput
sequencing and optimization, 566,160 bacterial 16S rRNA sequences with 235,957,809 bp
were obtained from the four treatments (N = 12), and the average sequence length was
416.8 bp. Meanwhile, 727,233 fungal ITS sequences with 173,088,882 bp were obtained, and
the average sequence length was 238.0 bp. Sequence data were deposited in the National
Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA) under the
accession number SRP273207.

2.5. Real-Time Quantitative Polymerase Chain Reaction (qPCR)

qPCR was used to examine the effects of bioremediation on soil microbial abundance.
Standard reactions were performed for all samples in triplicate with an ABI7500 Real-time
PCR System (Applied Biosystems INC, Foster City, CA, USA) using the SYBR green qPCR
method. The standard curves and amplification curves are shown in Figures S1–S4. The
qPCR mixture (20 µL) contained 10 µL of Maxima SYBR green/ROX qPCR Master Mix
(Thermo Fisher Scientific, Waltham, MA, USA), 0.8 µL of each primer, 1.0 µL of template
DNA and 7.4 µL of dd H2O. The amplification conditions of 16S rRNA comprised pre-
denaturation for 5 min at 95 ◦C, followed by 30 amplification cycles of denaturation at
95 ◦C for 30 s, annealing for 30 s at 55 ◦C and extension at 72 ◦C for 1 min. The amplification
conditions of ITS were nearly the same despite the difference of annealing temperature
at 62 ◦C. The gene abundances of each reaction were calculated based on the constructed
standard curves and then converted to copies per gram of soil, assuming 100% DNA
extraction efficiency.

2.6. Data Analysis

The effects of the different crop treatments on the physicochemical soil properties and
crop biomass values were tested using one-way ANOVA in SPSS 17.0 (SPSS Inc., Chicago,
IL, USA). QIIME (1.7.0) software was used to calculate the alpha and beta diversities of
the soil bacterial and fungal communities. The OTUs were used to characterize the alpha
diversity. The Chao1, ACE, Shannon and Simpson indices were calculated. Principal
coordinates analysis (PCoA) of the unweighted UniFrac distances between the samples was
used to characterize the similarities (beta diversity) in the bacterial and fungal communities
among the treatments [16]. The vegan data package in R was used for redundancy analysis
(RDA), which was used to identify factors that affected microbial community structure.



Agriculture 2022, 12, 212 4 of 9

3. Results
3.1. Response of Soil Biochemical Properties to Green Manure Crops

The application of green manure in the form of the three different crops improved
the biochemical properties associated with soil fertility (Table 1). Compared to CK, all
cultivation treatments displayed lower TDS contents, but higher soil pH, MBC and MBN
contents (p < 0.05). The AP and AK contents were also significantly higher than in the
control, irrespective of the type of crop applied (p < 0.05). The AMN and MBN contents
were significantly higher in the CM treatment than in the other treatments (p < 0.05). The
AP and AK contents were significantly higher in RY than in the other treatments (p < 0.05).

Table 1. Biochemical properties of the soil in each bioremediation treatment.

Treatments pH TDS
(g kg−1)

SOC
(g kg−1)

AMN
(mg kg−1)

AP
(mg kg−1)

AK
(mg kg−1)

MBC
(mg kg−1)

MBN
(mg kg−1)

CK 4.98 c 3.25 a 11.70 b 120.58 b 45.56 c 205.20 a 108.45 c 38.70 c
CM 5.29 b 2.81 b 12.58 ab 139.33 a 90.47 b 336.92 c 192.94 ab 62.60 a
SP 5.33 b 2.74 b 11.79 b 104.06 c 92.44 b 282.98 b 188.36 b 52.56 b
RY 5.52 a 2.52 b 13.09 a 95.89 c 113.60 a 426.08 d 194.84 a 54.92 b

Note: TDS, total dissolved salts; SOC, soil organic carbon; AMN, alkali-hydrolyzable nitrogen; AP, available
phosphorus; AK, available potassium; MBC, microbial biomass carbon; MBN, microbial biomass nitrogen. CK,
control; CM, Astragalus sinicus; SP, Spinacia oleracea; RY, Lolium perenne. Different letters in the same column
indicate a significant difference between treatments at the 0.05 level (n = 3).

3.2. The Yield and Nutrient Uptake and Accumulation of the Different Crop Species

Crop yield significantly differed both in terms of shoot biomass and root biomass
(Figure 2). RY had a significantly higher yield than SP and CM (p < 0.01), with the whole
fresh biomass of RY reaching 83.8 kg ha−1. As shown in Figure 3, the three crops displayed
the highest cumulative uptake for K, followed by N, and then P. The cumulative K uptake
by RY was significantly greater than that exhibited by SP and CM (p < 0.01). It was also
observed that the root-to-shoot ratios of dry weight for SP and CM were significantly higher
than the ratio of RY (Table S1). Further, significant differences were observed in the nutrient
contents of the three crops (Figure S5). The N content of RP was significantly lower than
that of CM and SP. The P content was higher in SP than in CM and RY. The average K
content of the three crops was in the following order: SP > RY > CM.

Figure 2. Shoot and root biomass (fresh weight [FW]) of Lolium perenne (RY), Spinacia oleracea (SP) and
Astragalus sinicus (CM). Vertical bars represent the standard error of the mean. ** denotes statistically
significant differences between crop varieties (p < 0.01, Duncan’s test).
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Figure 3. Nutrient accumulation of the three different crop species, Astragalus sinicus (CM), Spinacia
oleracea (SP) and Lolium perenne (RY). Vertical bars represent the standard error of the mean.

3.3. Abundance and Diversity of Doil Microbial Communities

Compared to the CK samples, significantly more 16S rRNA sequences but fewer
ITS copies (p < 0.05) were found in the CM and SP samples (Table 2). However, RY
had no significant effects on the number of ITS sequences in the soil compared with CK.
Quantitative PCR (qPCR) data also indicated that the bacteria-to-fungi (B/F) ratio declined
in the following order: SP > CM > RY > CK.

Table 2. Bacterial (16S rRNA) and fungal (ITS) gene copy numbers in soil samples.

Treatments
16S Gene Copy

Numbers
(Copies × 1010)

ITS Gene Copy
Numbers

(Copies × 108)

B/F
(Bacteria/Fungi 103)

CK 2.50 d 1.44 a 0.17 c
CM 4.21 b 0.82 b 0.51 b
SP 2.83 c 0.26 c 1.11 a
RY 6.69 a 1.47 a 0.46 b

Note: CK, control; CM, Astragalus sinicus; SP, Spinacia oleracea; RY, Lolium perenne. Different letters in the same
column indicate a significant difference between treatments at the 0.05 level (n = 3).

The α-diversity analysis showed that the bacterial and fungal community richness
(Chao1 and ACE) and diversity (Shannon and Simpson) indices varied markedly among
the treatments (Table S2). Crop application increased the bacterial and fungal richness
indices (p < 0.05) and the bacterial Shannon indices (p < 0.05) when compared to the control.

The crop treatments were related to an increase in the relative abundance of Proteobac-
teria and Bacteroidetes, and a decrease in the relative abundance of Actinobacteria for soil
bacteria at the phylum level (Figure 4). The fungal community at the phylum level was com-
parable among all soil samples except for SP samples, which had a high abundance of Ba-
sidiomycota and Unclassified_k_Fungi (Figure 5). With respect to the bacterial community
at the genus level, CM increased the relative abundances of norank_f_Gemmatimonadaceae.
With respect to the fungal community, CM and RY both increased the relative abundances
of Chaetomium and Humicola. A higher relative abundance of Gibellulopsis was observed in
the SP samples.
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Figure 4. Relative abundance maps of the dominant bacterial taxa in the soils of the different crop
treatments based on 16S rRNA sequences at the phylum (A) and genus (B) levels. CK, control; CM,
Astragalus sinicus; SP, Spinacia oleracea; RY, Lolium perenne.

3.4. Relationships between the Relative Abundance of Soil Microorganisms and Crop
Nutrient Accumulation

The relative abundances of 16S rRNA and ITS sequences in the soils were significantly
correlated with crop nutrient accumulation. The accumulation of all the nutrients by the
crops was positively correlated with the relative abundance of soil bacterial and fungal
sequences (Figure S6).

Figure 5. Relative abundance maps of the dominant fungal taxa in the soils of the different crop
treatments based on internal transcribed spacer sequences at the phylum (A) and genus (B) levels.
CK, control; CM, Astragalus sinicus; SP, Spinacia oleracea; RY, Lolium perenne.

RDA based on the soil biochemical properties explained 85.13% of the variation in
the first two components of the 16S rRNA community diversity (Figure 6A). The first
component (RDA1) represented 58.31% of the variability and was dominated by pH and
MBN. The second component (RDA2) represented 26.82% of the variability and was
dominated by AK and TDS. With respect to the ITS community diversity, the first two trait
axes of the RDA accounted for 50.86% and 43.03% of the total variation, respectively; AMN
scored high on the first axis, and MBN, SOC, AP, TDS, pH and MBC scored high on the
second axis (Figure 6B). For the bacterial 16S rRNA community, most bacterial genera were
clustered and scattered in the directions of pH, TDS and AK. Meanwhile, most fungal
genera were clustered and scattered in the directions of TDS, AMN, pH and AK.
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Figure 6. Redundancy analysis (RDA) of soil microbial community diversity and soil biochemical
properties using the five most dominant genera according to bacterial 16S rRNA (A) and fungal
internal transcribed spacer (B) sequences. TN, total nitrogen; SOC, soil organic carbon; AMN, alkali-
hydrolyzable nitrogen; AP, available phosphorus; AK, available potassium; TDS, total dissolved salts;
MBC, microbial biomass carbon; MBN, microbial biomass nitrogen. CK, control; CM, Astragalus
sinicus; SP, Spinacia oleracea; RY, Lolium perenne.

4. Discussion and Conclusions
4.1. Crop Biomass Accumulation and Nutrient Absorption in Secondary Salinized Soil

Depending on the ability of a crop to adapt to the stress of secondary salinization,
crop growth and nutrient absorption differs. In this study, consistent with the yields of the
crops, the order of the total amount of nutrient absorption and accumulation of the three
crops was as follows: RY > SP > CM (Figures 1 and 2). Previous studies have shown that
when the saline conditions of the soil are aggravated, the growth of legumes is inhibited,
and the amount of biomass and nutrient absorption and accumulation decreases [17]. CM,
which is a legume used as green manure, can obtain the nutrients required for crop growth
through biological nitrogen fixation even in soils with low fertility. However, milk vetch
is sensitive to the soil pH and salt content, which restricts its growth and nitrogen-fixing
ability in the face of saline-alkali adversity [9,18]. In the present study, the fresh biomass of
CM was 30.8 kg ha−1, which was only 1/3 of the average yield of RY.

In this study, it was confirmed that crop yield and nutrient content together determine
the amount of nutrient accumulation. For example, the yield of RY was significantly
higher than that of the other crops (Figure 1), meanwhile it also performed better with
respect to nutrient accumulation. Overall, compared to CK, all cultivation treatments
increased soil available nutrients except for soil AMN in RY and SP (Table 1), which may
be due to high N accumulation and low N fertilizer application. The results also showed
that the root-to-shoot ratio was another key factor affecting crop nutrient accumulation.
Previous studies on soil salinization in cultivation facilities have noted that aboveground
plant parts were less sensitive to environmental changes than belowground parts [19,20].
Similar variation trends were observed for the root-to-shoot ratios of dry weight and the
aboveground N contents of the three crops in the present study. This suggests that the
variation in root-to-shoot ratio of dry weight could be a good indicator of aboveground
plant N uptake status in cultivation facility soils subjected to secondary salinization.

4.2. Plant–Soil Feedback in Soil Subjected to Secondary Salinization

The mechanisms underlying plant–soil feedback in agrosystems are complex. Previ-
ous studies have reported that when exposed to salt stress, plants actively change their
strategy for the absorption of inorganic ions, and synthesize proline and other substances
to osmotically adjust the cytoplasmic microenvironment [21,22]. Through these changes,
the plants can resist the damage caused by saline-alkali stress. The results of the present
study show that when crops are grown on secondary salinized soil, the absorption of K+ by
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crops increases. In addition, the content of AP in the soil solution increased, which was
possibly related to the pH value and K+ saturation in the soil solution.

Furthermore, the results of the present study confirmed that phytoremediation in-
creased the B/F ratio in the secondary salinized soil of the facility, especially for SP (Table 2).
Previous studies have reported that SP had strong salt tolerant and antifungal ability,
compared with other vegetable species on the aspects of phytoremediation and food
safety [23,24]. It was found in the present study that leguminous green manure (CM)
increased the relative abundances of the bacterial groups norank_f_Gemmatimonadaceae, and
of the fungal genera Chaetomium and Humicola. Gemmatimonadaceae has been reported for
the capacity of accumulating polyphosphate [25]. Chaetomium and Humicola have been
found to be major groups of biological control agents, which not only reduce the incidence
of soil-borne pathogens and plant disease, but also degrade a wide range of recalcitrant
compounds [26]. These fungi possess a variety of genes that produce high-value enzymes,
including chitinase and glucanase. The present study revealed that the nutrient accumula-
tion of the crops was positively correlated with soil microbial communities, and soil pH,
MBN, AK and TDS play important roles in maintaining microbial flora balance. However,
we recommend future studies using dependency analysis of accuracy methods to create a
holistic view of soil microbial succession and crop nutrient accumulation in the cultivation
facility soils subjected to secondary salinization.

The utilization of phytoremediation in the form of planting salt-tolerant crops can
alleviate the secondary salinization of soils in cultivation facilities. Such bioremediation
can optimize the structure of the soil microbial community by increasing the soil microbial
biomass, AP, AK and soil pH, and by reducing the soil salt content. The bacterial and fungal
community compositions differed among the soils planted with the different salt-tolerant
crop species. This study stresses the importance of phytoremediation for soils subjected
to secondary salinization, and confirms that the crop species influences the correlations
between crop nutrient accumulation and soil microbial community compositions.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/agriculture12020212/s1, Figure S1: qPCR standard curve for the 16S rRNA gene; Figure S2:
qPCR amplification curve for the 16S rRNA gene; Figure S3: qPCR standard curve for the ITS gene;
Figure S4: qPCR amplification curve for the ITS gene; Figure S5: Shoot and root nutrient contents of
the three different crop species; Figure S6: Correlations (Pearson’s P-value) between crop nutrient
accumulation and soil microbial abundance for Chinese milk vetch (A,B); spinach (C,D) and ryegrass
(E,F); Table S1: Biomass accumulation and root-to-shoot ratio of the bioremediation crops; Table S2:
Bacterial (16S rRNA) and fungal (ITS) α-diversity in soil samples.

Author Contributions: Data curation and writing-original draft preparation, S.C.; investigation, S.X. and
Z.F.; formal analysis, D.Z.; visualization and writing—review and editing, H.Z. (Hanlin Zhang); supervision,
H.Z. (Haitao Zhu). All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Domestic Cooperation Program of Shanghai Science and
Technology Commission [Grant No. 20025800500], the Agricultural Achievement Transformation
and Demonstration Application Program of Shanghai Science and Technology Commission [Grant
No. 20392003400] and the Outstanding Team Program of Shanghai Academy of Agricultural Science
[Grant No. Hu-Nong-Ke-Zhuo 2022 (008)].

Institutional Review Board Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest in this manuscript.

References
1. Chu, S.H.; Zhang, D.; Wang, D.X.; Zhi, Y.; Zhou, P. Heterologous expression and biochemical characterization of assimilatory

nitrate and nitrite reductase reveals adaption and potential of Bacillus megaterium NCT-2 in secondary salinization soil. Int. J. Biol.
Macromol. 2017, 101, 1019–1028. [CrossRef] [PubMed]

2. Hu, S.; Liu, L.J.; Zuo, S.F.; Ali, M.; Wang, Z.L. Soil salinity control and cauliflower quality promotion by intercropping with five
turfgrass species. J. Clean. Prod. 2020, 266, 121991. [CrossRef]

https://www.mdpi.com/article/10.3390/agriculture12020212/s1
https://www.mdpi.com/article/10.3390/agriculture12020212/s1
http://doi.org/10.1016/j.ijbiomac.2017.04.009
http://www.ncbi.nlm.nih.gov/pubmed/28389402
http://doi.org/10.1016/j.jclepro.2020.121991


Agriculture 2022, 12, 212 9 of 9

3. Shen, W.S.; Ni, Y.Y.; Gao, N.; Bian, B.Y.; Zheng, S.N.; Lin, X.G.; Chu, H.Y. Bacterial community composition is shaped by soil
secondary salinization and acidification brought on by high nitrogen fertilization rates. Appl. Soil Ecol. 2016, 108, 76–83. [CrossRef]

4. Fan, Y.N.; Zhang, Y.X.; Wan, M.X.; Hu, W.Y.; Chen, Z.K.; Huang, B. Plastic shed production intensified secondary soil salinization
in perennial fruit production systems. Agr. Ecosyst. Environ. 2021, 316, 107469. [CrossRef]

5. Gavrichkova, O.; Brykova, R.A.; Brugnoli, E.; Calfapietra, C.; Cheng, Z.Q.; Kuzyakov, Y.; Liberati, D.; Moscatelli, M.C.; Pallozzi, E.;
Vasenev, V.I. Secondary soil salinization in urban lawns: Microbial functioning, vegetation state, and implications for carbon
balance. Land Degrad. Dev. 2020, 31, 2591–2604. [CrossRef]

6. Wu, R.Y.; Sun, H.W.; Xue, J.; Yan, D.; Liu, Y.; Gui, D.W.; Wang, X.G.; Yang, J.Z. Acceleration of soil salinity accumulation and
soil degradation due to greenhouse cultivation: A survey of farmers’ practices in China. Environ. Monitor. Assess. 2020, 192, 399.
[CrossRef]

7. Jesus, J.M.; Danko, A.S.; Fiúza, A.; Borges, M.T. Comparison of phytoremediation and chemical amendments for non-calcareous
highly saline-sodic soil remediation. Water Air Soil Pollut. 2018, 229, 1–10. [CrossRef]

8. Zhang, J.; Shi, H.T.; Wang, Y.J.; Li, S.; Cao, Z.; Ji, S.; He, Y.; Zhang, H. Effect of dietary forage to concentrate ratios on dynamic
profile changes and interactions of ruminal microbiota and metabolites in holstein heifers. Front. Microbiol. 2017, 8, 2206.
[CrossRef]

9. Zhou, Q.; Chen, J.; Xing, Y.X.; Xie, X.Y.; Wang, L.C. Influence of intercropping Chinese milk vetch on the soil microbial community
in rhizosphere of rape. Plant Soil 2019, 440, 85–96. [CrossRef]

10. He, H.B.; Li, W.X.; Zhang, Y.W.; Cheng, J.K.; Jia, X.; Li, S.; Yang, H.; Chen, B.; Xin, G.R. Effects of Italian ryegrass residues as
green manure on soil properties and bacterial communities under an Italian ryegrass (Lolium multiflorum L.)-rice (Oryza sativa L.)
rotation. Soil Till. Res. 2020, 196, 104487. [CrossRef]

11. Guo, J.J.; Liu, W.B.; Zhu, C.; Luo, G.W.; Kong, Y.L.; Ling, N.; Wang, M.; Dai, J.Y.; Shen, Q.R.; Guo, S.W. Bacterial rather than
fungal community composition is associated with microbial activities and nutrient-use efficiencies in a paddy soil with short-term
organic amendments. Plant Soil 2017, 424, 335–349. [CrossRef]

12. Lu, R.K. Soil Argrochemistry Analysis Protocoes; China Agriculture Science Press: Beijing, China, 1999.
13. Moore, J.M.; Klose, S.; Tabatabai, M.A. Soil microbial biomass carbon and nitrogen as affected by cropping systems. Biol. Fertil.

Soils 2020, 31, 200–210. [CrossRef]
14. Li, Z.Q.; Zhang, X.; Xu, J.X.; Cao, K.; Wang, J.H.; Xu, C.X.; Cao, W.D. Green manure incorporation with reductions in chemical

fertilizer inputs improves rice yield and soil organic matter accumulation. J. Soil Sediment 2020, 20, 2784–2793. [CrossRef]
15. Cai, S.M.; Lv, W.G.; Zhu, H.T.; Zhang, D.S.; Fu, Z.S.; Zhang, H.L.; Xu, S.X. Effect of nitrogen application rate on soil fungi

community structure in a rice-fish mutualistic system. Sci. Rep. 2019, 9, 16188. [CrossRef] [PubMed]
16. Li, T.T.; Long, M.; Gatesoupe, F.J.; Zhang, Q.; Li, A.; Gong, X. Comparative analysis of the intestinal bacterial communities in

different species of carp by pyrosequencing. Microb. Ecol. 2014, 69, 25–36. [CrossRef]
17. Kotula, L.; Kwa, H.Y.; Nichols, P.G.; Colmer, T.D. Tolerance and recovery of the annual pasture legumes Melilotus siculus, Trifolium

michelianum and Medicago polymorpha to soil salinity, soil waterlogging and the combination of these stresses. Plant Soil 2019, 444,
267–280. [CrossRef]

18. Jeromela, A.M.; Mikic, A.M.; Vujic, S.; Cupina, B.; Krstic, D.; Dimitrijevic, A.; Vasiljevic, S.; Mihailovic, V.; Cvejic, S.; Miladinovic,
D. Potential of legume-brassica intercrops for forage production and green manure: Encouragements from a temperate southeast
european environment. Front. Plant Sci. 2017, 8, 312. [CrossRef]

19. Chen, Q.; Wang, Y.; Zou, C.B.; Wang, Z.L. Aboveground biomass invariance masks significant belowground productivity changes
in response to salinization and nitrogen loading in reed marshes. Wetlands 2017, 37, 985–995. [CrossRef]

20. Stagg, C.L.; Schoolmaster, D.R.; Piazza, S.C.; Snedden, G.; Steyer, G.D.; Fischenich, C.J.; McComas, R.W. A landscape-scale
assessment of above- and belowground primary production in coastal wetlands: Implications for climate change-induced
community shifts. Estuar. Coast 2016, 40, 856–879. [CrossRef]

21. Rane, N.R.; Tapase, S.; Kanojia, A.; Watharkar, A.; Salama, E.S.; Jang, M.; Yadav, K.K.; Amin, M.A.; Cabral-Pinto, M.M.;
Jadhav, J.P.; et al. Molecular insights into plant–microbe interactions for sustainable remediation of contaminated environment.
Bioresour. Technol. 2022, 344, 126246. [CrossRef]

22. Thakur, M.P.; Putten, W.; Wilschut, R.A.; Veen, C.; Bezemer, T.M. Plant-soil feedbacks and temporal dynamics of plant diversity-
productivity relationships. Trends Ecol. Evol. 2021, 36, 651–661. [CrossRef] [PubMed]

23. Ferreira, J.; Sandhu, D.; Liu, X.; Halvorson, J. Spinach (Spinacea oleracea L.) response to salinity: Nutritional value, physiological
parameters, antioxidant capacity, and gene expression. Agriculture 2018, 8, 163. [CrossRef]

24. Singh, P.; Pallavi; Negi, R.; Rani, A.; Parul. Fungal isolation and characterization from spoiled vegetables Lycopersicon esculentum,
Brassica oleracea, Spinacia oleracea. Indo Am. J. P. Sc. 2016, 3, 1271–1275.

25. Zhang, X.Y.; Zha, L.N.; Jiang, P.Y.; Wang, X.Y.; Lu, K.W.; He, S.B.; Huang, J.C.; Zhou, W.L. Comparative study on nitrogen
removal and functional genes response between surface flow constructed wetland and floating treatment wetland planted with
Iris pseudacorus. Environ. Sci. Pollut. R. 2019, 26, 23696–23706. [CrossRef]

26. Hung, P.M.; Wattanachai, P.; Kasem, S.; Poeaim, S. Efficacy of chaetomium species as biological control agents against phytoph-
thora nicotianae root rot in citrus. Mycobiology 2015, 43, 288–296. [CrossRef]

http://doi.org/10.1016/j.apsoil.2016.08.005
http://doi.org/10.1016/j.agee.2021.107469
http://doi.org/10.1002/ldr.3627
http://doi.org/10.1007/s10661-020-08363-6
http://doi.org/10.1007/s11270-018-3928-5
http://doi.org/10.3389/fmicb.2017.02206
http://doi.org/10.1007/s11104-019-04040-x
http://doi.org/10.1016/j.still.2019.104487
http://doi.org/10.1007/s11104-017-3547-8
http://doi.org/10.1007/s003740050646
http://doi.org/10.1007/s11368-020-02622-2
http://doi.org/10.1038/s41598-019-52602-x
http://www.ncbi.nlm.nih.gov/pubmed/31700035
http://doi.org/10.1007/s00248-014-0480-8
http://doi.org/10.1007/s11104-019-04254-z
http://doi.org/10.3389/fpls.2017.00312
http://doi.org/10.1007/s13157-017-0932-2
http://doi.org/10.1007/s12237-016-0177-y
http://doi.org/10.1016/j.biortech.2021.126246
http://doi.org/10.1016/j.tree.2021.03.011
http://www.ncbi.nlm.nih.gov/pubmed/33888322
http://doi.org/10.3390/agriculture8100163
http://doi.org/10.1007/s11356-019-05580-6
http://doi.org/10.5941/MYCO.2015.43.3.288

	Introduction 
	Materials and Methods 
	Field Site Setup, Management and Sampling 
	Crop Yield and Nutrient Accumulation 
	Determination of Soil Physicochemical Properties 
	Soil DNA Extraction and Microbial Community Analysis 
	Real-Time Quantitative Polymerase Chain Reaction (qPCR) 
	Data Analysis 

	Results 
	Response of Soil Biochemical Properties to Green Manure Crops 
	The Yield and Nutrient Uptake and Accumulation of the Different Crop Species 
	Abundance and Diversity of Doil Microbial Communities 
	Relationships between the Relative Abundance of Soil Microorganisms and Crop Nutrient Accumulation 

	Discussion and Conclusions 
	Crop Biomass Accumulation and Nutrient Absorption in Secondary Salinized Soil 
	Plant–Soil Feedback in Soil Subjected to Secondary Salinization 

	References

