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Abstract: In recent decades, global climate change and heavy metal stress have severely affected
plant growth and biomass, which has led to a serious threat to food safety and human health. Anthro-
pogenic activities, the rapid pace of urbanization, and the use of modern agricultural technologies
have further aggravated environmental conditions, resulting in limited crop growth and productivity.
This review highlights the various adaptive transcriptomic responses of plants to tolerate detrimental
environmental conditions, such as drought, salinity, and heavy metal contamination. These stresses
hinder plant growth and development by disrupting their physiological and biochemical processes by
inducing oxidative stress, nutritional imbalance, and osmotic disturbance, and by deteriorating their
photosynthetic machinery. Plants have developed different strategies to safeguard themselves against
the toxic effects of these environmental stresses. They stimulate their secondary messenger to acti-
vate cell signaling, and they trigger other numerous transcriptomic responses associated with plant
defense mechanisms. Therefore, the recent advances in biological sciences, such as transcriptomics,
metabolomics, and proteomics, have assisted our understanding of the stress-tolerant strategies
adopted by plants, which could be further utilized to breed tolerant species. This review summarizes
the stress-tolerant strategies of crops by covering the role of transcriptional factors in plants.

Keywords: abiotic stress; transcriptomic; crops

1. Introduction

Abiotic stresses have always been a major concern for agronomic crops in terms of
yield reduction. Plants are vulnerable to abiotic stresses, which include drought, salinity,
and the accretion of heavy metals. The data have portrayed an alarming situation, with
a crop yield reduction of 70% caused by abiotic stresses, which is considered the major
constraining factor to crop productivity [1,2]. Natural resources are diminishing, which
poses a serious question to agriculture stakeholders: how can food demand be managed
for a rapidly growing population? Plants are always at the verge of risk when grown under
natural conditions and often encounter abiotic stresses [3]. Under such conditions, plants
have developed some strategies that they adopt according to the prevailing conditions.
Some plants can escape, whilst others try to avoid the lethal effects of the stresses [4].
However, some plants adopt a tolerant mechanism. Nevertheless, among all the mentioned
strategies, they have to lose a certain amount of yield, but the tolerant mechanism is
somehow less destructive for plants in comparison to other adopted strategies. Scientists
have revealed that this process is very complex and engages with multiple processes, such
as extensive modifications to metabolic and biochemical levels, which lead to the alteration
of morpho-physiological pathways [5]. Furthermore, some changes in transcription and
translational processes have also been noted.
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According to WHO, globally, 55 million people are affected by drought, and it is
estimated that by 2030, 700 million people will be at the risk of displacement due to
drought [6,7]. Water, indeed, is the most indispensable element for plants. From emergence
to growth, plants mainly rely on moisture to proceed activities. Water shortage at any
stage during growth for a long period causes destabilization in their structure and shortens
their life cycle [8]. Plants adopt different approaches due to exiguous water conditions
and generate two types of signals, i.e., (I) osmotic stress and (II) oxidative damage. Plants
have to endure detrimental effects during oxidative damage, which directly deteriorate
cellular components, including protein, nucleic acid, and lipids, and disrupt metabolic
activities. Plants, being smart organisms, have natural mechanisms to tackle stresses [9].
They anticipate the threat and trigger their defense system for revival by allocating available
nutrients and energy. Furthermore, they are competent enough to adjust their transpira-
tion rate accordingly by various modifications [10]. In addition to this, the role of some
phytohormones has been acclaimed by scientists. Abscisic acid is said to be a preeminent
phytohormone that can control stress signaling at transcription levels, which is responsible
for the closing of stomata under water-scant environs [11].

After drought, salinity is a serious problem that reduces plant production by various
means. It not only affects quantity but also causes great damage to the quality of agricultural
products [12]. According to a recent appraisal given by stakeholders, salinity affects 20%
of the total arable land around the globe [13]. It is considered the major hindrance to
crop production worldwide, particularly for productive land near the sea. FAO (2016)
estimated that the salinity problem due to global climate change could cover 33% of the
total cultivated land in the near future [14].

Climate change can be described as a phenomenon of various environmental prob-
lems [15]. Increased anthropogenic activities and climatic changes have resulted in an
increase in heavy metal accumulation causing injurious effects on living organisms [16].
Since the industrial revolution, the accretion of heavy metals has increased periodically,
especially those that are hazardous, such as Cd, Cr, Pb, Al, Hg, and Ti [1,17,18]. It has been
reported that even a small amount of heavy metal causes toxicity to plants. Some of the
common symptoms are as follows: growth reduction, blocked photosynthesis, amended
nutrient assimilation, disturbed water balance, reduced biomass accumulation, and trig-
gered senescence as well as chlorosis [19]. The internal system of plants collapses after
facing such trauma, and they die. Furthermore, the abundance of heavy metals in nature
is more hazardous for human health as declared by health officials. They enter our food
chain via plants and cause fatal diseases [20,21].

A plethora of complex events happen in plants when undergoing abiotic stress. In
these complicated mechanisms, some changes are initiated at various levels, including
transcriptional modifications and translational and post-translational changes [22–24].
Some events may lead to an alteration in metabolic and biochemical processes, hence
causing major physiological and morphological changes. ‘Omic’ means to ascertain all
biological activities, such as genes, ions, proteins, metabolites, and transcription factors, in
a sample by using high-throughput technologies as shown in Figure 1. In 1902, Professor
Hans Winkler first used the Latin suffix ‘-ome’ as the genome to reveal hereditary material
in chromosomes. This suffix was further used in the following years in metabolome,
transcriptome, and proteome to identify biological activities. In subsequent years, omics
technologies expanded with the development of new levels, including ionomics, lipidomics,
and phenomics. The advancement in omics technologies has revealed new aspects for
researchers to understand plant responses in abiotic stresses. In this review, we focus
on the plant stress-tolerant mechanisms concerning omics approaches (transcriptomics).
This review endeavors to contribute advanced knowledge to the scientific community
committed to investigating abiotic stresses and their tolerant mechanisms.
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Figure 1. Omics approaches.

2. Plant Response to Abiotic Stresses: Physio-Biochemical and Molecular Perspectives

Being sessile in nature, plants are more vulnerable to abiotic stress factors, including
salinity, drought, and heavy metals, which arrest their growth attributes and cause massive
losses to agricultural production. Thus, improving plant tolerance potential to these extreme
environmental conditions is a perquisite and one of the key aims in crop improvement
programs [25].

2.1. Drought Stress

In response to drought stress, plants re-organize their entire growth cycle and major
physiological attributes, which include osmotic potential, relative water content, and
transpiration, as well as leaf water potential [26]. As a result of a meagered water supply to
leaves, plants progressively reduce the imperative activities of photosynthesis, which is
linked to impairments in nitrogen and carbon assimilation [27].

Furthermore, impairments in the metabolism of photosynthetic pigments reduce the
efficiency of chlorophylls, which have key roles in harvesting sunlight [10]. Ultimately,
chloroplast structures are distorted and negatively affect the photosynthetic efficiency
of plants. Under water-scarce conditions, the reduction in intercellular CO2 diffusion to
carboxylation sites (which favors the reduction in electron transport chains) is the main
cause of limited CO2 concentration, which lessens the photosynthetic rate and causes
stomatal closure. Therefore, water losses due to a reduction in the intake of CO2 can be
carried out by limiting diffusion actions [27].

Water shortage leads to the unavailability of important mineral nutrients even in
fertile soil, causing reduced absorbance of important nutrients leading resulting in a lower
diffusion from the soil to the plants roots [28]. Under these damaging effects, roots become
disorganized by losing their efficiency to take up water and nutrients, leading to a reduction
in plant productivity.

A limited water supply causes an imbalance in reactive oxygen species (ROS) and the
scavenging system, which mediates oxidative stress, the peroxidation of lipids and proteins,
and membrane damages in the cellular organelles of plants. The elevated ROS levels
govern the enhanced photorespiration by reducing the capacity of CO2 fixation. Plants
activate their internal defense system (enzymatic and non-enzymatic antioxidants) to
scavenge drought stress. However, severe drought conditions restrict the efficiency of anti-
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oxidative defense systems [29]. Various osmoprotectants have been reported to scavenge
drought stress by maintaining turgor strength, which facilitates stomatal conductance; thus,
there is a higher uptake of CO2 in leaves and water intake by roots. The involvement of
biosynthetic osmoprotectants and the regulation of various transcription factors enhance
the accumulation of osmoprotectants [30].

2.2. Salinity Stress

Salt stress is one of the major constraints to the sustainability of the agriculture sector,
and it limits crop production by disrupting plant physio-biochemical and molecular func-
tions. Salt stress imposes osmotic, ionic, and secondary stressors. Salt mediates an ionic
imbalance, which is a major hindrance that affects nutrient accessibility, and it enforces
oxidative damage, which leads to limited water supply from roots to shoots. Salts are in-
truders in soil environs and actively threaten overall growth characteristics by, for example,
lowering the germination percentage and growth and obstructing vegetative, development,
and reproductive ontogeny [31–33].

Salt stress limits plant growth traits (leaf area, number, length/height, etc.) and
biomass production and it suppresses the soluble sugar and protein levels, the rates of seed
germination, and crop yield. Among the key physio-chemical processes, photosynthesis,
stomatal conductance, and transpiration rates are severely affected by salt stress [34,35].
Salinity minimizes the water potential, osmotic potential, extra ROS production (abnor-
malities in cellular structures), and ionic homeostasis [36]. Plants respond to salt stress by
the modulation of physio-biochemical, anatomical, and molecular traits; by the regulation
of ionic homeostasis and antioxidant defense machinery (enzymatic and non-enzymatic
antioxidants); by the synthesis of osmoregulators; and by the compartmentalization and
involvement of metabolites and phytohormones. These attributes help plants to modu-
late osmoticum, up-regulate defense genes/proteins, tackle ionic toxicities, and scavenge
the extra accumulation of ROS by salt stress [31]. Further exploration of transcriptomic,
proteomic, and metabolic studies may enhance our understanding concerning the salt
tolerance mechanisms in plants. Some emerging tools, such as genetic engineering, can be
beneficial to produce salt-tolerant plant species.

2.3. Heavy Metal Stress

Since the industrial revolution, the natural ecosystem has been badly disrupted. The
release of heavy metals from industries in a bulk amount accumulates in soil environments,
which causes severe damages to the life cycle of plants. These heavy metals jeopardize a
plant’s functioning via different mechanisms [37–45]. Firstly, they restrict the absorption
of essential nutrients at root surfaces by replacing them with toxic metal elements [1].
Secondly, they disrupt the structure of a functional protein by interacting directly with the
sulfhydryl group (-SH), which inactivates its functioning [46]. Furthermore, they collapse
the function of binding sites by replacing the position of essential cations. Finally, the
production of ROS has been found to be devastating for macromolecules [23] and, thus,
stunts plant growth. The over-accumulation of heavy metals in soil–plant systems impairs
overall plant growth traits, such as plant length, biomass, leaf necrosis, and chlorosis;
restricts the seed germination rates; cripples the photosynthetic apparatus; interferes with
water and nutrient uptake metabolism; causes leaf senescence and DNA damages; enhances
the rigidity of the cell wall; and cross-talks with biomolecules, causing alterations in the cell
cycle or division. The extra accumulation of heavy metals in plant tissues overproduces
ROS generation, which severely targets cellular organelles, causes the peroxidation of lipids,
and impairs their functions [47,48]. Plants develop various strategies to respond and handle
the abnormalities caused by heavy metals, such as the enhancement of ionic homeostasis;
antioxidant enzyme activities; the accumulation of osmolytes; the induction of membrane
transporters; and the biosynthesis of chaperons, chelators, complexes (phytochelatins and
metallothionein), and organic acids [49]. Advances in omics technologies can help further
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our understanding of the molecular characterization of the genes, proteins, and metabolites
involved in enhancing the heavy metal tolerance in plants.

Furthermore, scientists are actively engaged in finding the infrastructural alterations
that take place in plant morphology, physiology, and biochemical processes upon exposure
to abiotic stresses. They have examined multiple behaviors and responses of plants under
different types of stresses with various concentrations as shown in Figure 2. It has been
demonstrated that plants, for example, sense the ability of external stress and prompt the
transmission of signals into cells. The interaction between plants and abiotic stress at their
highest exposure has been proven lethal. To maintain an internal cell balance to external
threats, plants have to respond accordingly. Researchers think that some changes emerge
at a transcriptomic level, which could be used as a learning tool to cope with these abiotic
stresses.

Figure 2. Schematic diagram illustrating the salt, drought, and heavy metal stress responses and their
regulation to enhance plant tolerance against these environmental stressors.

3. Transcriptomics

It is a matter of great concern to understand and investigate the basic mechanisms
of abiotic stress and the way of adaptation, which requires intensive research for the
betterment of the scientific community [50]. The regimentation of multiple gene expression
determines the plant stress tolerance ability. In plants, a set of gene expressions is induced
by various stressors [51]. Moreover, they also initiate various proteins to associate the
signaling pathways that deliberate the tolerant mechanism [52]. These genes are categorized
into regulatory genes and functional genes. The regulatory group of genes is responsible for
the encoding of several transcription factors (TFs), which actively regulate multiple stress-
responsive genes in a collective and separate manner, hence forming a gene network [53].
On the contrary, the genes pertaining to the functional group are engaged in the coding
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of metabolic compounds, for instance, sugar, sugar alcohols, and amines; all of these
compounds actively participate in inducing stress tolerance in plants [54].

The TFs are also known as trans-acting factors, especially in the promoter region of
eukaryotic genes, where they bind to cis-acting elements. Furthermore, they take part in
the regulation of biochemical and physiological processes in the cell at the transcriptional
level [55]. Studies based on scientific credentials indicate that a single TF is liable for
handling the expression of multiple target genes through the particular binding capability
of a TF with a cis-acting element of its target genes [56]. They play a very important role in
signaling the transduction network and bringing the perception of stress signals, and they
are further involved in the expression of stress-responsive genes [57]. Regulon (a group of
genes that regulate as a unit under one regulatory protein) is interpreted as a transcriptional
regulatory system, in which transcriptional factors have a DNA-binding domain that
intermingles with cis-regulatory elements of its target gene promoters through the protein–
protein interaction domain; this helps the other regulators to form the oligomerization of
transcriptional factors [58]. Previously, a total of 3337, 2450, 1611, and 1922 transcription
factors were reported in maize, sorghum, rice, and Arabidopsis thaliana, respectively [59].

3.1. Role of Transcriptome in Drought

Drought is considered as a major environmental stress that negatively affects crop
productivity and growth [60,61]. A study revealed that non-ethylene receptor histidine
kinases, such as AHK1/ATHK1, are known to have an optimistic role in regulating the
abscisic acid (ABA-related) drought response; on the contrary, non-ethylene receptor
kinases, also known as cytokine receptors (CKs), containing AHK2, AHK3, and CRE1, have
a negative participation in drought stress [54]. Experimental results based on an analysis
revealed that ATHK1 plays a constructive role against drought in both vegetative stages
and seed formation, and its over-expression enhances tolerance against drought stress [62].

Furthermore, a MAPK cascade minimally composed i.e., MAP kinase kinase kinase
(MAP3K, MEKK, and MAPKKK), MAP kinase kinase (MAP2K, MAPKK, MKK, and MEK)
and MAP kinases (MAPKs/MPKs) [63,64]. Their activations are dependent on the phospho-
rylation process; as a result, phosphorylate substrates are formed in the cells that include
transcription factors and proteins. The genome of Arabidopsis thaliana has 10 MAPKKs,
20 MAPKs, and 80 MAPKKKs [65–67]. Under drought stress, some MAPKinases were
shown to be up-regulated via the transcriptional process, while others were activated
post-translationally [68]. Furthermore, Chini et al. [69] demonstrated that ADR1, a CC–
NBS–LRR gene (homologue of serine/threonine protein kinases), was observed to give the
information about dehydration tolerance with responsive gene expression.

Similarly, another family of protein kinases includes SNF-1-like kinases, which are
further classified into three families (SnRK1, SnRK2, and SnRK3). Their activations are
dependent on the phosphorylation of serine or threonine [70]. In different plant species,
various SNF-1-like kinases were anticipated, and they have indispensable roles concerning
dehydration or ABA [71]. In Arabidopsis, Open Stomata1 (OST1) protein kinase is predicted
and acts as a positive and negative regulator in ABA-induced stomatal closure and as a sub-
strate of protein phosphatase 2C (PP2C) HAB1. Moreover, it is reported that the activation
of OST1 is a result of the ABA-bound receptor, which inhibits protein phosphatases [72].

Furthermore, phosphatases are categorized into two main groups on the basis of sub-
strates, namely, phosphoproteins (serine/threonine) and phosphatases (PPases). Among
these mentioned categories, the role of serine/threonine PP2Cs, along with ABI1, ABI2,
and HABI, has been found to be negative in ABA signaling. A further analysis of ABI1
and ABI2 mutants reported that these were present in guard cells for the activation of
ABA of Ca2+-permeable channels requiring three steps: first, the action of ABI1; then, ROS
production; and, finally, the action of ABI2 [73]. The studies based on tyrosine phosphatases
(PTPases) indicated that it has a crucial role in the following functions: the downstream
signaling of Ca2+; the closing of stomata; and assisting in the process of dephosphorylation,
resulting in ion flux from stomatal opening and guard cells [74].
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In addition, various phospholipid-derived messengers were studied for drought toler-
ance, including inositol 1, 4, 5-triphosphate (IP3), phosphatidic acid (PA), and diacylglycerol
(DAG) [75,76]. The most imperative secondary messenger is phospholipase D (PLD); it
splits phospholipases into phosphatidic acid (PA); this contains the Ca2+-binding domain,
which further activates phospholipase C (PLC) [76]. Furthermore, PLDs were studied to
induce ABA in drought in different plant species [77,78]. Gampala et al. [79] reported that
PLDs play an indispensable role in stomatal closure by interacting with ABA effectors and
that they are also involved in the ABA-dependent pathway. Transgenic studies revealed
that this messenger is converted to phosphatidic acid and takes part in ABA sensitivity;
stomatal closure; and, ultimately, drought tolerance [80].

Simultaneously, Ca2+ sensors have been noted to actively participate in drought
signaling [81]. The Arabidopsis thaliana CDPKs (AtCPK1, AtCPK10, and AtCPK34) phos-
phorylate both F2KP nitrate reductase (NR) peptides [82]. In Arabidopsis thaliana, AtCPK1
acts as a positive regulator in drought tolerance [83]. However, AtCPK10 actively takes
part in ABA signaling pathways and the response to drought [84]. CDPKs are known
as calcium-dependent protein kinases. Despite this, calmodulin is another Ca2+ sensor
that is a Ca2+-binding protein; it is activated by increasing calcium concentration, and
specific kinases are activated to modulate its concentration. Moreover, Bouche et al. [85]
discovered a family of calmodulin-binding transcription activators under drought stress in
Brassica napus. Calcineurin B-like protein (CBL) is also a Ca2+-binding protein. In Arabidop-
sis, 10 CBLs were identified, and, among them, CBL1 was induced by drought. Albrecht
et al. [86] illustrated the supportive role of CBL1 in deliberating drought tolerance.

3.2. Role of Transcriptome in Salinity

Under saline conditions, salt stress induces the accumulation of ROS, specifically
hydroxyl radical (˙OH), which further activates ROS-NSCC and GORK potassium (K+)
efflux channels. Moreover, a sodium (Na+) influx to the cytosol of the cell induces GORK
channel activation [87]. However, salinity tolerance is referred to as the capability of a
plant to retain cytosolic K+ and sequestrate Na+ in cell vacuoles or exclude it into the
root. Leaf mesophyll K+ retention is related to overall plant salinity tolerance [88,89].
This action is carried out through the activity of K+ channels/transporter genes [87,90].
Plants also adjust their osmotic pressure to tolerate salinity by the up-regulation of P5CS
and the down-regulation of ProDH and MYB60. P5CS1 and P5CS2 are involved in the
encoding of delta1-pyrroline-5-carboxylate synthase enzymes, which regulate proline
biosynthesis. These genes are expressed in stressed conditions, specifically under salt
stress, while ProDH catalyzes the degradation of proline to produce glutamic acid [91,92].
Furthermore, the expression of the TAS14 gene encodes a group 2 LEA protein called
dehydrin, which is induced by osmotic stress and ABA. The expression of this gene
provides a long-term tolerance to drought and salinity by a reduction in osmotic potential
and accumulation of sugar and K+ [93]. Moreover, the expression of MYB60 is directly
involved in stomatal movement, regulated by ABA. Its induction apparently facilitates the
stomatal opening [93,94]. Under the initial state of stress, this gene can induce root growth.
In contrast, in a severe state of stress, its expression is inhibited, resulting in stomatal
closure and a decrease in root growth [95]. This shows that rapid signals are generated
from roots to shoots, which pre-activate the tolerant mechanism before stress is induced in
plants [96,97].

In salinity stress, H2O2 waves are generated for rapid root-to-shoot signaling [31,98,99],
resulting in the exclusion of sodium from shoots [100]. H2O2 and calcium are considered
as universal signal molecules that are capable of transferring a stimulus after sensing [98]
through OSCA hyperosmolarity-gated calcium channels and plasma membrane NADPH
oxidases (NOXs) [101]. Schmidt et al. [102,103] demonstrated that the H2O2-mediated
salt-responsive ERF1 (SERF1) transcription factor belonging to the ethylene-responsive
gene class was involved in root-to-shoot signaling in rice under salinity. A misleading
response can occur due to the wrong H2O2 wave, because it interrupts signal transduction
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and the activation of genes associated with salinity signaling (SERF1 and DREB2A), turgor
maintenance (P5CS2), and ion homeostasis (NHX1 and TPKb).

Goyal et al. [104] identified 77 transcription factor families, and, among them, WD-40,
bZIP, PHD, MYB-HB-like, zinc finger, bHLH, CCHC (Zn), and C2H2 were the most abun-
dant in salt stress. The WD-40 gene was expressed in several plants, and it improves salt tol-
erance in transgenic aspen hybrid Populus (Populus davidiana × Populus bolleana) [105], and
SiWD40 in foxtail millet [106]. The over-expression of OsMYB3R-2 MYB and OsMYB48-1
genes has been shown to increase salt tolerance in Arabidopsis and rice, respectively [31,107].
Similarly, the over-expression of GST and PODs was also reported to improve stress toler-
ance and play a vital role in scavenging H2O2 in tobacco and soybean [96,108]. Thioredoxin
(Trx), peroxiredoxin (POD), and glutathione peroxidase (GPX) are involved in ROS detoxi-
fication and are also up-regulated with various stress-responsive genes, including sulfur
assimilation (ATPS, APR, and AKN) [109]. The commencement of sulfate to adenosine 5′

-phosphosulfate (APS) is involved in sulfur assimilation by ATP sulfurylase (ATPS), which
is phosphorylated by APS kinase (AKN). Afterward, adenosine 5′-phosphosulfate (APS) is
reduced to sulfite and further reduced to sulfide by APS reductase (APR). It is integrated
into cysteine, which is a precursor of glutathione (GSH).

3.3. Role of Transcriptome in Heavy Metals

Research based on a transcriptome analysis of plants indicates that upon exposure
to heavy metals, some induced transcriptional factors tend to regulate correlative tran-
scriptional processes [110,111]. The first regulatory gene named FER, which was reported
by Du et al. [112], was suggested to be involved in the uptake of Fe in tomato. Under
Fe stress in Arabidopsis, FER-like deficiency-induced transcription factor (FIT), which is
the functional analog of FER, was found to play a requisite role [113]. Moreover, various
subgroups of the bHLH family (AtbHLH38, AtbHLH39, AtbHLH100, and AtbHLH101)
are also up-regulated in Arabidopsis under Fe stress [114]. Yuan et al. [115] proposed that
heterodimers are formed by the interaction of AtbHLH38 or AtbHLH39 with FIT. Under
Fe deficient conditions, two major genes, ferrous transporters, and ferric chelate reductase
significantly regulate Fe uptake. These genes are induced by transcription factors that are
directly activated by heterodimers [116]. IRT1 has been demonstrated to be a crucial ferrous
transporter in Arabidopsis. While transporting Fe under deficiency, other heavy metals, such
as Zn, Co, Ni, Mn, and Cd, were also transported and accumulated [117,118].

An Arabidopsis transcriptomic study explained the expressions of some other trans-
porters, which are activated by the interaction of FIT with AtbHLH38 or AtbHLH39. These
transporters are iron-regulated transporter 2 (IRT2), heavy metal ATPase 3 (HMA3), and
metal tolerance protein 3 (MTP3); they are involved in maintaining the concentration of
Fe in Cd stress [110,119]. A transcriptome analysis of Oryza sativa revealed that Cd stress
stimulates the myelin basic protein (MBP) kinase gene and OsMAPK2. Heavy metal stress
induces the activation of different mitogen-activated protein kinases (MAPKs) [120]. Kint-
lová et al. [121] identified the HvPCR2 gene in barley as one of the most responsive genes to
a Cd stimulus. Li et al. [122] conducted a Populus × canadensis comparative transcriptomic
study and found 35 TFs from 11 TF families in response to Cd stress, of which 16 were
up-regulated while 19 were down-regulated.

One study used the alfalfa plant for the phytoremediation purpose of Ni and showed
a high expression of genes related to peroxiredoxin-1C, glutathione-S-transferase (GST),
and phytochelatins (PCs). These genes were linked to anti-oxidative and cell damage
prevention responses, as well as Ni detoxification via their binding to PCs, forming Ni-PC
complexes [123]. A transcriptomic study of weeping willow (Salix babylonica) revealed
2002 DGEs, of which 1165 and 837 were identified in roots and shoots, respectively. Addi-
tionally, 107 TFs were identified from DGEs, which mostly belong to the NAC and ERC
families [124].

Dehydration-responsive element-binding protein (DREB) belongs to the ethylene re-
sponse factor (ERF) family of TF and have been introduced in various transgenic plants,
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which exhibited the tolerance against different abiotic stresses [125]. DREB is also responsi-
ble for controlling the osmotic potential, which reduces the flow of heavy metal-polluted
water, hence curtailing the threats against toxic effects to plants [126]. It is important to
investigate the involvement of genes and their mechanisms, as it further assists scientists in
modifying plants in a genetic way to cope with such extreme environmental stresses in a
better way [50,127].

4. Conclusions and Future Perspectives

Climate change and agriculture productivity are directly linked. It is the leading cause
of several environmental stresses, including drought, salinity, and metal toxicity in soil and
the environment. An increase in these environmental stresses is a major global concern for
crop productivity and food security. The deleterious effects of these environmental stresses
hamper plant physiological, biochemical, and molecular mechanisms, including ROS scav-
enging, metabolic energy supply, signal transduction, redox homeostasis, glycolysis, and
the biosynthesis of carbohydrates and nucleotides. Moreover, increased intrusions have
led to environmental contamination with a toxic concentration of heavy metals/metalloids.
Furthermore, the uptake of these toxic metals/metalloids leads to their enhanced accumu-
lation in food, which causes serious health problems in human beings. These emerging
threats are devastating for global crop production; thus, a comprehensive understanding
of the biological processes is required to cope with toxic metals/metalloid toxicity in the
emerging technological era, and it is important to develop climate-smart plants that are
adaptive to extreme environments.

In plants, the stress tolerance pattern against abiotic stress is more complex to develop
and engineer as compared to biotic stress due to the involvement of various signaling
pathways [128]. Therefore, the expression of a gene(s), with the combination of some
proteins and metabolites, is preeminent concerning the signaling and regulatory pathways
that are involved in stress tolerance. Stakeholders are continuously working to improve
the genetic structure of plants and achieve significant progress; however, the complexi-
ties of the various mechanisms that are involved in stress tolerance capabilities are still
under examination. With the technological advancements in operating tools and omics
approaches, scientists are systematizing genetic codes into improved combinations that
will be more effective against abiotic stresses. Therefore, more studies should be carried
out by adopting the multidisciplinary approaches of omics technology, i.e., transcriptomics,
metabolomics, and proteomics, to modify important cash crops against the future threats
of abiotic stresses.
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