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Abstract: Drip irrigation is an important way to alleviate the global water shortage. However,
the emitter-clogging issue of drip irrigation directly affects irrigation uniformity and operation
efficiency, even disabling the whole system and reducing crop production. Currently, with the
widespread use of saline water and large-scale utilization of fertigation, the issue with the chemical
clogging of emitters has become more prominent. The poor uniformity of irrigation and fertilization
distribution caused by emitter clogging results in salt damage and fertilizer loss due to the complex
clogging mechanism. However, no extensive information on chemical clogging is available. Herein,
we surveyed the latest research on chemical clogging caused by saline water irrigation and fertigation
in drip irrigation systems and described the clogging mechanisms of the emitter by analyzing the
key factors, clogging rules, and substances. We also present a framework of the control technologies
for clogging based on physical, chemical, and biological methods. Finally, we present the current
challenges of fertigation with saline water and technical trends of emitter clogging in the drip
irrigation system. To conclude, the efficient integration of these three methods is critical to prevent
and eliminate chemical clogging.

Keywords: drip irrigation; emitter; saline water; chemical clogging; clogging substance; mechanism;
controlling; fertigation

1. Introduction

Water is critical for agricultural production, which plays an important role in global
food security [1]. However, the shortage of water resources seriously restricts the sustain-
able development of the economy and society [2,3]. Agriculture is always the largest water
user, accounting for more than 70% of global withdrawals of freshwater [4]. Thus, as the
highest consumer of water, a lower return per unit of water than other economic sectors
has put enormous pressure on the agricultural sectors and forced them to be more efficient
in water utilization for more ‘crop per drop’ [5].

Micro-irrigation is an effective method to alleviate regional water shortage [6]. Statis-
tics from the annual report of the International Commission on Irrigation and Drainage
(ICID) show that both global total irrigation areas and micro-irrigation areas have increased
in the past 10 years, especially for micro-irrigation, with a 43% increment in the past five
years (Figure 1) [7–9]. As one of the micro-irrigation techniques, drip irrigation has an
outstanding advantage in controllable precision, is widely used in the world, and regarded
as the most efficient water-saving technique [10,11]. Moreover, drip irrigation technology
including fertigation also changes the traditional fertilization mode. By applying fertilizers
through an irrigation system, such as a drip or sprinkler system, fertigation technology
considerably reduces the application of water and fertilizer.
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soil with a uniform and stable water flow for crop absorption and utilization [12]. How-
ever, due to the small, narrow sized flow path (0.5‒1.2 mm) of the emitter, it is easily 
clogged by solid particles, chemical precipitation, microorganisms, and other substances 
in irrigation water [12–14]. For example, for the flat emitters manufactured in Israel and 
China shown in Figure 2, the flow paths (length × width × depth, mm) were 34.0 × 0.59 × 
0.67 and 53.5 × 0.48 × 0.80, respectively. Clogging substances can be deposited everywhere 
in an emitter. We summarized the three consequences of emitter clogging: (1) reducing 
the uniformity and utilization efficiency of irrigation water and fertilization, which in turn 
affects crop yield and quality [15,16]; (2) shortening the service life of drip irrigation sys-
tems and increasing investment costs [17]; (3) speeding up the pipeline replacement cycle, 
thereby increasing the plastic input, resulting in environmental pollution [18,19]. Emitter 
clogging has become a major issue and a worldwide challenge in drip irrigation research 
[20]. 
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Water quality is a direct factor that induces emitter clogging, and Bucks divided the 
types of emitter clogging into physical, chemical, and biological [21]. Since the first Inter-
national Drip Irrigation Conference was held in 1971, there have been numerous attempts 
to solve clogging problems, such as the rational allocation of filtration systems, optimizing 
irrigation frequency, adding flushing equipment, water treatment (acidification and chlo-
rination), microbial antagonism, and the optimal design of the emitter flow channel [22–
25]. 

Currently, the shortage of water resources and pollution force the diversification of 
the sources of drip irrigation. As a result, reclaimed water, saline water, high sediment-
water, and other low-quality water sources are used for irrigation [12,13,26]. Israeli 

Figure 1. Total irrigation area and micro irrigation area of the globe.

In a drip irrigation system, the emitter is the key component, consisting of a water
inlet, a flow path, and an outlet. It can make the pressurized water flow through its internal
flow channel to meet the requirements of energy dissipation and then drip into the soil
with a uniform and stable water flow for crop absorption and utilization [12]. However,
due to the small, narrow sized flow path (0.5–1.2 mm) of the emitter, it is easily clogged by
solid particles, chemical precipitation, microorganisms, and other substances in irrigation
water [12–14]. For example, for the flat emitters manufactured in Israel and China shown
in Figure 2, the flow paths (length × width × depth, mm) were 34.0 × 0.59 × 0.67 and
53.5 × 0.48 × 0.80, respectively. Clogging substances can be deposited everywhere in an
emitter. We summarized the three consequences of emitter clogging: (1) reducing the
uniformity and utilization efficiency of irrigation water and fertilization, which in turn
affects crop yield and quality [15,16]; (2) shortening the service life of drip irrigation systems
and increasing investment costs [17]; (3) speeding up the pipeline replacement cycle, thereby
increasing the plastic input, resulting in environmental pollution [18,19]. Emitter clogging
has become a major issue and a worldwide challenge in drip irrigation research [20].
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Water quality is a direct factor that induces emitter clogging, and Bucks divided the
types of emitter clogging into physical, chemical, and biological [21]. Since the first Interna-
tional Drip Irrigation Conference was held in 1971, there have been numerous attempts to
solve clogging problems, such as the rational allocation of filtration systems, optimizing
irrigation frequency, adding flushing equipment, water treatment (acidification and chlori-
nation), microbial antagonism, and the optimal design of the emitter flow channel [22–25].

Currently, the shortage of water resources and pollution force the diversification of the
sources of drip irrigation. As a result, reclaimed water, saline water, high sediment-water,
and other low-quality water sources are used for irrigation [12,13,26]. Israeli scientists were
the first to propose in 1966 that saline water could be used to irrigate crops [27]. This not
only improved agricultural drought resistance ability and yield, but also contributed to
the renewal of groundwater. Thereafter, the utilization of saline water was regarded as
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an important way to alleviate the contradiction between water supply and demand in
the world [28]. However, saline water contains lots of salt, which can cause chemical
clogging by the recombination and precipitate. Similarly, with the worldwide application
of fertigation, the nutrient ions in fertilizers react with the ions in the irrigation water,
forming insoluble precipitates that make the chemical clogging process of the emitters more
complicated. Saline water for irrigation and fertigation are considered the most common
factors for the chemical clogging of emitters [25,26,29,30]. We searched the core collection
database of Web of Science from 1991 to 2021 on the theme of “Drip Irrigation and Clog-
ging” and found 294 results (Figure 3). According to the references, “Physical clogging,”
“Biological clogging,” and “Chemical clogging” are used as the theme for refining. Results
also showed that chemical clogging became a hot topic especially after 2018, which may
be related to the potential of saline water as an irrigation water source and the worldwide
application of drip fertigation.
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Hence, the aims of this review were to (1) summarize the types and research progress of
emitter clogging; (2) discuss the inducement, mechanism, as well as control methods for the
chemical clogging of emitters caused by saline water and fertilizers; (3) raise a systematic
solution to solve the chemical clogging of emitters; and (4) ascertain the current challenges
and technical trends of emitter clogging caused by various water sources and fertigation.

2. Causes and Performance Evaluation Method of Emitters Clogging in Drip Irrigation
2.1. Types and Causes of Emitters Clogging

Emitter clogging is a phenomenon whereby solid particles, chemical precipitation,
microorganisms, and other substances in irrigation water deposit in the lateral or emitters
of drip irrigation, resulting in a decrease in irrigation flow rate and uniformity [13]. It is a
complicated and unavoidable process in agricultural practices [31]. Generally, according
to the recommendations given by the International Organization for Standardization,
the standard for determining clogging is defined as the actual flow rate of the emitter less
than 75% of the design [32]. According to the statistics of a consultant from the Food and
Agriculture Organization, the probability of physical, chemical, and biological clogging in
drip irrigation accounts for 31%, 22%, and 37%, respectively, while the other types account
for 10% (Figure 4). Besides, due to the worldwide application of fertigation, the probability
of chemical clogging of emitters is increasing.
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2.1.1. Physical Clogging

Physical clogging is caused by organic or inorganic suspended matter, such as algae,
phytoplankton, and zooplankton residues, plastic fragments, sand, silt, and clay particles,
that cannot be filtered out in irrigation water using filtration equipment [21]. It also
includes the clogging caused by negative pressure mud suction in subsurface drip irrigation
systems [33]. Physical clogging caused by solid particles is considered the most common
clogging type and is also the reason for emitter clogging [13,34], even if high-quality water
is used [35]. Physical clogging is mainly caused by solid particles under different water
sources, as shown in Table 1. However, physical clogging is hard to avoid in drip irrigation
systems. The greater the content and size of particles, the more severe the physical clogging
of emitters [36,37].

Table 1. Emitter clogging caused by solid particles under different water sources.

Factors Water Source Main Conclusion

Solid particles
concentration

NA

When the content of dissolved solids in drip irrigation
water was less than 500 mg/L, a little clogging
problem occurred; however, it may aggravate serious
clogging if greater than 2000 mg/L [21]

Muddy water
As the concentration of sediment increased,
the clogging degree of emitters increased, especially
when the concentration was higher than 1.25 g/L [37]

Solid particles size

Sewage water Suspended particles with particle sizes greater than
0.06 mm were the cause of physical clogging [38]

River water
Particles less than 0.076 mm in diameter were the
direct cause of emitter clogging, even with a better
sedimentation filtration equipment [39]

Sandy water
Sediments with a particle size of 0.05–0.10 mm are
easy to settle in the lumen and flow channel of the drip
irrigation lateral, resulting in physical clogging [40]

Muddy water The sensitive particle size of emitter clogging occurred
in the range of 0.03~0.04 mm [41]

2.1.2. Biological Clogging

The drip irrigation system can provide a favorable environment for algae, zooplankton,
bacteria, and other organisms to grow and reproduce, resulting in slime accumulation.
This slime can combine with mineral particles causing the biological clogging of emit-
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ters [11]. In addition, for subsurface drip irrigation, the reduction of irrigation flow rate
caused by plant root invasion also belongs to the biological clogging category [42]. Biologi-
cal clogging is common in drip irrigation systems that contain more microorganisms and
organic matter in water sources. Table 2 summarizes the factors that cause the biological
clogging of emitters, indicating that particulate matter is the main substance but not the
initiating factor that causes emitter biological clogging. Secretions of microorganisms can
increase the viscosity of the emitter wall and continuously adsorb the suspended par-
ticulate matter, which is considered a mechanism for inducing emitter clogging [43–45].
Currently, research has mainly focused on reclaiming water to relieve biological clogging.
Actually, the active microbial species, water quality, and system operation methods can
also directly affect the growth of biofilms [46]. Microorganisms play an important role in
emitter clogging by secreting viscous substances to form biofilms [47]. The strong oxida-
tion of chlorine can kill or inhibit microorganisms (bacteria) and prevent the formation of
slime and clumps, so as to effectively reduce biological clogging [48]. Lateral flushing is
another common method for removing and flushing biofilm out of the lateral and emitter
by hydraulic shear force. Chlorination combined with lateral flushing could effectively
reduce the microbial [49,50]. Recently, electromagnetic field treatment has been proven to
solve biological clogging based on gene sequencing, which is expected to be an effective,
chemical-free, and anti-biological treatment method [18].

Table 2. The main factors causing emitter biological clogging.

Factors Water Source Main Results

Microorganisms and
suspended particles Wastewater

The main body of biofilm on the inner wall
of the emitter flow channel had solid
particles, but the accumulation of
microorganisms and the continuous
adhesion and accumulation of suspended
particles were the final cause of the
emitter clogging [51]

Protozoa and
particulate

Freshwater + Treated
sewage effluent

The major clogging substances were
gelatinous agglomerates of fine particulate
organic and inorganic matter and in-line
proliferated protozoa biomass [52]

Microorganism
community, moss,
and bacteria

Reservoir contains a mix
of secondary sewage, fresh
water, and winter
storm run-off

The viscous substances secreted by the
microorganism community, moss,
and bacteria were closely related to the
emitter clogging [43]

Organic matter
and bacteria Reclaimed and tap water

90% of emitter clogging caused by sand
particles was because of the adsorbed
microbial floc composed of organic matter
and bacteria [35]

2.1.3. Chemical Clogging

Chemical clogging is caused by the soluble substances in water sources, such as carbon-
ates, phosphates, sulfates, silicates, hydroxides, Fe2+, Ca2+, Mg2+, and sulfides, that form
chemical precipitates under certain conditions [21]. The use of groundwater, saline water,
and fertigation for irrigation can cause chemical clogging. The formation of chemical clog-
ging is influenced by system pressure, water temperature and pH, and concentration of ions
in water [11]. Chemical precipitation is an important aspect of emitter clogging, especially
in the use of saline water and drip fertigation. Table 3 shows the soluble substances in
water sources that cause chemical clogging of the emitters. The mechanisms involved in
chemical clogging are complex and diverse.



Agriculture 2022, 12, 202 6 of 20

Table 3. Emitter clogging caused by soluble substances in water sources.

Induce Factors Main Results

pH Severe clogging is likely to occur when the pH of water is higher
than 8 [21]

Fe2+ Fe2+ will cause serious damage to irrigation system if its
concentration exceeds 1.5 g/m3 [13]

HPO4
2− and PO4

3− Fertilizers contain phosphorus are can lead to chemical
precipitation in emitters [53,54]

Ca2+, Mg2+, and HCO3−

1. If the water hardness (Ca2+ + Mg2+) is below 150 mg/L, it is
not likely result in emitter clogging; however, it will turn severe,
if the water hardness is higher than 300 mg/L [11]
2. The risk of emitter clogging will increase if irrigation water
contains high concentrations of Ca2+, Mg2+, and HCO3−,
particularly in fertigation [55]
3. When the pH of irrigation water is greater than 7.5 and the
bicarbonate content is greater than 5 mmol/L, more scale is likely
to be formed [38]

Mn2+ Clogging will occur if Mn2+ exceeds 0.1 mg/L, and it will be
aggravated if Mn2+ is higher than 1.5 mg/L [21]

H2S Clogging will occur if H2S exceeds 0.5 mg/L, and clogging will
be aggravated if H2S is higher than 2 mg/L [21]

2.1.4. Compound Clogging

Suspended particles, organic matter, salt, and microorganisms cannot be removed
completely by the filtration systems. The type of emitter clogging varies with irrigation
water quality. It is generally believed that the type of emitter clogging that occurs in
saline water is chemical [25,26]. However, in addition to chemical precipitation, quartz
and silicate are often detected in clogging substances, which indicates that both physical
and chemical clogging coexist when using saline water for irrigation [56]. The particle size
and concentration of sediments are two main factors in emitter clogging for high sediment
water sources. In addition, researchers also found that the attachment of biofilm in the
sediment surface aggravated the emitter clogging [57,58]. This indicated that the clogging
of emitters using high sediment water is not a simple physical clogging but is accompanied
by biological clogging. For the reclaiming water sources, researchers found that solid
particles are still the main clogging substances and adsorbed by the biofilm, indicating that
physical and biological clogging occur simultaneously [59]. Therefore, emitter clogging
is often shown as the compound clogging caused by the synergy or coupling of two or
three kinds of clogging: physical, chemical, and biological. Controlling any one of these
factors can alleviate the clogging [60]. The clogging types of typical water sources are
shown in Table 4.

Table 4. The emitter clogging type for typical irrigation water.

Irrigation Water Physical
Clogging

Chemical
Clogging

Biological
Clogging

Compound
Clogging

Water with high sediment
√ √

Saline water
√ √

Reclaimed water
√ √

2.2. Performance Evaluation Method of Emitters Clogging

The “field evaluation method for micro-irrigation system” issued by the American So-
ciety of Agricultural Engineers (ASAE) in 2003 is presently the most authoritative standard
for evaluating the performance of drip irrigation systems. It summarizes the evaluation
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parameters commonly used, including manufacturing variation coefficient (Cv) for evalu-
ating the production quality of emitters, relative outflow (Qr) for evaluating single emitter
clogging, the average discharge variation ratio (Dra) for the overall clogging degree of
multiple emitters, flow deviation (qvar), Christiansen of uniformity (CU), design emis-
sion uniformity (EU), and statistical uniformity coefficient (Us). Among them, Dra and
CU are the key parameters usually used to evaluate emitter clogging and performance
in drip irrigation (Figure 5). Popularly, clogging occurs once the actual flow rate of the
emitter is less than 75% of the design [32]. Specifically, a single emitter is defined as
unclogged if its outflow is higher than 95% of the design, 80–95% is slightly clogged,
50–80% is generally clogged, 20–50% is seriously clogged, and less than 20% is completely
clogged [14] (Figure 5a). The performance of the emitter is defined as excellent if its CU
is higher than 89%, and 71–89% is defined as medium, while less than 71% is defined as
poor [61] (Figure 5b).
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3. Mechanism of Emitters Chemical Clogging in Drip Irrigation
3.1. Research Progress and Mechanism on the Chemical Clogging of Emitters under Drip Irrigation
System with Saline Water

With the potential application of saline water in agriculture, research about emitter
clogging is increasing. Chemical clogging of emitters does not occur suddenly. It is caused
by the long-term accumulation of the clogging substances [62,63]. There are randomness
and fluctuations in the flow rate of a single emitter [26]. Chemical clogging processes can
be categorized as gradual, fluctuating, or sudden reductions of emitter discharge [26,62,64],
in which the sudden reductions in flow are normally observed in the high salinity water.
Overall, the discharge of emitters shows a gentle fluctuation trend at first, and then a
sharp decline with the operation of the system [20]. Similarly, Dra and CU have a slow,
sharp downward trend, which is negatively correlated with the salinity of water [26].
The clogging degrees in a lateral are End > Middle > Head. The highest risk location for
chemical clogging is the end of a lateral, as the velocity and water shear force are lower,
which leads to greater accumulation of clogging substances. For the emitter, clogging
substances can be deposited everywhere, such as the inlet, core flow path, and outlet of the
emitter. The proportion of clogging position at the inlet accounts for 22–33%, 44–60% at the
core flow path, and 7–34% at the outlet of the emitter, which indicates that the core flow
path of the emitters is the main deposit position of clogging substances [26].

The clogging substances are normally calcium-magnesium carbonates, quartz, silicate,
and a small quantity of sodium chloride [12,25,65]. Among them, calcium-magnesium
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carbonates account for 63.3–91.1% of the chemical clogging substances [66]. In addition,
Dra, and CU decrease with the increase in clogging chemical precipitates, indicating the
negative relationship among them [18,65,67]. Interestingly, SiO2 is mainly from the water
source and hard to form in the emitter under normal temperature, which indicates that the
physical clogging occurs apart from the chemical clogging [12].

Normally, chemical clogging caused by saline water in a drip irrigation system is
always accompanied by physical clogging. The clogging mechanisms were summarized
in Figure 6. First, as saline water containing a high concentration of cations (such as Ca2+

and Mg2+) and anions (such as CO3
2−, PO4

3−, SO4
2−, and OH−), often generate chemical

precipitation deposited on the surface of the emitters flow path, and then crystallization
fouling is formed, leading to chemical clogging of the emitters. Second, the crystallization
fouling increases the roughness of the flow path surface and changes the transport process
of unfiltered sediment particles in the irrigation water, which further aggravates the sedi-
mentation of particles and results in physical clogging of the emitters. Finally, the formed
clogging substances are deposited in the emitter and cause a reduction of Dra and CU,
which in turn affects crop yield and quality.
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1 ds·m−1 (upper), 2 ds·m−1 (middle), and 6 ds·m−1 (lower). A total of 15 emitters were selected
along the laterals (five from the head of a lateral that labeled as 1–5, middle that labeled as 6–10,
and tail sections that labeled as 11–15) to track changes in flow rates with time. (b) 35×magnification
of field-emission scanning electronic microscopy micrographs of chemical fouling attached in emitters.
(c) Chemical components of chemical fouling inside the drip irrigation emitter. (d) The clogging
mechanism for drip irrigation system using saline water. These figures were derived from previous
studies [25,26,66].

Moreover, many factors affect the formation of CaCO3, such as electrical conductivity,
pH, temperature, and flow channel size. The Langelier saturation index (LSI) is usually used
to evaluate the possibility of CaCO3 precipitation formation, which can characterize the
equilibrium relationship between calcium carbonate solids and carbon dioxide-containing
solutions [39]. If LSI < 0, CaCO3 is unsaturated, the solution can continue to dissolve.
When LSI = 0, it is considered that the CaCO3 is in a saturated state, neither scaling
nor dissolving, and if LSI > 0, it is considered that the CaCO3 of the solution is in a
supersaturated state and can continue to scale formation [68]. The pH of the water can also
influence the formation of CaCO3 precipitation. pH < 7.0, 7.0–8.0, and >8.0 can lead to slight,
medium, and severe chemical clogging, respectively [21]. CaCO3 precipitation formation
is also affected by temperature, which can reduce the solubility of calcium carbonate and
cause further precipitation. Conductivity and hardness are the key indexes for saline water.
Higher conductivity or hardness promotes precipitation reactions that can result in severe
clogging [69]. A study demonstrated that saline water with EC higher than 4.0 dS/m is not
recommended for use in irrigation [26]. In addition, emitters with larger discharge have a
better anti-clogging capacity due to the larger flow path structure of the emitter allowing
larger and more contaminants to pass through the flow path [59]. In general, the system
under conditions with high ion contents, high pH water, high temperature, and small flow
channel size tends to be at a higher risk of chemical clogging.

3.2. Research Progress and Mechanism on the Chemical Clogging of Emitters under Fertigation

Fertigation has been identified as another important factor that causes the chemical
clogging of emitters [70,71]. Nutrients in fertilizers and ions in irrigation can be recombined
to form chemical precipitation, especially when applying phosphorus-containing fertilizers
with low-quality water as phosphate can be recombined with calcium, magnesium, and iron
to form phosphate precipitates [69,72]. Previous studies found that the emitter clogging
characteristics extensively varied with fertilizers and water quality [18,30,67,73]. Hence,
nitrogen and phosphate fertilizers are commonly applied in agriculture, which is usually
used for studying emitter clogging.

3.2.1. Nitrogen Fertilizer

Urea is commonly used in fertigation due to its high nitrogen content and good
solubility. However, hydrolysis and adsorption will occur when urea is dissolved in
irrigation water, which will alter the hydrodynamic properties of the water flow, floccula-
tion, and precipitation of suspended particles in the flow channel, and the growth of the
microorganism [74]. Furthermore, coupled with a higher viscosity coefficient and poor
mobility, urea can easily cause emitter clogging [29]. The effect of urea on emitter clogging
is also related to water quality. It is reported that the CU could reach 90% and Dra was
stable at the level of 80–100% when applying urea with high-quality water [75], which
indicates that the application of urea is not responsible for the induction of emitter clog-
ging. Nevertheless, urea can enhance the agglomeration of solid particles and promote the
formation of stable and compact clogging substances under muddy water conditions [74].
Moreover, the concentration of urea is a factor that affects emitter clogging. In general,
the higher the concentration of urea, the greater the adhesion between urea molecules
and the flow channel wall and the greater the number of urea molecules precipitated [29].
The mechanism of emitter clogging may be the physical clogging caused by the forma-
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tion of aggregates between molecular urea precipitates and suspended particles in water
sources [29]. Chemical clogging is also easily generated when urea is applied, which might
promote the precipitation of Ca(OH)2, Mg(OH)2, CaCO3, and MgCO3. Applying urea
with irrigation water can also change the water characteristics such as pH and nutrient
concentration. The interaction process of urea in drip irrigation can be summarized into
four categories: hydrolysis, dissociation, oxidation, and precipitation (Table 5) [76].

Table 5. Mechanism reaction of urea in drip irrigation.

Category Chemical Rection Process Interaction of Water and Fertilizer Process

(1) Hydrolysis (NH2)2CO + H2O→ 2NH3 + CO2

Urea combined with irrigation water hydrolyzed
to produce ammonia and carbon dioxide, which
changed the ionic composition in irrigation water

(2) Dissociation CO2 + H2O→ HCO3− + H + NH3 + H2O→ NH4+ + OH−

Carbon dioxide ionizes in irrigation water to
form a weak acid, resulting in a decrease in the
pH of irrigation water to about 6.4. However,
ammonia ionized to form strong alkali,
and finally significantly increases the pH of
irrigation water to more than 9.0, which changes
the salinity of irrigation water

(3) Oxidation Fe3+ + 3OH− → Fe(OH)3↓

When the irrigation water source is rich in iron,
it is easy to have an oxidation reaction and
produce red insoluble iron hydroxide, causing
clogging of the emitters

(4) Precipitation Ca2+ + 2HCO3− → CaCO3↓ + CO2 + H2O

When the irrigation water source is rich in
calcium and magnesium, it is easy to precipitate
calcium and magnesium carbonate precipitation
under an alkaline water source, resulting in the
clogging of emitters

3.2.2. Phosphate Fertilizer

Phosphorus is easily immobilized by soil with low mobility and availability [77].
Drip irrigation is an effective technology for increasing P availability [18]. However, phos-
phorus fertilizer contains HPO4

2− that would react with Ca2+ and Mg2+, which can form
the insoluble CaHPO4 or MgHPO4 precipitates and lead to drip irrigation clogging [53,54].

The types of phosphorus fertilizer and irrigation water sources greatly affect emitter
clogging. Traditional phosphate fertilizers, such as diammonium phosphate [56], potas-
sium phosphate monobasic [78], monopotassium phosphate (MKP) [65], calcium super-
phosphate [29], and potassium phosphate monobasic (PPM), can greatly worsen emitter
clogging. They are not recommended for drip irrigation systems. In recent years, acidic
water-soluble phosphate fertilizers, such as urea phosphate (UP) and neutral fertilizer
ammonium polyphosphate (APP), have been identified as two potential anti-clogging
phosphate fertilizers [79]. A previous study found that the application of UP and APP
could effectively alleviate emitter clogging by inhibiting the formation of carbonate [56,67].
For UP, the decrease of carbonate is attributed to the acidity of the UP solution. When dis-
solved, 1 kg of UP can produce 6.3 moles of H+ and inhibit the formation of carbonate [80].
APP is often used as a scale inhibitor, which can chelate and shield Ca2+, Mg2+, and other
metal ions and further reduce the probability of carbonate precipitate [81]. However, op-
posite results were also reported with irrigation by Yellow River water, where both APP
and UP caused emitter clogging [18]. APP could drastically promote the deposition of
carbonate and phosphate, which induced the most serious emitter clogging. Although UP
reduced carbonate deposition, it could increase silicate content and cause emitter clogging.
The reason for this is mainly attributed to the silicates in water. The reduction of pH by UP
application could promote the condensation of silanol structure, impel the polymerization
of silicate gel, and finally accelerate the deposition of silicates [18]. However, compared
with other phosphate fertilizers, UP is suggested as the optimum anti-clogging phosphate
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fertilizer for drip irrigation systems [18,30,67,82]. It should be noted that UP should not be
used in acidic soils to avoid the risk of soil acidification [18]. Moreover, fertilization mode
is also a factor that affects emitter clogging. Low concentration and long-term fertilization
or shortening the irrigation interval can effectively relieve emitter clogging [18,67,83].

3.2.3. Other Fertilizers

Currently, with the development of intensive agriculture, combined phosphorus
and nitrogen fertigation is becoming more common, benefiting from the development of
soluble fertilizer technology. Studies have shown that phosphorus coupled with nitrogen
fertigation could accelerate the precipitation of phosphate sediments [82]. Except for urea
or phosphorus fertilizers, Ca, S, Fe, and Mn fertilizers will also aggravate the clogging of the
emitter. Hence, when using saline water for irrigation, the risk of clogging will be greatly
increased [69,72]. The strategies for alleviating emitter clogging should be developed by
comprehensively considering the given water source and fertilizer types.

4. Controlling the Chemical Clogging of Emitters in Drip Irrigation

According to the mechanism and influencing factors of emitter clogging, the preven-
tion and control measures can be divided into three categories: improvement of emitter anti-
clogging ability, pretreatment of irrigation water, and removal of clogging substances [13].
(1) Improvement of the emitter anti-clogging ability is important for alleviating the problem
of emitter clogging using two approaches. The first approach involves optimizing the emit-
ter flow channel structure to reduce the adhesion of clogging materials and promote the
fall of the flow channel wall. The second approach involves developing new anti-clogging
materials, mainly by adding special anti-bacterial materials to reduce the activity of mi-
croorganisms and inhibit the adhesion ability to clog substances, to reduce the formation
and growth of clogging substances [20]. (2) The equality of irrigation water is the direct
factor causing emitter clogging. The fewer the impurities in the water, the lower the emitter
clogging risk [84]. Irrigation water pretreatment is mainly performed by strengthening
water source filtration, adding acidic chemical reagents to reduce the pH, and adding chlo-
rine to inhibit microbial growth. (3) Once the clogging substances are formed in emitters
or laterals, they need to be cleaned out in time to avoid their accumulation, which would
otherwise aggravate clogging. Flushing is suitable for cleaning most of the clogging sub-
stances, adding acidity reagents is suitable for removing chemical precipitation, and adding
antagonistic microorganisms can inhibit the growth of the clogging-induced ones [18,85].

Currently, the main approach to controlling chemical clogging is treating with water
to limit the formation of chemical precipitates or dissolve the precipitates that have already
been generated. The control methods mainly depend on physical, chemical, and biological
technologies (Figure 7a). Accordingly, we provide an efficient integration of all three
methods to prevent and eliminate chemical clogging under different irrigation water
quality during the crop growth cycle (Figure 7b).
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4.1. Physical

It was found in our previous studies that lateral ends were the highest risk positions for
the chemical clogging of emitters [26]. Lateral flushing is one of the most commonly used
physical methods, which can effectively reduce the accumulation of chemical precipita-
tion [12] and increase the discharge of emitters by 5–8% [20]. In addition, new technologies
emerge over time. At the end of the 19th century, magnetization technology was applied to
heat exchangers, boilers, and other industrial descaling [86]. Magnetization treatment de-
creased the viscosity, surface tension, polymerization degree, and conductivity of water [87],
while it increased the water osmotic force, ionic hydration reaction, and solubility [88].
These changes could affect the formation of scale crystals and improve the solubility of the
scale substances. Studies have shown that the calcium carbonate in the water without mag-
netization treatment is calcite crystal with a dense and hard structure and strong adhesion
to the pipe wall, while it is aragonite crystal with the loose and disordered arrangement of
molecules and poor adhesion to the pipe wall after magnetization [89], which shows that
magnetization treatment has a positive effect on removing calcium carbonate precipitation.
Nowadays, magnetized water is applied in industry, agriculture, and medicine [90–92],
and researches have shown that magnetized water irrigation has positive effects on the
quality of crops and soil (Table 6). In recent years, some researchers innovatively introduced
magnetization into the drip irrigation system and tried to solve the emitter clogging issue.
They found that magnetization treatment could alleviate the clogging issue of saline water
drip irrigation systems, but this depends on the irrigation water quality. The anti-clogging
effect was better in water with low conductivity and high pH [85,87]. Nevertheless, magne-
tization technology can provide a reference for solving the problem of chemical clogging of
the emitters under fertigation.
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Table 6. Regulation mechanism and effect of magnetized water in agricultural application.

Object Regulation Mechanism Effect

Emitter Magnetic water decreased the LSI and resulted
in less salts precipitate in pipes [85,93]

Improved the average dripper
discharge and distribution
uniformity [85,93]

Crop

1. Seed: Magnetic field can accelerate the
process of seed water absorption and oxidative
phosphorylation and promote the production
of ATP [94]

Promoting seed
germination [95–97]

2. Yield: Magnetic field changes the physical
and chemical properties of irrigation water,
which is conducive for the transportation and
dissolution of various substances in solvents,
and promotes the permeation of nutrients
through the cell membrane [98]

Increasing crop yield [99–102]

Soil

Magnetized water combined with soil more
closely promoted the conservation of soil
moisture and increased the permeability and
desalination ability of soil [103]

Keeping soil moist and conducive
to soil desalination [104,105]

4.2. Chemical

Higher pH water is more likely to cause chemical clogging. Chemical precipitation
can be significantly prevented by injecting acidic chemical reagents that lower the solution
pH [72,86]. There are two main approaches for injecting acidic chemical reagents. One is
preventing chemical precipitation by injecting acidic chemical reagents into irrigation water
to reduce the pH to slightly below 7.0 (commonly around 6.5) for a long period so that
a weak acid drip irrigation state can prevent chemical precipitation. The second one is
removing the precipitation substances that are already generated. Injecting acidic chemical
reagents in a short time to reduce solution pH too far below 7.0 (usually around 3.0),
makes the drip irrigation stay in a strong acidic state for a short time to dissolve chemical
precipitation. However, it should be noted that safety is a key part of acidic chemical
treatment, which requires expertise. Proper precautions for operators must be taken in
handling and injecting chemicals into the irrigation lines. The standards developed by the
American Society of Agricultural Engineers can be referenced for the use of safety devices
used for applying liquid chemicals through irrigation systems. Meanwhile, it is necessary
to note that low pH environment will corrode the pipe components [11]. Moreover, to avoid
damaging crops, the amount of water irrigated during this period should be minimized
and the irrigation system also needs to be flushed after the acid treatment [11]. From the
current research, acid treatment is the most effective treatment used in preventing and
dissolving alkaline precipitation substances in drip irrigation.

The commonly used acids can be summarized as inorganic acids, organic acids,
and acidic fertilizers.

4.2.1. Inorganic Acids

Inorganic acids, such as sulfuric, hydrochloric, and phosphoric acids, are often used to
control chemical clogging substances in drip irrigation [11]. It should be noted that injecting
phosphoric acid into hard water may cause the precipitation of calcium phosphates. Sulfuric
and hydrochloric acids are the other two acidic chemical reagents used for water treatment.
It was found that emitter clogging could be effectively reduced by adding sulfuric or
hydrochloric acid to reduce the pH of irrigation water to 6.5 and 6, respectively [86,106].
The pH of most irrigation waters is around 8.0, and injecting 1 mel/L of inorganic acid can
reduce the pH to 6.0–6.5 [107].
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4.2.2. Organic Acids

Presently, organic acids, mainly citric acid, and acid soil amendments are commonly
used to control chemical clogging. The injection of organic acids into the drip irrigation
system can improve the soil ion exchange and react with calcium and magnesium carbonate
precipitation to form soluble substances [108]. Previous studies showed that Sper Sal,
and Lineout could reduce the clogging of the emitter, and Lineout performed better than
Sper Sal [109]. Clogging caused by CaCO3 precipitation can be prevented by adding a
homopolymer of maleic anhydride into buried drip systems [110]. However, some studies
showed opposite results. Severe clogging was found in emitters using organic acids as
preventives [111]. Kreij et al. noted that the commercial anti-clogging agents containing
organic acids could serve as substrates for the micro-organisms, and they suggested using
the anti-clogging agents without organic acids [112]. These researches indicated that
whether organic acids are anti-clogging remains an issue at the exploratory stage that needs
to be studied further in the future.

4.2.3. Acidic Fertilizers

Calcium and magnesium precipitates are the main precipitates in the fertigation
system [67,113]. The application of alkaline fertilizer can increase the pH of irrigation water,
which will promote the formation of calcium and magnesium hydroxide and carbonate
deposits. While acid fertilizer is a better choice for chemical regulation, it can reduce
the precipitates generated by lowering the solution pH. Therefore, caution should be
taken when applying phosphate fertilizer into hard water, as it may cause precipitation
of calcium-magnesium phosphate. Acidic fertilizers include acid nitrogen fertilizer (urea
sulfate), acid phosphate fertilizer (urea phosphate), acid potash fertilizer (potassium sulfate),
and acid organic fertilizer. Among them, urea sulfate and urea phosphate are beneficial
for crops and reduce emitter clogging. They can also increase the utilization of nutrients
effectively by inhibiting soil fixation of phosphorus and potassium in alkaline soils.

4.3. Biological

Carbonate precipitation is the most common emitter-clogging factor among chem-
ical precipitates in drip irrigation systems. Carbonates in nature have been continually
dissolved directly or indirectly as a result of microbial activity to secrete acidic sub-
stances [114,115]. A previous study reports the application of microorganisms (Lactococcus spp.)
in mineral processes to remove CaCO3 [116], which also provides a new environment-
friendly solution for controlling the formation of chemical clogging substances in drip
irrigation. Bacillus subtilis OSU-142 was found to dissolve calcium carbonate. The flow rate
of the emitters increased by 10–20% after adding B. subtilis OSU-142 to the drip irrigation
for 4 h. Thus, the OSU-142 strain exhibited good performance in dissolving calcium car-
bonate [117]. In addition, to relieve chemical clogging, microbial activity is also used in
biological clogging. By adding three kinds of antagonistic bacteria into the clogged emitter,
researchers found that the emitter was almost completely recovered within 14 days [85].
Li’s group selected a bacterial strain, Endophytic bacillus, as an antagonist to Arcicella sp.,
which causes clogging, to remove the clogging substances [118]. They also found that
Pseudomonas was the most critical bacteria in affecting emitter biological clogging as it
performed better in decomposing and utilizing organic matters [59]. However, only a few
reports are available about the beneficial microorganisms that eliminate chemical clogging.
Therefore, more studies need to be conducted to identify microorganisms as novel and
environmentally friendly treatments to remove chemical precipitation for clogged emitters
of drip irrigation systems.

4.4. Comprehensive Control Method of Chemical Clogging of Drip Irrigation Emitters during the
Crop Growth Cycle

We put forward a set of control methods from the perspective of preventing chemical
precipitation and removing the precipitation substances that are already generated in
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the drip irrigation based on the methods mentioned above for the control of chemical
clogging of emitters (Figure 7b). (1) ‘Early growth stage’ water source pretreatment: Apart
from water filtration treatment, magnetization can be used to change the characteristics
of water, affect the formation and growth of scale crystals, and improve the solubility of
scale substances. (2) ‘Growing process’-acidic fertilizer treatment: The application of acidic
fertilizers reduces the formation of chemical clogging substances and provides nutrients
for the crops. (3) ‘After harvest’ precipitation removed: At the end of the irrigation cycle,
flushing can be used for perennial crops to remove the chemical precipitation. When crops
are harvested, a strong acid reagent can be added to the drip irrigation system to make
the laterals in a strong acid state dissolve the chemical precipitation. It would be better to
screen out microorganisms that can both eliminate chemical deposits and benefit for crops
in the future.

5. Summary and Outlook

In conclusion, we summarized the research concerning emitter clogging types. We de-
duced that the typical fouling formation in emitters is physical clogging caused by high
sand content water, biological clogging caused by reclaimed water, and chemical clogging
caused by saline water and fertigation. Regarding chemical clogging, this article elaborated
on the inducement, mechanism, and control method for the chemical clogging of emitters
caused by saline water and fertilizers. The reasons and mechanisms of saline water are
the high concentration of cations (such as Ca2+ and Mg2+) and anions (such as CO3

2−,
PO4

3−, SO4
2−, and OH−) that can easily interact, form chemical precipitation, then deposit

on the surface of emitter flow path, leading to chemical clogging. Nutrients in fertilizers
and ions in irrigation water can be recombined to form chemical precipitation, causing
chemical clogging of the emitters, especially when applying phosphorus-containing fertil-
izers with low-quality water as phosphate can be recombined with calcium, magnesium,
and iron to form phosphate precipitates. Carbonate, phosphate, silicate, and SiO2 are
the main clogging substances for chemical clogging. The type of clogging substance is
related to irrigation water quality, fertilizer type, and concentration. Generally, a high
hardness of water, high concentration of ions, and high pH of irrigation water would cause
chemical clogging. The prevention and control of clogging plays an important role in field
production. For physical clogging, the solid particles are the direct reason that lead to
emitter physical clogging. This study suggests that a proper water filtration system should
be installed, especially using water with a high sediment load. For biological clogging,
adding chlorine is commonly performed to inhibit microbial growth. For chemical clogging,
adding acidic chemical reagents to lower the solution pH is a popular method. Considering
the safety of soil and crops, more research should be carried out on beneficial microbial
agents that have antagonistic effects against the key bacteria that cause biological clogging,
and which can dissolve the chemical precipitate.

Although lots of meaningful findings were acquired from previous researches, some is-
sues still are unaddressed and need to be investigated: (1) For emitter material, multiple
anti-clogging functions need to be developed, such as reducing the activity of microorgan-
isms and inhibiting weed growth and chemical precipitation; (2) For fertigation, in some
areas, farmers still prefer to broadcast fertilizers into the soil rather than inject them into
the irrigation system due to emitter clogging, which would increase the amount of fertil-
izer and lead to serious agricultural non-point source pollution and water eutrophication.
Research also needs to be carried out on the new type of water-soluble fertilizer with
anti-clogging, environmentally friendly, and high efficiency properties, as well as their
mechanisms of anti-clogging; (3) For a monitoring method, with the wide application of
modern information technology in agriculture, the rapid and real-time monitoring and
testing of emitter clogging in drip irrigation systems requires modern technology to replace
the current tedious operation process.
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91. Simonič, M.; Urbancl, D. Alternating magnetic field influence on scaling in pump diffusers. J. Clean. Prod. 2017, 156, 445–450.

[CrossRef]
92. Awad, M.A.; Hindi, A.A.; Al-Wohiby, N.; Soliman, D.A.; Ortashi, K.M.O. Magnetic Treatment of Water: Properties and Prevention

of the Growth of Bacteria. J. Comput. Theor. Nanosci. 2018, 15, 1312–1319. [CrossRef]
93. Khoshravesh, M.; Mirzaei, S.M.J.; Shirazi, P.; Valashedi, R.N. Evaluation of dripper clogging using magnetic water in drip

irrigation. Appl. Water Sci. 2018, 8, 81. [CrossRef]
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