
����������
�������

Citation: Su, W.-H.; Sheng, J.; Huang,

Q.-Y. Development of a Three-

Dimensional Plant Localization

Technique for Automatic

Differentiation of Soybean from

Intra-Row Weeds. Agriculture 2022,

12, 195. https://doi.org/10.3390/

agriculture12020195

Academic Editor: Andrea Colantoni

Received: 25 December 2021

Accepted: 28 January 2022

Published: 31 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

agriculture

Article

Development of a Three-Dimensional Plant Localization
Technique for Automatic Differentiation of Soybean from
Intra-Row Weeds
Wen-Hao Su *,† , Ji Sheng † and Qing-Yang Huang

College of Engineering, China Agricultural University, Beijing 100083, China; 2018307140217@cau.edu.cn (J.S.);
qyhuang@cau.edu.cn (Q.-Y.H.)
* Correspondence: wenhao.su@cau.edu.cn
† These authors contributed equally to this work.

Abstract: Soybean is a legume that is grown worldwide for its edible bean. Intra-row weeds greatly
hinder the normal growth of soybeans. The continuous emergence of herbicide-resistant weeds and
the increasing labor costs of weed control are affecting the profitability of growers. The existing
cultivation technology cannot control the weeds in the crop row which are highly competitive with the
soybean in early growth stages. There is an urgent need to develop an automated weeding technology
for intra-row weed control. The prerequisite for performing weeding operations is to accurately
determine the plant location in the field. The purpose of this study is to develop a plant localization
technique based on systemic crop signalling to automatically detect the appearance of soybean.
Rhodamine B (Rh-B) is a signalling compound with a unique fluorescent appearance. Different
concentrations of Rh-B were applied to soybean based on seed treatment for various durations
prior to planting. The potential impact of Rh-B on seedling growth in the outdoor environment
was evaluated. Both 60 and 120 ppm of Rh-B were safe for soybean plants. Higher doses of Rh-B
resulted in greater absorption. A three-dimensional plant localization algorithm was developed by
analyzing the fluorescence images of multiple views of plants. The soybean location was successfully
determined with the accuracy of 97%. The Rh-B in soybean plants successfully created a machine-
sensible signal that can be used to enhance weed/crop differentiation, which is helpful for performing
automatic weeding tasks in weeders.

Keywords: computer vision; crop signaling; fluorescent imaging; plant localization; precision agriculture

1. Introduction

As an important source of high-quality protein, dietary fiber, polyunsaturated fats
and minerals, soybean is widely grown worldwide [1]. Weed damage is one of the main
biological disasters that affect soybean yield, while the intra-row weeds are more harmful
to the crop [2]. There are many types of common weeds in soybean fields, including
gramineous weeds (e.g., crabgrass, goose grass, barnyard grass) and broadleaf weeds
(e.g., purslane, cocklebur, dayflower, iron amaranth, quinoa) [3–5]. High-density weeds
growing together are difficult to distinguish. These weeds that grow synchronously with
soybeans compete with them for resources such as sunlight, nutrients and water, making
them vulnerable to pests and diseases [6]. The number of weeds in the field accounts for
about 95.00% of the total within 3 weeks of soybean sowing [7].

Current weeding techniques cannot reliably remove the weeds in crops. Overuse
of chemical herbicides degrades the quality of water, soil, and air [8] and makes weeds
resistant to them [9,10]. As a costly and low-efficiency method, manual weeding is not
suitable for large-scale weeding operations [11]. Traditional mechanical cultivation can
remove weeds between crop rows, but it cannot eliminate the intra-row weeds [12]. The
prerequisite for automatic removal of intra-row weeds is to accurately identify the position
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of the crop plant and to distinguish it from the weeds [13]. Thus, there is an urgent need to
establish an automatic localization technique for rapid differentiation of soybean plants.

Computer vision can perceive the differences in the biological morphology, the leaf
vein characteristics and the texture of weeds and crops, and then achieve plant recognition
based on image processing algorithms [14–16]. However, current weeding equipment
usually uses two-dimensional (2D) imaging that cannot reliably distinguish high-density
weeds. The structured-light based three-dimensional (3D) reconstruction system can obtain
more feature information than 2D images by extracting the 3D information of the entire
plant [17]. However, this system has high computational complexity and low processing
speed, which is not suitable for real-time detections [18]. Machine learning algorithms
combined with imaging or spectroscopy techniques have successfully achieved the identifi-
cation of different agri-food materials [19–26]. As an advanced machine learning algorithm,
deep learning algorithms have been widely used for crop recognition and classification in
recent years [27–30]. For instance, Bah et al. [31] proposed a new fully automated learning
method based on convolutional neural network (CNN) and unsupervised training datasets
to detect weeds in spinach and soybean, yielding high accuracies. However, a large and
representative data set is needed to train the network, and the multi-seasonal stability of
the training data has not been verified. The morphology of weeds and crops changes as
they grow, which makes it more difficult to extract plant features [32].

Unlike using color models, such as RGB, L*a*b*, and HSV for image analysis [33,34],
crop plant signaling is a new technology that creates a machine-readable crop plant using
fluorescent compounds applied to them to distinguish the crops from weeds [35]. Fluores-
cent markers have unique properties that are different from plant autofluorescence [36].
The fluorophore molecule of a signaling compound can emit light of longer wavelength
under the excitation light [37]. Currently, three types of fluorescence markers including
biological markers (fluorescent proteins), physical markers (plant labels), and chemical
markers (systemic compounds and topical markers) have been used to label crops in
fields [35]. Rhodamine B (Rh-B) is a chemical marker with unique optical properties [38]. It
allows systemic behavior in plants following the seed pathway, which is a promising for
real-time weed control. Under irradiation of ultraviolet (UV) or visible light, the systemic
Rh-B (molecular weight: 479, log Kow = 1.5, λex/λem = 555/582 nm) molecules will be
completely degraded due to the disappearance of organic carbon in the molecular structure,
and the final product is carbon dioxide and water (Wilhelm and Stephan, 2007). According
to the U.S. Environmental Protection Agency (EPA), seeds treated with low concentrations
of Rh-B will not affect crop yield and post-harvest quality, and will not have a negative
impact on the environment or public health [39]. Therefore, a certain dose of the signaling
compound is safe for seed treatment. Studies have found that that the seed coats of snap
bean and soybean have a strong permeability on Rh-B, and this signaling compound can be
absorbed by these seeds [40,41]. In addition, the seed coats of most plant seeds (including
celery, lettuce, tomato, onion, cucumber, pepper, castor and grass) have no permeability
to Rh-B. Su et al. [42] applied Rh-B tracer to snap beans and successfully created machine-
readable signals in the cotyledons and the main stems of bean seedlings. However, such
signals are readily occluded by growing leaves, making the markers undetectable from
the top view. In the study of Raja, et al. [43], fluorescent straws fixed next to the seedlings
or topical markers sprayed on the stems and leaves of the seedlings were used to label
lettuce and tomato plants. Computer vision algorithms based on a top view and six side
views were established to identify the straws, which indirectly realized the positioning of
the plants. However, in their studies, each lettuce or tomato plant needs to be labeled in
advance, which is a time-consuming and inefficient process. In addition, it is difficult to
prevent the markers from being removed by unfavorable weather conditions such as wind
and rain.

The novelty of this research is to develop a new computer vision algorithm based
on systemic crop signaling to detect and locate soybean plants in real time. The main
goal of this research is to develop a reliable computer vision algorithm based on effective
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doses of systematic markers. Specific objectives are (1) to develop a method of applying
systemic Rh–B to soybean, (2) to evaluate the dose effects on plant growth, and (3) to
establish a reliable algorithm to identify the localization of soybean plants. To the best of
our knowledge, this plant localization method was the first technology used to reliably
locate soybean plants.

2. Materials and Methods
2.1. Fluorescent Labeling of Crop Plants

The soybean plants were marked with Rh-B compound by a seed soaking method.
In this method, soybean seeds are soaked in a specific concentration of Rh-B dye for a
certain period. In this study, two varieties of seeds including large soybean and emerald
soybean were soaked in deionized (DI) water or Rh-B solution (60 or 120 mg L−1) for 48 h,
respectively. Then, the seeds of the treatment group and the control group were transferred
to an environmental chamber for germination. After about 2 days, the germinated seeds
(three repetitions for each sample) were planted in plastic seedling pots filled with moist
soil (potting mix) and they were watered evenly once a day.

2.2. Fluorescence Imaging System

A fluorescence imaging system was designed to capture soybean images under the
illumination of light-emitting diode (LED) lights. The system (Figure 1) mainly con-
sisted of an enclosed chamber (about 0.71 m by 0.63 m by 1.71 m high) with opaque
black vinyl walls. The imaging system was controlled by a computer using the astron-
omy common object model (ASCOM) software. A cooled monochrome complementary
metal–oxide–semiconductor (CMOS) camera (ASI1600GT, ZWO Inc., Suzhou, China)
was placed on the top middle of the chamber. The camera (Panasonic MN34230 sensor,
4656 × 3520 resolution, 3.8 µm pixel size) included a lens (Nikkor 50 mm f/1.8D, Nikon,
Tokyo, Japan), an internal 5-position ultra-quiet electronic filter wheel and 12V power distri-
bution. A long-pass ultraviolet (UV) filter (Model Zeta L41, Kenko Co., Ltd., Toyko, Japan)
was fixed in front of the camera lens to absorb the irradiation up to 410 nm. With regulated
two-stage thermoelectric cooler (TEC) cooling, the temperature of sensor was cooled up to
40 C below ambient to maintain noise low. The filter wheel accepts a 31 mm single-band
bandpass filter centered at 575 nm, driven by a whisper quiet high grade stepper motor. Six
green (523 nm) LED lights (Model LZ4-40G108-0000, LED Engin Inc., San Jose, CA, USA)
were placed in the appropriate positions at the middle bottom of the chamber to provide
uniform illumination in the plant area. The brightness of the LEDs was controlled by an
adjustable power supply. Six short-pass filters (FES0550, Thorlabs Inc., Newton, NJ, USA)
were placed in front of six green LEDs mentioned above to prevent any light exceeding 550
nm from reaching the plants. Two sets of mirrors were placed at the bottom of both sides of
the traveling direction of the imaging system, each of which had three mirrors. This design
provided six different side and top views of the plant at the same time, which can reduce
the possibility of tomato stems being occluded in collected images. The camera was placed
on the vertical center line among the mirrors to capture 7 different views of the crop plants,
simultaneously. The size of the mirror is 200 × 150 mm. The two mirrors in the center
were placed parallel to the direction of travel, and the remaining mirrors were placed at a
fixed angle to the center mirror. The mirrors were positioned to ensure that plants labeled
with signaling compounds were visible in the images. The camera exposure time is set
appropriately to capture an image with sufficient signal intensity from the green LEDs.
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Figure 1. Schematic diagram of the fluorescence imaging system.

2.3. Image Acquisition

The images of the control and treatment plants were captured using the fluorescence
imaging system. The images are in grayscale form. The monochrome images of plants were
obtained by using the system with the following camera settings: exposure time = 0.31 s,
and CCD temperature = −15.0 ◦C. Each image includes the top view of the soybean plant
and the side views of the six mirrors. Plants with the Rh-B signal were classified as crops,
otherwise they were classified as weeds. The height and fresh weight of the above-ground
part of the plants were determined after harvesting. The house written scripts for plant
recognition were executed in Matlab software (The Mathworks Inc., Natick, MA, USA).

2.4. Image Pre-Processing

Image pre-processing is an operation at the lowest level of abstraction on an im-
age with the aim of improving the image data by suppressing undesired distortions or
enhancing some image features that are critical for further processing and analysis. In
this study, the image pre-processing methods including median filter, image sharpening
and morphological operations (e.g., erosion, opening, and closing) were applied to the
captured images.

2.5. Pseudo-Color Image Generation

Pseudo-color image was generated using an open-source software (Fiji ImageJ, Na-
tional Institutes of Health, Bethesda, MD, USA) to visualize the intensity of the plant
fluorescence signal. The image visualization tasks were as follows: (1) smoothing the
image to remove the noise; (2) using a global threshold to remove background pixels; and
(3) generating the pseudo-color image using Image -> Lookup Tables -> Cyan.

2.6. Statistical Analysis

The statistical analyses involved in this study were performed using IBM SPSS Statis-
tics version 24.0 (SPSS Inc., Chicago, IL, USA). Statistical differences were evaluated by
analysis of variance (ANOVA) and mean separation was performed using Tukey’s Hon-
estly Significant Difference (HSD) test. Each measurement was compared to that of the
corresponding control group. Thresholds for significant differences were based on p-values
below 0.05.
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3. Results
3.1. Visibility of Rh-B Fluorescence in Soybean

The fluorescence imaging system was used to assess the visibility of Rh-B in soybean
under sunlight. The statistics of average fluorescence of two varieties of soybean exposed
to sunlight for 0, 6, or 12 days is shown in Table 1. There were significant differences in
fluorescence intensity between Rh–B treated soybean and control plants. Compared with
the control plant, the fluorescence of soybean treated with Rh-B was mainly detected in
the plant cotyledon (Figure 2). This result is consistent with the results of a previous study,
in which Su, Fennimore and Slaughter [42] found that the fluorescent signal of snap bean
cotyledon was stronger than that of other regions (such as hypocotyl). As the first leaf
of soybean, the cotyledon can be unearthed to a certain height under the support of the
hypocotyl. The Rh-B fluorescence of plant was detectable under green light, but the trend of
decay of the fluorescence signal in plants was observed. The fluorescence intensity of Rh–B
at day 14 was still stronger than that of the control group, which means that the fluorescence
signal can remain for over 2 weeks in soybean under sunlight. Soybean plants treated with
120 ppm Rh-B showed stronger fluorescence signals at the beginning of germination than
samples with lower doses, but the difference in signal intensity between samples decreased
over time. It was concluded that the Rh-B treated soybean presented acceptable visibility,
which is effective for the identification of soybean plants.

Table 1. The statistics of average fluorescence intensity of soybean exposed to sunlight for 0, 6, or
12 days.

Variety
Days after

Germination
(d)

Rh-B Concentration
(ppm)

Intensity

Mean ± SD Max Min

Large soybean

0
0 4.14 ± 0.16 5.31 4.00

60 32.25 ± 5.80 88.40 4.00
120 50.40 ± 10.33 166.84 4.00

6
0 13.32 ± 2.52 14.04 12.61

60 21.46 ± 7.17 23.50 19.42
120 48.48 ± 23.30 55.11 41.86

12
0 9.35 ± 0.80 14.50 12.74

60 16.05 ± 9.12 25.85 22.11
120 30.09 ± 14.24 51.27 43.72

Emerald soybean

0
0 4.12 ± 0.36 5.93 4.00

60 27.28 ± 6.72 79.33 4.00
120 42.33 ± 9.91 155.13 4.00

6
0 13.62 ± 3.10 14.50 12.74

60 23.98 ± 6.57 25.85 22.11
120 47.50 ± 13.27 51.27 43.72

12
0 10.45 ± 1.42 10.85 10.05

60 17.32 ± 4.82 18.67 15.96
120 31.44 ± 10.97 34.53 28.36
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Figure 2. Pseudo-color image of an Rh-B treated soybean plant with a control plant at day 14 taken
under green light.

3.2. Effect of Rh–B on Soybean Growth

In order to investigate the potential risk of Rh-B on soybean growth, the effect of Rh–B
on soybean vigor was evaluated by measuring the height and weight of the plants. The
soybeans were soaked in distilled water or Rh–B solutions for 48 h before sowing. Soybean
plants were grown outdoors for 20 or 30 days, then harvested and weighed. As shown
in Tables 2 and 3, it can be found that there is no significant difference in soybean foliage
biomass and height between control and Rh–B treated groups after the plants growing
outdoors in full sunlight for 30 days, regardless of the soybean variety. Although there
were differences in the soybean seedling height after growing for 20 days, no significant
difference was observed after growing for 30 days, which demonstrated that Rh–B has
no significant impact on the plant height of after a certain period of growth. Overall, the
application of both dosages of Rh-B to soybean seeds did not inhibit plant growth.

Table 2. Statistical values of above ground biomass of soybean plants treated with different doses
of Rh-B.

Variety
Days after

Germination
(d)

Rh-B Concentration
(ppm)

Weight (g)

Mean ± SD Max Min

Large soybean

20
0 2.47 ±0.76 2.91 2.00

60 1.93 ± 0.97 2.33 1.53
120 2.35 ± 0.97 2.78 1.92

30
0 5.80 ± 2.46 7.56 4.05

60 4.17 ± 1.33 4.79 3.55
120 3.94 ± 1.44 5.14 2.74

Emerald soybean

20
0 1.61 ± 0.74 1.91 1.32

60 2.04 ± 0.90 2.37 1.72
120 1.80 ± 0.78 2.04 1.57

30
0 3.33 ± 2.14 4.47 2.18

60 3.53 ± 1.56 4.47 2.59
120 4.70 ± 1.96 6.34 3.05
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Table 3. Statistical values of the height of soybean plants treated with different doses of Rh-B.

Variety
Days after

Germination
(d)

Rh-B Concentration
(ppm)

Height (cm)

Mean ± SD Max Min

Large soybean

20
0 30.46 ± 3.44 32.55 28.38

60 21.72 ± 5.26 23.89 19.55
120 28.18 ± 7.38 31.45 24.91

30
0 46.28 ± 11.17 54.28 38.29

60 44.44 ± 8.74 48.53 40.35
120 37.91 ± 7.44 44.13 31.69

Emerald soybean

20
0 21.70 ± 5.31 23.81 19.60

60 23.46 ± 4.39 25.04 21.88
120 22.95 ± 5.68 24.68 21.22

30
0 29.02 ± 8.23 33.40 24.63

60 29.85 ± 7.93 34.64 25.06
120 36.17 ± 3.64 39.21 33.12

3.3. Single-View Recognition Result

The experiment of the single-view algorithm was conducted using two sets of plants,
including 105 Rh-B treated soybeans and 132 control plants considered to be weeds. The
dataset used in this algorithm involves the single-view images. The main steps of the
detection algorithm involved image preprocessing, region of interest (ROI) extraction,
crop plant recognition. The diagram representation of the single-view algorithm for plant
detection is shown in Figure 3. The fluorescence signal of ROI was isolated by removing
the background information, as seen in Figure 4a. The values in each 3 × 3 matrix of the
local area of the image are traversed in turn to choose the middle gray value as the pixel
value of the center point. A high threshold of 130 was set to extract the binary image of the
plant according to the difference of gray value. A low threshold of 15 was set to extract the
binary image of the soybean seedlings and weeds. The images were processed by using
the compound morphological operation combined with erosion operation and dilation
operation as shown in Figure 4b,c. Then, each connected area of the image matrix was
assigned a specific value to form label matrices (Figure 5a). The connected areas of the
binary image were traversed. As shown in Figure 5b, if the label value of a pixel is not 0,
the position of the pixel is recorded, and all the connected areas containing the point in the
binary image were removed. This operation is repeated until the entire image is traversed.
The weeds and target crops are then subtracted from the binary image. The centroid of
each connected area in the binary image was calculated to determine the location of target
plants as shown in Figure 4d,e. Figure 6 shows the execution steps of the single-view
detection algorithm. Among the 105 soybean plants, 93.33% of the plants were successfully
classified. The soybean plants that were undetectable were caused by the occlusion of the
ROI images by plant leaves. Of the 132 weeds in the study, 90.15% were correctly classified.
The undetected weeds were due to overlapping boundaries or very close to the crops.
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3.4. Multi-View Recognition Result

Due to the large weed density and the plant architecture, the degree of visual occlusion
of the branches and leaves could be severe, which meant it would be difficult to accurately
detect the crop signal based on one single top plan view. The bright spots represented the
ROI of crop images that were isolated from the image background. The position of the
soybean plant was estimated based on the crop signal detected using six side-view images
and one top-view image. In this method, the ROI from each view image was extracted
based on the threshold value of 130 Figure 7a. The area of ROI of each of six binary images
was calculated. A rule was proposed to evaluate the effectiveness of each ROI of the six
mirror images. In this rule, if the normalized values of a pair of symmetrical images were
both less than 0.3, then the area was regarded as an object of no interest, which should be
discarded. If the ratio of a smaller area to a larger area in a pair of symmetrical images
was less than 0.7, the smaller area was considered as an invalid region. Based on the
obtained effective ROI images, the location of the crop plant can be readily determined
based on the cross-checking between the six side views (Figure 7b). If any ROI images
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were occluded by plant leaves or weeds, the number of identified images in mirrors will be
less than six. This may result in the location of plants not being correctly recognized. For
such cases, the algorithm based on the principle of plane mirror imaging was proposed
to detect the signal location or plant location, as shown in Figure 8. The position of the
object is symmetrical to its mirror image on a straight line perpendicular to the line of
intersection of the mirror and the ground. According to the rule, the plant location can
be readily calculated, then compared with its actual position. The above rules should be
executed based on the sequence of 6 points, 5 points, 4 points, 3 points, 2 points, and then
only 1 detected point in the mirror images to achieve the best recognition accuracy. As
listed in Table 4, there are nine cases for mirror images with less than six side signals. The
corresponding detection results are shown in Table 5. A total of 200 Rh-B treated soybean
seedlings were processed and analyzed in the multi-view recognition experiment. The
maximum error was 1.18 cm and the minimum error was 0.03 cm. The mean error was
0.60 cm and standard deviation was 0.27 cm. The soybean plants were detected with 97%
accuracy. The accuracy was calculated based on the ratio of the total number of plants
detected to the total number of crop plants.
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was extracted based on the threshold value of 130 Figure 7a. The area of ROI of each of 
six binary images was calculated. A rule was proposed to evaluate the effectiveness of 
each ROI of the six mirror images. In this rule, if the normalized values of a pair of 
symmetrical images were both less than 0.3, then the area was regarded as an object of no 
interest, which should be discarded. If the ratio of a smaller area to a larger area in a pair 
of symmetrical images was less than 0.7, the smaller area was considered as an invalid 
region. Based on the obtained effective ROI images, the location of the crop plant can be 
readily determined based on the cross-checking between the six side views (Figure 7b). If 
any ROI images were occluded by plant leaves or weeds, the number of identified images 
in mirrors will be less than six. This may result in the location of plants not being correctly 
recognized. For such cases, the algorithm based on the principle of plane mirror imaging 
was proposed to detect the signal location or plant location, as shown in Figure 8. The 
position of the object is symmetrical to its mirror image on a straight line perpendicular 
to the line of intersection of the mirror and the ground. According to the rule, the plant 
location can be readily calculated, then compared with its actual position. The above rules 
should be executed based on the sequence of 6 points, 5 points, 4 points, 3 points, 2 points, 

Figure 6. The execution steps of the single-view detection algorithm.
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Table 4. Characterization of visual occlusions of plant signals in six side mirrors.

Case Number of Visual
Occlusions of ROIs

Number of Paired
ROIs Detected

Number of Single
ROIs Detected

1 0 3 0
2 1 2 1
3 2 2 0
4 2 1 2
5 3 1 1
6 3 0 3
7 4 1 0
8 4 0 2
9 5 0 1

Table 5. Connecting the ROIs in pairs using dashed lines to get an intersecting point for determination
of the plant location.

Case Original Image Binarized Image Algorithm Running Results
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Table 5. Cont.

Case Original Image Binarized Image Algorithm Running Results
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4. Discussion

An automatic plant localization method was established in this study to identify
soybean crops from weeds, which provided a basis for on-line intra-row weed management.
This crop signaling technology has met the following relevant technical standards: (1) the
fluorescent compound has a unique fluorescent signal that can be recognized in soybean
seedlings, (2) the signal can be detected by an imaging system with specific excitation
lights and band-pass filters, (3) a small amount of marker has a strong fluorescent effect,
(4) this fluorescent substance is safe for soybeans, and (5) the application of the technology
is cost-effective.

The recognizable plant signature used was generated based on soaking the soybean
seeds in Rh-B solutions prior to sowing. High concentrations of fluorescent dyes can
degrade the health and vitality of plants. Su, Slaughter and Fennimore [39] demonstrated
the dose effect of Rh-B in celery plants was a function of its dosage. Then, Rh-B solutions at
concentrations of 1, 10, 100, 1000, or 5000 ppm were applied to snap bean seeds [42]. The
results demonstrated that the fluorescence intensity increased to a maximum at 100 ppm.
Thus, two concentrations of Rh-B (60 and 120 ppm) near to 100 ppm were considered in this
study for differentiation of soybean from weeds. It was found that the two dosages of Rh-B
applied to soybean seeds did not inhibit plant growth, which suggests that higher dosages
of Rh-B should be used to investigate whether these applications will reduce the biomass
and the height of plants. In further research, more different varieties of soybeans treated
with different Rh-B doses should be used to fully assess the plant nutrient loss caused by
Rh-B exposure.

The Rh-B uptake was not only found in soybean, but also in snap bean plants. It
has been confirmed that the strong fluorescence signal intensity of Rh-B was successfully
detected in snap bean cotyledons [42]. Although the Rh-B signal was mainly concentrated
in the cotyledons, the algorithm based on the characteristic signal appeared good in
recognition of soybean seedlings. Since the preliminary study on soybean identification
was carried out indoors, it is not known how accurate it will be under different species
of dense weeds in the field. In our next research, relevant environmental factors, such as
different densities of weeds, will be taken into consideration. Further research will focus on
other crops and new signaling compounds and will evaluate the efficacy of the developed
technology in outdoor fields. In addition, more research should be conducted to assess
whether the quality of postharvest soybeans is affected. This is a preliminary study where
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the main aim is to develop a plant localization technique for automatic differentiation of
the plants. The imaging system developed in this study will be placed behind a tractor
in the future to work in the soybean field, which will be cost-effective as the fluorescence
imaging system is inexpensive. Nevertheless, the cost of applying the technology will
be compared with the cost of manual weeding to assess the ultimate cost-effectiveness.
Although this research focuses on establishing a crop detection technology and evaluating
the effectiveness of the technology, the ultimate goal of future research is to build a robot
that can accurately identify and remove weeds in crop rows in real time.

5. Conclusions

An automatic identification system based on chemical compounds successfully de-
termined the location of soybean plant. The system was equipped with a high-resolution
monochrome camera with a 575 nm bandpass filter, a custom-designed green illumination
source and multi-view visualization components. The crop signal was created by seed
treatment using the machine-readable Rh-B marker before soybean sowing. The seed treat-
ment method used in this study was safe for the soybean growth. The systemic marker has
unique optical characteristics, which can significantly simplify and realize the successful
differentiation of soybean plants. The three-dimensional imaging system was designed to
significantly improve the performance of the detection algorithm to detect crop signals.
The multi-view algorithm performed better than the single-view algorithm in solving the
extreme cases of occlusion, reaching an average detection accuracy of 97% in identifying the
early growth stage of soybean plants. The system is planned to be equipped with specially
designed rotating knives to remove weeds near crops in real time.
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