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Abstract: Poultry breeding is one of the most significant components of agriculture and an essential
link of material exchange between humans and nature. Moreover, poultry breeding technology has a
considerable impact on the life quality of human beings, and could even influence the survival of
human beings. As one of the most popular poultry, broiler has a good economic benefit due to its
excellent taste and fast growing cycle. This paper aims to improve the efficiency of raising broilers by
understanding the impact of ammonia concentration distribution within a smart broiler breeding
chamber, and the rationality of the system’s design. More specifically, we used computational
fluid dynamics (CFD) technology to simulate the process of ammonia production and identify the
characteristics of ammonia concentration. Based on the simulation results, the structure of the broiler
chamber was reformed, and the ammonia uniformity was significantly improved after the structural
modification of the broiler chamber and the ammonia concentration in the chamber had remained
extremely low. In general, this study provides a reference for structural optimization of the design of
broiler chambers and the environmental regulation of ammonia.

Keywords: ammonia concentration; computational fluid dynamics; broiler chamber

1. Introduction

The yellow-feathered broiler has the characteristics of delicious meat—tender and
delicious. The annual output of yellow-feathered broilers in China is about four billion,
accounting for about 50% of China’s broiler production [1]. There is a large number of
small-to-medium sized yellow-feathered broiler raising farms in rural China, with dozens
of them located in Jinniuhu Street, Luhe District, Nanjing, China. During the broiler
breeding process, a large number of air pollutants are produced, including ammonia (NH3),
hydrogen sulfide (H2S) and methane (CH4), which adversely affect the production and
growth performance of the broiler. From 2019 to 2020, our research group carried out
four breeding experiments in different seasons; according to the results, hydrogen sulfide
and methane concentrations were at extremely low levels (<0.1 ppm), while the ammonia
concentration was relatively high in the broiler house. Ammonia can be adsorbed on the
skin as well as in eye conjunctiva of broilers quite easily, due to its high solubility. Even a
very low concentration of ammonia, such as 20 ppm, can also cause conjunctivitis, upper
respiratory tract membrane congestion, edema, and increased secretions [2]. Ammonia,
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as a pollutant in the broiler house, is produced during the decomposition process of the
nitrogen in broiler feces. During recent years, ammonia discharge has become one of the
major environmental protection problems, as it can endanger the health of animals and
human beings, as well as cause environmental pollution [3]. Factors such as humidity,
breeding density and ventilation have non-negligible impacts on ammonia concentration in
the broiler house. Hence a well-designed structure of the broiler house is important, since it
ensures the health of the broilers and workers by maintaining the ammonia concentration at
a relatively low level. Overall, it is of great significance to study the ammonia concentration
distribution in a broiler house when considering its design quality.

As livestock and poultry grow, they will emit more ammonia, and the difference
in the distribution of ammonia concentration in the chamber will gradually increase [4].
To achieve a more intuitive understanding of the ammonia diffusion in livestock and
poultry houses, computational fluid dynamics (CFD) simulation technology can be used.
CFD is a comprehensive discipline integrating fluid mechanics, heat transfer, engineering
thermodynamics, numerical analysis, computer science and other disciplines. It originated
in the Second World War and became a branch of Fluid mechanics in the 1960s [5]. CFD
technology has been widely applied in the fields of commerce, industry and agriculture, as
it can complete the simulation of fluid flow in an efficient manner [6–11]. With the continued
increase of the computational power of CFD software during past years, the simulation
results of CFD software are authentic and reliable in most cases. Furthermore, using CFD
simulations can save a large number of resources in field experiments. The research results
can be analyzed intuitively through numerical calculation and cloud image display. In terms
of agricultural buildings, CFD technology has become an important tool for predicting
and evaluating the internal environment of agricultural buildings, with high accuracy and
obvious application effects in building internal parameters and structure simulations [12].
The environment of the broiler chamber is similar to that of other buildings. Although CFD
technology has barely been applied directly to broiler houses in previous research works, it
has been widely used in the environmental analysis of other types of livestock and poultry
houses. One of the previous research works implemented by Yin et al. [13] established three
different CFD models to simulate ammonia emissions in dairy cows: a flat plate model
(SFM), turbulent porous media model (PMM-T) and laminar flow porous media model
(PMM-L). Their results demonstrated that the three models increase the ammonia emission
rate under certain conditions such as increasing the average wind speed while reducing the
headspace height, or adding side walls around the tunnel. Meanwhile, it concluded that
the simulation results mainly depend on the treatment of turbulence in porous media, and
PMM-T and PMM-L can provide closer flow characteristics and emission rate predictions
than SFM. Nevertheless, PMM-T significantly overestimated the turbulent kinetic energy,
and the ammonia emission rate. Another previous study performed by Rojano et al. [14]
established a three-dimensional CFD model of a poultry farm and verified it with the mean
spatiotemporal data related to the microclimate of the poultry house. Their results showed
that the overall variability of the experimental data related to the microclimate was lower
than the predicted data. Subsequently, CFD models were used to predict the horizontal
emissions through the side vents and the emissions of pollutants such as ammonia due
to natural ventilation, and the areas near the poultry farms were defined. Research work
carried out by Tabase [15] used CFD for the modelization of airflow and ammonia emissions,
to promote the mitigation of ammonia emissions and improve air quality in the house and
provide thermal comfort for the animals. A steady-state CFD model was developed to
predict ammonia distribution in a pig house with an underfloor air distribution (UFAD)
system. Advanced ammonia emission modeling methods were used in the CFD model to
simulate ammonia production. There was a good correlation between the simulation and
the measured results. Finally, research work conducted by Stamou et al. [16] used the shear
stress transport (SST) K-ωmodel to calculate the airflow velocity and temperature in the
model room. Based on a competitive study between the calculated results, the measured
results and other turbulent models, they concluded that the calculated results using the SST
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K-ωmodel were in good agreement with measured results. Based upon the aforementioned
previous works, we believe that using CFD to simulate ammonia concentration distribution
in the broiler house with the SST K-ω turbulence model is feasible.

For the experimental settings in the study described in this article, the smart-breeding
broiler chamber was used as the experimental environment, and the yellow-feathered
broilers were selected as the breeding object. In view of the ammonia produced in the
breeding process during winter, zoning collection and calculation of ammonia concentration
values were adopted, the basic governing equations of CFD were established, the broiler
chamber was modeled, the grid was reasonably divided, and the appropriate solution
model and boundary conditions were selected. Based on the mentioned experimental
settings, CFD technology was used to simulate the ammonia concentration distribution in
the broiler chamber in winter, which is useful for the evaluation of ammonia concentration
and the renovation of ventilation system in the broiler chamber.

2. Materials and Methods
2.1. Materials
2.1.1. Basic Information about the Experiment

The used broiler house in the following experiment was located in Jinniuhu Street,
Liuhe District, Nanjing, Jiangsu, China with longitude coordinates of 118◦52′64′′ E and
latitude coordinates of 32◦26′77′′ N. The walls around the chamber of broiler house were
made of 55 mm color steel sandwich panel. The width of the broiler chamber was 1.9 m, the
length was 2.9 m, and the total area was 5.51 m2. The roof was of a slope type, with a clear
height of 1.88 m on the west side and a clear height of 1.77 m on the east side, which made it
easier to drain the rainwater from the west side to the east side. The ventilation system in the
broiler chamber was composed of an air inlet, an air outlet and an internal circulation (the
part connected by the openings at both ends through the pipe). Two Pulinleshi 400 negative
pressure air fans (Fan A and Fan B) were installed at the two outlets of internal circulation
and external circulation; the rated air volume of the fan was 9000 m3/h, and the frequency
conversion controllers with various frequencies were installed accordingly to satisfy various
temperature conditions. Furthermore, a ventilation scheme was designed for a variety of
seasons and temperatures based on the fan parameters [17,18].

2.1.2. Experimental Arrangement

The experiment was scheduled between 5 December 2019 and 12 January 2020, and
lasted 38 days. More specifically, 45 yellow-feathered broilers were raised inside the
experimental broiler chamber. Before starting to raise broilers in the chamber, we selected
broilers with a weight of about 800 g and an age of about 75 days. Moreover, a high-
definition camera was mounted at the top center of the chamber for recording purposes.

During the breeding process of the selected broilers in winter, the negative pressure
fan ventilation reduced the production of harmful gases in the broiler chamber, which was
closed. The reduction of ammonia further reduced the temperature loss rate. The two
air outlet fans (Fan A and Fan B) of the broiler chamber worked independently, and the
frequency modulation scheme was provided according to the actual indoor temperature. In
this paper, the simulation results were generated mainly based on the working conditions
presented in Table 1.

Table 1. Frequency modulation scheme of Fan A and Fan B.

Working Condition Temperature Fan A RPM (Fan A) Fan B RPM (Fan B)

Working condition 1 Greater than 20 ◦C 30 Hz 840 30 Hz 840
Working condition 2 Greater than 10 ◦C and less than 20 ◦C 15 Hz 420 15 Hz 420
Working condition 3 Less than 10 ◦C 0 Hz 0 0 Hz 0
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Before conducting the experiments, a yellow-feathered broiler was used to measure
and determine the model size of each broiler before raising the broilers inside the broiler
chamber. More details regarding the process of measuring the model size of each broiler is
demonstrated in Figure 1.

Agriculture 2022, 12, x FOR PEER REVIEW 4 of 19 
 

 

Table 1. Frequency modulation scheme of Fan A and Fan B. 

Working Condition Temperature Fan A RPM (Fan A) Fan B RPM (Fan B) 

Working condition 1 Greater than 20 °C 30 Hz 840 30 Hz 840 

Working condition 2 Greater than 10 °C and less than 20 °C 15 Hz 420 15 Hz 420 

Working condition 3 Less than 10 °C 0 Hz 0 0 Hz 0 

 

 
(a) 

 
(b) 

Figure 1. Measurements of broiler size: (a) measure the height of an adult broiler, (b) measure the 

length of an adult broiler. 

Based on the measurement results, the size of an adult broiler is defined as 30 cm in 

length, 20 cm in width, 20 cm in height from the thigh to the back, and 10 cm in height 

above the neck. The broiler sample used to measure and determine the model size is 

demonstrated in Figure 2. 

 

Figure 2. A diagram that shows the broiler sample used to measure and determine the model size. 

In the conducted experiments, 45 yellow-feathered broilers were raised and screened 

in the described broiler chamber. Therefore, geometric modeling was carried out for a 

single broiler to improve the simulation accuracy. As described by Cheng et al. [19], com-

mon models for a single broiler include the body only model, the block body model and 

the ellipsoid model. Based on the result of a competitive study in simulations, we decided 

to use the block body model as the research model [20]. To improve the calculation effi-

ciency and accuracy, the broiler model was simplified according to the original volume, 

as shown in Figure 3. 

Figure 1. Measurements of broiler size: (a) measure the height of an adult broiler, (b) measure the
length of an adult broiler.

Based on the measurement results, the size of an adult broiler is defined as 30 cm in
length, 20 cm in width, 20 cm in height from the thigh to the back, and 10 cm in height
above the neck. The broiler sample used to measure and determine the model size is
demonstrated in Figure 2.
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Figure 2. A diagram that shows the broiler sample used to measure and determine the model size.

In the conducted experiments, 45 yellow-feathered broilers were raised and screened
in the described broiler chamber. Therefore, geometric modeling was carried out for a single
broiler to improve the simulation accuracy. As described by Cheng et al. [19], common
models for a single broiler include the body only model, the block body model and the
ellipsoid model. Based on the result of a competitive study in simulations, we decided to
use the block body model as the research model [20]. To improve the calculation efficiency
and accuracy, the broiler model was simplified according to the original volume, as shown
in Figure 3.
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2.1.3. Optimized Experimental Arrangement

We further optimized the ventilation system based on the results of the first experiment.
The second experiment was scheduled between 1 January 2021 and 28 January 2021, which
lasted for 28 days. More specifically, 45 broilers were raised inside the broiler chamber
with optimized ventilation system. Before starting to raise broilers in the chamber, we
selected broilers with a weight of about 800 g and an age of about 75 days. Moreover, a
high-definition camera was used to record video from the top center of the chamber.

2.2. Methods
2.2.1. Technical Route

The value of ammonia concentration generated during the breeding process of selected
broilers in the broiler chamber in winter was collected and calculated by zoning. Further-
more, the Integrated Computer Engineering and Manufacturing (ICEM) CFD was used to
model the broiler chamber, divide the grid reasonably, and then select the appropriate solv-
ing model with boundary conditions. After that, Fluent software (ANSYS Inc., Pittsburgh,
PA, USA) was applied to simulate ammonia concentration distribution. Finally, CFD-POST
(ANSYS Inc., Pittsburgh, PA, USA) was applied to analyze the simulation results. Figure 4
demonstrates the systematic process of CFD calculation as a flowchart.
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2.2.2. Monitoring Area Division and Gas Mass Determination

As shown in Figure 5, the two air inlets, two air outlets and the center of the broiler
chamber floor were divided into five square parts (Part 1, Part 3, Part 5, Part 7 and Part 9),
with the length of each square part being 0.6 cm. In each of these five parts, a high-precision
ammonia transmitter was placed to monitor ammonia concentration. The remaining region



Agriculture 2022, 12, 182 6 of 17

was divided into four non-square parts, namely Part 2, Part 4, Part 6 and Part 8. In addition,
the ammonia values in these four parts were obtained by using the neighborhood mean
method, namely the average values measured by the three nearby parts.
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The surface generated by ammonia was set as the mass inflow inlet and was converted
according to the measurement point data and the conversion equation in Equations (1) and (2).
The ammonia transmitter detected the value with an accuracy of 0.1 ppm, while the unit of
mass inflow inlet was kilograms per second (kg/s). The measured height of the ammonia
transmitter was 0.15 m away from the cushion material layer. The collected value represents
the ammonia concentration value of the entire region. The stable result of the ammonia
concentration value under various frequency converter conditions during the measurement
process was considered as the concentration value, which belongs to the steady-state
simulation. The surface area of each part is detailed in Figure 5 and the air mass within the
measurement area is determined as Equation (1).

M0 = Vd ρair (1)

where M0 is the air mass (unit is kg); Vd is the volume of the measured area, and the unit is
m3; and ρair is the air density, and the unit is kg/m3.

vM = M0V0 (2)

where vM is the mass flow rate, and the unit is m/s; and V0 is the measured concentration
of ammonia corresponding to the region, and the unit is ppm.

The area and volume of each partition of the broiler living layer tested and the total
air mass calculated according to Equation (2) are listed in Table 2.

Table 2. Measured values of air mass in the block areas of the broiler chamber.

Broilers’ Living
Layer Partition

Measurement
Area/m2

Measurement
Height/m Volume/m3 Total Air

Mass/kg

Part1 0.3600 0.15 0.054000 0.069822
Part2 0.7775 0.15 0.116625 0.150796
Part3 0.3600 0.15 0.054000 0.069822
Part4 1.0775 0.15 0.161625 0.208981
Part5 0.3600 0.15 0.054000 0.069822
Part6 1.0775 0.15 0.161625 0.208981
Part7 0.3600 0.15 0.054000 0.069822
Part8 0.7775 0.15 0.116625 0.150796
Part9 0.3600 0.15 0.054000 0.069822
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2.2.3. Modeling and Meshing of CFD

Broiler Chamber Modeling

In the simulation of wind field with broiler chamber, the position distribution of
broilers has different effects on the wind field. The videos were recorded from the top center
of the broiler chamber. To improve the image resolution, we replaced the 2-megapixel
Haikang network camera in the broiler chamber with an 8-megapixel high-definition
network camera. Regarding the perspective of the recorded videos, all of them were
recorded from the top center of the broiler. To provide a more intuitive view from the
camera, Figure 6 demonstrates a photo randomly selected from the recorded video stream
data. This research mainly examined the wind speed and wind velocity flow field layout
in the random distribution area of broilers, and compared this to the wind velocity of the
empty chamber; this was carried out to analyze the influence of broilers on the wind field
of the broiler chamber, so as to bring about better improvements and optimization for
future research.
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In ICEM CFD software, broilers were simplified as block body models: the body part
was expressed as a cube with dimensions of 30 cm × 20 cm × 20 cm, and the head part was
expressed as a cube with dimensions of 10 cm × 10 cm × 10 cm. The block body model
was composed of two geometrical bodies, and 45 broilers were placed in winter. Figure 6
illustrates the distribution of broilers in the broiler chamber model. Figure 7 shows the
distribution in the broiler chamber model after the transformation of the block model.
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Grid Division of Broiler Chamber

To improve the computing speed and the quality of the grid, a three-dimensional
model was established in the ICEM CFD 2019R1 (ANSYS Inc., Pittsburgh, PA, USA). In the
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model, the formula of the broiler chamber was simplified: to be more specific, the steel
frame structure of the top was removed and the internal structure was simplified as much
as possible without the effect of the simulation results, and the non-structural grid was
used to divide the empty broiler chamber. The maximum length of the whole broiler mill
model was set to 0.05 m. Due to the fact that the main activity area of the broiler was
at the bottom of the broiler chamber, our research focuses more on the impact of surface
ventilation on the broilers’ health. We had a grid encryption of the broiler chamber that
contain 45 square models. The total number of the model grid was 4,817,444, and the grid
check quality was 0.2, which meets the requirements of the calculation. The results of the
broiler comb grid are detailed in Figure 8.
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2.2.4. Boundary Condition Setting
Determination of Ammonia Concentration Value

The ammonia concentration values in Parts 1, 3, 5, 7 and 9 were measured according
to the 9 zones in Figure 5. The ammonia concentration values in Parts 2, 4, 6 and 8
were calculated using Equation (3). The ammonia transmitter recorded the values every
minute. After the ammonia concentration reached a constant level under a certain working
condition, the average value of the three times was considered the ammonia concentration
value under the stable working condition. The values are shown in Table 3.

c =
∑2

i=0 ci

3
(3)

where c is the ammonia concentration value in Parts 2, 4, 6 and 8, and the unit is ppm; ci is
the ammonia concentration value in Parts 1, 3, 5, 7 and 9, and unit is ppm.
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Table 3. Ammonia concentration value in calculation area corresponding to Fan A and Fan B
operating frequencies (unit: ppm).

Fan A Fan B 1 2 3 4 5 6 7 8 9

0 HZ 0 HZ 44.4 44.2 40.8 45.7 47.4 42.8 45.4 44.3 40.1
15 HZ 15 HZ 33.5 32.8 29.5 34.2 35.4 31.7 33.6 33.1 30.2
30 HZ 30 HZ 15.4 15 11.4 16.6 18.1 14.4 16.2 16 13.8

Note: The two air inlets, two air outlets and the center of the broiler chamber floor were divided into five square
parts (Part 1, Part 3, Part 5, Part 7 and Part 9), and the remaining region was divided into four non-square parts:
namely Part 2, Part 4, Part 6 and Part 8.

Substituting each of the values from Table 3 into Equation (2), the ammonia mass
indicating the ammonia flow through each part per second was obtained. The density of
ammonia is equal to 0.771 mg/mL. The calculated values of the total mass of ammonia in
the calculation area are shown in Table 4.

Table 4. Total mass of ammonia in calculation area corresponding to working frequency of FAN A
and FAN B (unit: mg).

Fan A Fan B 1 2 3 4 5 6 7 8 9

0 HZ 0 HZ 3.1 6.56 2.85 9.4 3.31 8.8 3.17 6.57 2.8
15 HZ 15 HZ 2.34 4.87 2.06 7.03 2.47 6.52 2.35 4.91 2.11
30 HZ 30 HZ 1.08 2.23 0.8 3.41 1.26 2.96 1.13 2.37 0.96

Note: The two air inlets, two air outlets and the center of the broiler chamber floor were divided into five square
parts (Part 1, Part 3, Part 5, Part 7 and Part 9), and the remaining region was divided into four non-square parts:
namely Part 2, Part 4, Part 6 and Part 8.

Fluent Solution Mode Setting

After the mesh model was completed, the simulation calculation was carried out in the
broiler chamber with 45 square model broilers in the actual position in Fluent 2019R1. The
SST K-ω model was adopted. The SST K-ω model incorporates the cross diffusion derived
from the ω equation. Its turbulent viscosity takes into account the wave propagation of
turbulent shear stress. These improvements make the SST K-ωmodel more accurate and
reliable over a wide range of flow fields than the standard K-ωmodel. The values of Fluent
solution setting parameters are shown in Table 5.

Table 5. Settings of solution mode of Fluent.

Parameter Type/Values

Simulated state Steady state
Turbulence model SST K-ω

Air density (kg·m−3) 1.293
Dynamic viscosity (kg·m−1·s−1)

Dynamic grid
1.83 × 10−5.
Smoothing

3. Results and Discussion
3.1. Ammonia Concentration Simulation under Different Working Conditions

The frequency converter corresponding to the internal circulation and external cir-
culation of broiler chamber gas was adjusted to 0 Hz, 15 Hz, and 30 Hz according to
Table 1. An anemometer was used to measure the wind speed from the air inlet of the
internal circulation, the air outlet of the internal circulation and the air inlet of the external
circulation three times, respectively, and take the average value of each point. Outflow
from the external circulation outlet flow was set as natural outflow. The inlet and outlet
wind speeds are shown in Table 6.
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Table 6. Wind speed measurement at inlet and outlet of broiler chamber under different working conditions.

Air Inlet and Outlet
Wind Speed (Unit: m/s)

Working Condition 1 Working Condition 2 Working Condition 3

The air inlet of the internal circulation 0 0.44 0.97
The air outlet of the internal circulation −0.02 −0.42 −0.91
The air inlet of the external circulation 0.05 0.35 0.83

The air outlet of the external circulation outflow outflow outflow

The wind speed values at the inlet and outlet of the broiler chamber in Table 6 were put
into the boundary conditions. The air mass values in Table 2 and the ammonia mass values
in Table 4 were, respectively, substituted into Part 1 to Part 9 in Fluent, corresponding to
the three work conditions in Table 1. The solution parameters of Fluent were set according
to Table 5, and the number of calculation steps was set as 600 steps. After solving according
to the solution steps of Fluent and CFD-POST software, the simulation distribution results
of two-dimensional ammonia concentration in the YZ plane, XZ plane and XY plane of the
broiler chamber were finally obtained. Three-dimensional streamline diagram of ammonia
in the whole broiler chamber were also obtained, as shown in Figures 9–11.

If the ventilation system works in working condition 3, the concentration of ammonia
in the whole broiler chamber is lower than 10 ppm, which meets the requirements of breed-
ing. The suitable growth temperature for broilers is about 20 degrees Celsius. However, the
temperature in Nanjing, Jiangsu Province of China, is rarely higher than 20 degrees Celsius
during winter, so it works in working condition 1. The ammonia concentration of the
broiler chamber was higher, and the whole broiler chamber was more than 30 ppm without
the ventilation of the negative pressure fan. Furthermore, the ammonia concentration in
the middle part of the broiler chamber was even more than 40 ppm, which is more than
twice the requirement of the high concentration standard of ammonia. If the ventilation
system works in working condition 2, the concentration of ammonia in the broiler chamber
is in a small area of the air inlet of the external circulation, and the rest of the area is more
than 20 ppm. As a result, the broiler chamber has improved ventilation requirements in the
winter. Through the three-dimensional model of the broiler chamber, it can be observed that
the two air inlets lift significantly after contact with the ground air. This will suppress the
ammonia diffusion in the living layer of the broiler, resulting in the ammonia concentration
in the living layer of the broiler being significantly higher than in the upper space of the
broiler chamber. Therefore, it is still suggested that an outlet on the wall of the broiler
chamber be open, to effectively discharge ammonia via a negative pressure fan.

It can be concluded from the simulation results that the ammonia concentration in the
broiler chamber under working conditions 1 and 2 fails to meet the national standard for
livestock and poultry breeding. Working condition 3 can keep the ammonia concentration in
the broiler chamber at a low level; however, the ammonia concentration distribution in the
broiler chamber is not uniform. The fan has almost no influence on the ventilation at the top
of the broiler chamber, and greatly reduces the ambient temperature in the broiler chamber.
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3.2. Experimental Results of Improved Broiler Chamber

The center of the negative pressure fan at the internal and external circulation is about
25 cm away from the floor, and its installation position can better solve the ventilation
function of the living layer of broilers. However, the relative molecular weight of ammonia
is lower than the average relative molecular weight of air, which makes it easy to gathered
on the top of the broiler chamber without external interference after the generation of the
living layer of broilers. After considering the collaboration effect between the ammonia
exhaust path and the fans, the negative pressure fan in the optimization scheme is set above
the middle part of the wall where the internal and external circulation fans are located, as
shown in Figure 12. Both Fan A and Fan B work at the frequency of 10 Hz and the RPM
of the two fans is 280. The distance of the new fan is about 10 cm from the roof, and the
opening is 30 cm × 30 cm. The rated air volume is 2000 m3/h, and the outer side of the fan
is equipped with a louver. When the fan is closed, the louver will also be closed to reduce
the penetration of cold air.
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Figure 12. The negative pressure fan was set for the optimization scheme.

After repeating the same measurement process three times, we can then calculate
the average values of inlet and outlet wind speed; the results are shown in Table 7. The
simulation distribution results of the two-dimensional ammonia concentration in the broiler
living layer and three-dimensional streamline of ammonia in the whole broiler chamber
are detailed in Figure 13.

Table 7. Wind speed measurement at inlet and outlet of broiler chamber under improved working condition.

Air Inlet and Outlet
Wind Speed (Unit: m/s)

Working Condition 4

The air inlet of the internal circulation 0.43
The air outlet of the internal circulation −0.11
The air inlet of the external circulation 0.31

The air outlet of the external circulation −0.15
The air outlet of the optimization scheme outflow
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As indicated by comparing the optimized and original results, the ammonia concen-
tration in the broiler chamber in the optimization scheme is the lowest. When the internal
and external circulation fans are turned on at 10 Hz, it can be found that the scheme of
the “the internal and external circulation fans of 10 Hz with added negative pressure” can
better achieve the uniformity of ammonia concentration in the chamber. Meanwhile, the
ammonia at the top of the broiler chamber can be discharged more efficiently. By observing
the flow diagram, it can be concluded that in the original ventilation method, the ammonia
far away from the fan wall is generated from the floor layer and needs to rise to the roof
then descend to the external circulation outlet to be eliminated; meanwhile, the negative
pressure fan in the optimized scheme can directly eliminate the ammonia on the top of the
broiler chamber.

4. Conclusions

In this paper, CFD technology was used to simulate ammonia production and iden-
tify the characteristics of its concentration in a smart broiler chamber in Nanjing, China.
The models of the smart-breeding broiler chamber and the corresponding broilers were
constructed based on field monitoring: first, the grid was reasonably meshed into dis-
crete computing domains for each model, and second, the boundary conditions were
determined accordingly. In the process of simulating the distribution of ammonia con-
centration in the broiler chamber during winter, the SST K-ω model was applied as the
steady-state turbulence model, and the structure of the chamber was optimized based on
the simulation results.

The simulation results demonstrated that under working conditions 1 and 2, the venti-
lation fan could not provide the flow rate to meet the ammonia concentration requirements
of the broiler chamber, as the ammonia distribution was uneven, and the ammonia concen-
tration in the living layer of the broilers was relatively high. The ammonia concentration in
the chamber could be controlled to reach lower than 20 ppm under working conditions
3; however, attempts to reach the working temperature during winter was highly tricky.
The broiler chamber structure was reformed on the basis of the simulation results, and a
negative pressure fan was placed in the middle part of the chamber above the internal and
the external circulation fans on the fan wall, to improve the uniformity of the air flow in the
chamber. This modification to the broiler chamber significantly improved the uniformity of
the ammonia, and allowed the ammonia concentration in the chamber to remain below
10 ppm. This treatment effectively reduced the ammonia concentration in the living layer
of the broilers and accelerated the ammonia discharge.
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